SlideShare a Scribd company logo
@PatrickMcFadin
Owning Time Series with Team Apache:
Kafka, Spark Cassandra
1
Patrick McFadin

Chief Evangelist for Apache Cassandra, DataStax
Agenda for the day
Core Concepts: 9:00-10:30
• Prep for the tutorials
• Introduction to Apache Cassandra
• Why Cassandra is used for storing time series data
• Data models for time series
• Apache Spark
• How Spark and Cassandra work so well together
• Kafka
Break: 10:30-11:00
Key Foundational Skills:
• Using Apache Cassandra
• Creating the right development environment
• Basic integration with Apache Spark and Cassandra
Integrating An End-To-End Data Pipeline
• Technologies used: Spark, Spark Streaming, Cassandra, Kafka, Akka, Scala
• Ingesting time series data into Kafka
• Leveraging Spark Streaming to store the raw data in Cassandra for later analysis
• Apply Spark Streaming transformations and aggregation to streaming data, and store material views in Cassandra
Start your downloads!
Linux/Mac:
curl -L http://downloads.datastax.com/community/dsc-cassandra-2.1.2-bin.tar.gz | tar xz
Windows:
http://downloads.datastax.com/community/
Check out code
git clone https://github.com/killrweather/killrweather.git
From the command line:
Or from your favorite git client, get the following repo:
https://github.com/killrweather/killrweather.git
Build code
cd killrweather
sbt compile
Download the internet… wait for it….
# For IntelliJ users, this creates Intellij project files
sbt gen-idea
Core Concepts
Introduction to Apache Cassandra
Cassandra for Applications
APACHE
CASSANDRA
Cassandra is…
• Shared nothing
• Masterless peer-to-peer
• Based on Dynamo
Scaling
• Add nodes to scale
• Millions Ops/s
Cassandra HBase Redis MySQL
THROUGHPUTOPS/SEC)
Uptime
• Built to replicate
• Resilient to failure
• Always on
NONE
Replication
10.0.0.1
00-25
10.0.0.4
76-100
10.0.0.2
26-50
10.0.0.3
51-75
DC1
DC1: RF=3
10.10.0.1
00-25
10.10.0.4
76-100
10.10.0.2
26-50
10.10.0.3
51-75
DC2
DC2: RF=3
Client
Insert Data
Asynchronous Local Replication
Asynchronous WAN Replication
Data Model
• Familiar syntax
• Collections
• PRIMARY KEY for uniqueness
CREATE TABLE videos (
videoid uuid,
userid uuid,
name varchar,
description varchar,
location text,
location_type int,
preview_thumbnails map<text,text>,
tags set<varchar>,
added_date timestamp,
PRIMARY KEY (videoid)
);
Data Model - User Defined Types
• Complex data in one place
• No multi-gets (multi-partitions)
• Nesting!
CREATE TYPE address (
street text,
city text,
zip_code int,
country text,
cross_streets set<text>
);
Data Model - Updated
• Now video_metadata is
embedded in videos
CREATE TYPE video_metadata (
height int,
width int,
video_bit_rate set<text>,
encoding text
);
CREATE TABLE videos (
videoid uuid,
userid uuid,
name varchar,
description varchar,
location text,
location_type int,
preview_thumbnails map<text,text>,
tags set<varchar>,
metadata set <frozen<video_metadata>>,
added_date timestamp,
PRIMARY KEY (videoid)
);
Data Model - Storing JSON
{
"productId": 2,
"name": "Kitchen Table",
"price": 249.99,
"description" : "Rectangular table with oak finish",
"dimensions": {
"units": "inches",
"length": 50.0,
"width": 66.0,
"height": 32
},
"categories": {
{
"category" : "Home Furnishings" {
"catalogPage": 45,
"url": "/home/furnishings"
},
{
"category" : "Kitchen Furnishings" {
"catalogPage": 108,
"url": "/kitchen/furnishings"
}
}
}
CREATE TYPE dimensions (
units text,
length float,
width float,
height float
);
CREATE TYPE category (
catalogPage int,
url text
);
CREATE TABLE product (
productId int,
name text,
price float,
description text,
dimensions frozen <dimensions>,
categories map <text, frozen <category>>,
PRIMARY KEY (productId)
);
Why…
Cassandra for Time Series?
Spark as a great addition to Cassandra?
Example 1: Weather Station
• Weather station collects data
• Cassandra stores in sequence
• Application reads in sequence
Use case
• Store data per weather station
• Store time series in order: first to last
• Get all data for one weather station
• Get data for a single date and time
• Get data for a range of dates and times
Needed Queries
Data Model to support queries
Data Model
• Weather Station Id and Time
are unique
• Store as many as needed
CREATE TABLE temperature (
weather_station text,
year int,
month int,
day int,
hour int,
temperature double,
PRIMARY KEY ((weather_station),year,month,day,hour)
);
INSERT INTO temperature(weather_station,year,month,day,hour,temperature)
VALUES (‘10010:99999’,2005,12,1,7,-5.6);
INSERT INTO temperature(weather_station,year,month,day,hour,temperature)
VALUES (‘10010:99999’,2005,12,1,8,-5.1);
INSERT INTO temperature(weather_station,year,month,day,hour,temperature)
VALUES (‘10010:99999’,2005,12,1,9,-4.9);
INSERT INTO temperature(weather_station,year,month,day,hour,temperature)
VALUES (‘10010:99999’,2005,12,1,10,-5.3);
Storage Model - Logical View
2005:12:1:7
-5.6
2005:12:1:8
-5.1
2005:12:1:9
-4.9
SELECT weather_station,hour,temperature
FROM temperature
WHERE weatherstation_id=‘10010:99999’
AND year = 2005 AND month = 12 AND day = 1;
10010:99999
10010:99999
10010:99999
weather_station hour temperature
2005:12:1:10
-5.3
10010:99999
2005:12:1:12
-5.4
2005:12:1:11
-4.9-5.3-4.9-5.1
2005:12:1:7
-5.6
Storage Model - Disk Layout
2005:12:1:8 2005:12:1:9
10010:99999
2005:12:1:10
Merged, Sorted and Stored Sequentially
SELECT weather_station,hour,temperature
FROM temperature
WHERE weatherstation_id=‘10010:99999’
AND year = 2005 AND month = 12 AND day = 1;
Primary key relationship
PRIMARY KEY (weatherstation_id,year,month,day,hour)
Primary key relationship
PRIMARY KEY (weatherstation_id,year,month,day,hour)
Partition Key
Primary key relationship
PRIMARY KEY (weatherstation_id,year,month,day,hour)
Partition Key Clustering Columns
Primary key relationship
PRIMARY KEY (weatherstation_id,year,month,day,hour)
Partition Key Clustering Columns
10010:99999
2005:12:1:7
-5.6
Primary key relationship
PRIMARY KEY (weatherstation_id,year,month,day,hour)
Partition Key Clustering Columns
10010:99999
-5.3-4.9-5.1
2005:12:1:8 2005:12:1:9 2005:12:1:10
Data Locality
weatherstation_id=‘10010:99999’ ?
1000 Node Cluster
You are here!
Query patterns
• Range queries
• “Slice” operation on disk
SELECT weatherstation,hour,temperature
FROM temperature
WHERE weatherstation_id=‘10010:99999'
AND year = 2005 AND month = 12 AND day = 1
AND hour >= 7 AND hour <= 10;
Single seek on disk
2005:12:1:12
-5.4
2005:12:1:11
-4.9-5.3-4.9-5.1
2005:12:1:7
-5.6
2005:12:1:8 2005:12:1:9
10010:99999
2005:12:1:10
Partition key for locality
Query patterns
• Range queries
• “Slice” operation on disk
Programmers like this
Sorted by event_time
2005:12:1:7
-5.6
2005:12:1:8
-5.1
2005:12:1:9
-4.9
10010:99999
10010:99999
10010:99999
weather_station hour temperature
2005:12:1:10
-5.3
10010:99999
SELECT weatherstation,hour,temperature
FROM temperature
WHERE weatherstation_id=‘10010:99999'
AND year = 2005 AND month = 12 AND day = 1
AND hour >= 7 AND hour <= 10;
Apache Spark
Hadoop
*Slow, everything written to disk
*MapReduce is very powerful but is no longer
enough
*Huge overhead
*Inefficient with respect to memory use, latency
*Batch Only
*Inflexible vs Dynamic
Escape From Hadoop?
Analytic
Analytic
Search
Hadoop:
WordCount
Painful just to look at
Analytic
Analytic
Search
Spark: WordCount
Analytic
Analytic
Search
• Fast, general cluster compute system
• Originally developed in 2009 in UC
Berkeley’s AMPLab
• Fully open sourced in 2010 – now at
Apache Software Foundation
• Distributed, Scalable, Fault Tolerant
What Is Apache Spark
Apache Spark - Easy to Use & Fast
• 10x faster on disk,100x faster in memory than Hadoop MR
• Works out of the box on EMR
• Fault Tolerant Distributed Datasets
• Batch, iterative and streaming analysis
• In Memory Storage and Disk
• Integrates with Most File and Storage Options
Analytic
Analytic
Search
Up to 100× faster
(2-10× on disk)
2-5× less code
Spark Components
Spark Core
Spark SQL
structured
Spark
Streaming
real-time
MLlib
machine learning
GraphX
graph
Part of most Big Data Platforms
Analytic
Search
• All Major Hadoop Distributions Include
Spark
• Spark Is Also Integrated With Non-Hadoop
Big Data Platforms like DSE
• Spark Applications Can Be Written Once
and Deployed Anywhere
SQL
Machine
Learning
Streaming Graph
Core
Deploy Spark Apps Anywhere
• Functional
• On the JVM
• Capture functions and ship them across the network
• Static typing - easier to control performance
• Leverage REPL Spark REPL
http://apache-spark-user-list.1001560.n3.nabble.com/Why-Scala-
tp6536p6538.html
Analytic
Analytic
Search
Why Scala?
Owning time series with team apache   Strata San Jose 2015
• Like Collections API over large datasets
• Functional programming model
• Scala, Java and Python APIs, with Closure DSL coming
• Stream processing
• Easily integrate SQL, streaming, and complex analytics
Analytic
Analytic
Search
Intuitive Clean API
org.apache.spark.SparkContext
org.apache.spark.rdd.RDD
Resilient Distributed Dataset (RDD)
•Created through transformations on data (map,filter..) or other RDDs
•Immutable
•Partitioned
•Reusable
RDD Operations
•Transformations - Similar to scala collections API
•Produce new RDDs
•filter, flatmap, map, distinct, groupBy, union, zip,
reduceByKey, subtract
•Actions
•Require materialization of the records to generate a value
•collect: Array[T], count, fold, reduce..
Some More Costly Transformations
•sorting
•groupBy, groupByKey
•reduceByKey
Analytic
Analytic
Search
Transformation
Action
RDD Operations
Collections and Files To RDD
scala> val distData = sc.parallelize(Seq(1,2,3,4,5)

distData: spark.RDD[Int] = spark.ParallelCollection@10d13e3e
val distFile: RDD[String] = sc.textFile(“directory/*.txt”)
val distFile = sc.textFile(“hdfs://namenode:9000/path/file”)
val distFile = sc.sequenceFile(“hdfs://namenode:9000/path/file”)
Apache Spark Streaming
zillions of bytes gigabytes per second
Spark Versus Spark Streaming
Analytic
Analytic
Search
Spark Streaming
Kinesis,'S3'
DStream - Micro Batches
μBatch (ordinary RDD) μBatch (ordinary RDD) μBatch (ordinary RDD)
Processing of DStream = Processing of μBatches, RDDs
DStream
• Continuous sequence of micro batches
• More complex processing models are possible with less effort
• Streaming computations as a series of deterministic batch
computations on small time intervals
Windowing
0s 1s 2s 3s 4s 5s 6s 7s
By default:
window = slide = batch duration
window
slide
Windowing
0s 1s 2s 3s 4s 5s 6s 7s
window = 3s
slide = 2s
The resulting DStream consists of 3 seconds micro-batches
Each resulting micro-batch overlaps the preceding one by 1 second
Cassandra and Spark
Spark On Cassandra
• Server-Side filters (where clauses)
• Cross-table operations (JOIN, UNION, etc.)
• Data locality-aware (speed)
• Data transformation, aggregation, etc.
• Natural Time Series Integration
Spark Cassandra Connector
• Loads data from Cassandra to Spark
• Writes data from Spark to Cassandra
• Implicit Type Conversions and Object Mapping
• Implemented in Scala (offers a Java API)
• Open Source
• Exposes Cassandra Tables as Spark RDDs + Spark DStreams
https://github.com/datastax/spark-cassandra-connector
C*
C*
C*C*Cassandra
Spark Executor
C* Java (Soon Scala) Driver
Spark-Cassandra Connector
User Application
Spark Cassandra Connector
Apache Spark and Cassandra Open Source Stack
Cassandra
Analytics Workload Isolation
Cassandra
+ Spark DC
Cassandra
Only DC
Online
App
Analytical
App
Mixed Load Cassandra Cluster
Spark Cassandra Example
val conf = new SparkConf(loadDefaults = true)
.set("spark.cassandra.connection.host", "127.0.0.1")
.setMaster("spark://127.0.0.1:7077")
val sc = new SparkContext(conf)
val table: CassandraRDD[CassandraRow] = sc.cassandraTable("keyspace", "tweets")


val ssc = new StreamingContext(sc, Seconds(30))



val stream = KafkaUtils.createStream[String, String, StringDecoder,
StringDecoder](

ssc, kafka.kafkaParams, Map(topic -> 1), StorageLevel.MEMORY_ONLY)



stream.map(_._2).countByValue().saveToCassandra("demo", "wordcount")



ssc.start()

ssc.awaitTermination()
Initialization
Transformations
and Action
CassandraRDD
Stream Initialization
Spark Cassandra Example
val sc = new SparkContext(..)
val ssc = new StreamingContext(sc, Seconds(5))
val stream = TwitterUtils.createStream(ssc, auth, filters, StorageLevel.MEMORY_ONLY_SER_2)

val transform = (cruft: String) =>
Pattern.findAllIn(cruft).flatMap(_.stripPrefix("#"))



/** Note that Cassandra is doing the sorting for you here. */

stream.flatMap(_.getText.toLowerCase.split("""s+"""))

.map(transform)

.countByValueAndWindow(Seconds(5), Seconds(5))

.transform((rdd, time) => rdd.map { case (term, count) => (term, count, now(time))})
.saveToCassandra(keyspace, suspicious, SomeColumns(“suspicious", "count", “timestamp")) 

val table = sc
.cassandraTable[CassandraRow]("keyspace", "tweets")
.select("user_name", "message")
.where("user_name = ?", "ewa")
row 

representation keyspace table
server side
column and row
selection
Reading: From C* To Spark
class CassandraRDD[R](..., keyspace: String, table: String, ...) 

extends RDD[R](...) {
// Splits the table into multiple Spark partitions,

// each processed by single Spark Task

override def getPartitions: Array[Partition]
// Returns names of hosts storing given partition (for data locality!)

override def getPreferredLocations(split: Partition): Seq[String]
// Returns iterator over Cassandra rows in the given partition

override def compute(split: Partition, context: TaskContext): Iterator[R]
}
CassandraRDD
/** RDD representing a Cassandra table for Spark Streaming.

* @see [[com.datastax.spark.connector.rdd.CassandraRDD]]
*/

class CassandraStreamingRDD[R] private[connector] (

sctx: StreamingContext,

connector: CassandraConnector,

keyspace: String,

table: String,

columns: ColumnSelector = AllColumns,

where: CqlWhereClause = CqlWhereClause.empty,

readConf: ReadConf = ReadConf())(

implicit ct : ClassTag[R], @transient rrf: RowReaderFactory[R])

extends CassandraRDD[R](sctx.sparkContext, connector, keyspace, table, columns, where, readConf)

CassandraStreamingRDD
Paging Reads with .cassandraTable
• Page size is configurable
• Controls how many CQL rows to fetch at a time, when fetching a single
partition
• Connector returns an iterator for rows to Spark
• Spark iterates over this, lazily
• Handled by the java driver as well as spark
Node 1
Client Cassandra
Node 1request a page
data
processdata
request a page
data
request a page
Node 2
Client Cassandra
Node 2request a page
data
processdata
request a page
data
request a page
ResultSet Paging and Pre-Fetching
Co-locate Spark and C* for Best
Performance
67
C*
C*C*
C*
Spark

Worker
Spark

Worker
Spark
Master
Spark
Worker
Running Spark Workers on
the same nodes as your C* Cluster
will save network hops when
reading and writing
Analytic
Analytic
Search
The Key To Speed - Data Locality
• LocalNodeFirstLoadBalancingPolicy
• Decides what node will become the coordinator for the given mutation/read
• Selects local node first and then nodes in the local DC in random order
• Once that node receives the request it will be distributed
• Proximal Node Sort Defined by the C* snitch
•https://github.com/apache/cassandra/blob/trunk/src/java/org/
apache/cassandra/locator/DynamicEndpointSnitch.java#L155-
L190
Spark Reads on Cassandra
Awesome animation by DataStax’s own Russel Spitzer
Spark RDDs
Represent a Large
Amount of Data
Partitioned into Chunks
RDD
1 2 3
4 5 6
7 8 9Node 2
Node 1 Node 3
Node 4
Node 2
Node 1
Spark RDDs
Represent a Large
Amount of Data
Partitioned into Chunks
RDD
2
346
7 8 9
Node 3
Node 4
1 5
Node 2
Node 1
RDD
2
346
7 8 9
Node 3
Node 4
1 5
Spark RDDs
Represent a Large
Amount of Data
Partitioned into Chunks
Cassandra Data is Distributed By Token Range
Cassandra Data is Distributed By Token Range
0
500
Cassandra Data is Distributed By Token Range
0
500
999
Cassandra Data is Distributed By Token Range
0
500
Node 1
Node 2
Node 3
Node 4
Cassandra Data is Distributed By Token Range
0
500
Node 1
Node 2
Node 3
Node 4
Without vnodes
Cassandra Data is Distributed By Token Range
0
500
Node 1
Node 2
Node 3
Node 4
With vnodes
Node 1
120-220
300-500
780-830
0-50
spark.cassandra.input.split.size 50
Reported density is 0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
Node 1
120-220
300-500
0-50
spark.cassandra.input.split.size 50
Reported density is 0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
1
780-830
1
Node 1
120-220
300-500
0-50
spark.cassandra.input.split.size 50
Reported density is 0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
2
1
Node 1 300-500
0-50
spark.cassandra.input.split.size 50
Reported density is 0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
2
1
Node 1 300-500
0-50
spark.cassandra.input.split.size 50
Reported density is 0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
2
1
Node 1
300-400
0-50
spark.cassandra.input.split.size 50
Reported density is 0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
400-500
21
Node 1
0-50
spark.cassandra.input.split.size 50
Reported density is 0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
400-500
21
Node 1
0-50
spark.cassandra.input.split.size 50
Reported density is 0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
400-500
3
21
Node 1
0-50
spark.cassandra.input.split.size 50
Reported density is 0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
3
400-500
21
Node 1
0-50
spark.cassandra.input.split.size 50
Reported density is 0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
3
4
21
Node 1
0-50
spark.cassandra.input.split.size 50
Reported density is 0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
3
4
21
Node 1
0-50
spark.cassandra.input.split.size 50
Reported density is 0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
780-830
3
421
Node 1
spark.cassandra.input.split.size 50
Reported density is 0.5
The Connector Uses Information on the Node to Make 

Spark Partitions
3
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50780-830
Node 1
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows 50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 780 and token(pk) <= 830
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
4
spark.cassandra.input.page.row.size 50
Data is Retrieved Using the DataStax Java Driver
0-50
780-830
Node 1
SELECT * FROM keyspace.table WHERE
token(pk) > 0 and token(pk) <= 50
50 CQL Rows50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
50 CQL Rows
Connector Code and Docs
https://github.com/datastax/spark-cassandra-connector
Add It To Your Project:
val connector = "com.datastax.spark" %% "spark-cassandra-connector" % "1.1.0-alpha3"
Apache Kafka
Basic Architecture
• Producers write data to brokers.
• Consumers read data from brokers.
• All this is distributed.
• Data is stored in topics.
• Topics are split into partitions, which
are replicated.
http://kafka.apache.org/documentation.html
Partition
• Topics is made up of partitions
• Partitions are ordered and immutable
• An appended log
Partitons
• Partition number determines how many parallel consumers
Basic Architecture
• More partitions == more parallelism
• Client stores offsets in Zookeeper (<.8.2)
• Multiple consumers can pull from one
partition
• Pretty much a PUB-SUB
http://kafka.apache.org/documentation.html
Key Foundational Skills
Install Apache Cassandra
http://planetcassandra.org/cassandra/
•Download Apache Cassandra 2.1
•Linux & Mac:
•Most cases a tar.gz is perfect
•Windows:
•msi package
Install and run
tar xvf dsc.tar.gz
cd dsc-cassandra-2.1.0/bin
./cassandra
Install msi
Service should start automatically
Verify install
Run cqlsh
Connected to Test Cluster at 127.0.0.1:9042.
[cqlsh 5.0.1 | Cassandra 2.1.0 | CQL spec 3.2.0 | Native protocol v3]
Use HELP for help.
cqlsh>
cd Program FilesDataStax Communityapache-cassandrabin
cqlsh
<from dsc-cassandra-2.1.0/bin>
./cqlsh
Expected output
Load schema
Go to data directory
> cd killrweather/data
> ls
> 2005.csv.gz create-timeseries.cql load-timeseries.cqlweather_stations.csv
Load data
> <cassandra_dir>/bin/cqlsh
Connected to Test Cluster at 127.0.0.1:9042.
[cqlsh 5.0.1 | Cassandra 2.1.0 | CQL spec 3.2.0 | Native protocol v3]
Use HELP for help.
cqlsh> source 'create-timeseries.cql';
cqlsh> source 'load-timeseries.cql';
cqlsh> describe keyspace isd_weather_data;
cqlsh> use isd_weather_data;
cqlsh:isd_weather_data> select * from weather_station limit 10;
id | call_sign | country_code | elevation | lat | long | name | state_code
--------------+-----------+--------------+-----------+--------+---------+-----------------------+------------
408930:99999 | OIZJ | IR | 4 | 25.65 | 57.767 | JASK | null
725500:14942 | KOMA | US | 299.3 | 41.317 | -95.9 | OMAHA EPPLEY AIRFIELD | NE
725474:99999 | KCSQ | US | 394 | 41.017 | -94.367 | CRESTON | IA
480350:99999 | VBLS | BM | 749 | 22.933 | 97.75 | LASHIO | null
719380:99999 | CYCO | CN | 22 | 67.817 | -115.15 | COPPERMINE AIRPORT | null
992790:99999 | DB279 | US | 3 | 40.5 | -69.467 | ENVIRONM BUOY 44008 | null
85120:99999 | LPPD | PO | 72 | 37.733 | -25.7 | PONTA DELGADA/NORDE | null
150140:99999 | LRBM | RO | 218 | 47.667 | 23.583 | BAIA MARE | null
435330:99999 | null | MV | 1 | 6.733 | 73.15 | HANIMADU | null
536150:99999 | null | CI | 1005 | 38.467 | 106.27 |
The End-To-End Data Pipeline
Lambda Architecture
Cassandra
Spark Core
Spark SQL
structured
Spark
Streaming
real-time
MLlib
machine learning
GraphX
graph
Apache
Kafka
Schema
raw_weather_data
CREATE TABLE raw_weather_data (
weather_station text, // Composite of Air Force Datsav3 station number and NCDC WBAN number
year int, // Year collected
month int, // Month collected
day int, // Day collected
hour int, // Hour collected
temperature double, // Air temperature (degrees Celsius)
dewpoint double, // Dew point temperature (degrees Celsius)
pressure double, // Sea level pressure (hectopascals)
wind_direction int, // Wind direction in degrees. 0-359
wind_speed double, // Wind speed (meters per second)
sky_condition int, // Total cloud cover (coded, see format documentation)
sky_condition_text text, // Non-coded sky conditions
one_hour_precip double, // One-hour accumulated liquid precipitation (millimeters)
six_hour_precip double, // Six-hour accumulated liquid precipitation (millimeters)
PRIMARY KEY ((weather_station), year, month, day, hour)
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);
Reverses data in the storage engine.
weather_station
CREATE TABLE weather_station (
id text PRIMARY KEY, // Composite of Air Force Datsav3 station number and NCDC WBAN number
name text, // Name of reporting station
country_code text, // 2 letter ISO Country ID
state_code text, // 2 letter state code for US stations
call_sign text, // International station call sign
lat double, // Latitude in decimal degrees
long double, // Longitude in decimal degrees
elevation double // Elevation in meters
);
Lookup table
sky_condition_lookup
CREATE TABLE sky_condition_lookup (
code int PRIMARY KEY,
condition text
);
INSERT INTO sky_condition_lookup (code, condition) VALUES (0, 'None, SKC or CLR');
INSERT INTO sky_condition_lookup (code, condition) VALUES (1, 'One okta - 1/10 or less but not zero');
INSERT INTO sky_condition_lookup (code, condition) VALUES (2, 'Two oktas - 2/10 - 3/10, or FEW');
INSERT INTO sky_condition_lookup (code, condition) VALUES (3, 'Three oktas - 4/10');
INSERT INTO sky_condition_lookup (code, condition) VALUES (4, 'Four oktas - 5/10, or SCT');
INSERT INTO sky_condition_lookup (code, condition) VALUES (5, 'Five oktas - 6/10');
INSERT INTO sky_condition_lookup (code, condition) VALUES (6, 'Six oktas - 7/10 - 8/10');
INSERT INTO sky_condition_lookup (code, condition) VALUES (7, 'Seven oktas - 9/10 or more but not 10/10, or BKN');
INSERT INTO sky_condition_lookup (code, condition) VALUES (8, 'Eight oktas - 10/10, or OVC');
INSERT INTO sky_condition_lookup (code, condition) VALUES (9, 'Sky obscured, or cloud amount cannot be estimated');
INSERT INTO sky_condition_lookup (code, condition) VALUES (10, 'Partial obscuration 11: Thin scattered');
INSERT INTO sky_condition_lookup (code, condition) VALUES (12, 'Scattered');
INSERT INTO sky_condition_lookup (code, condition) VALUES (13, 'Dark scattered');
INSERT INTO sky_condition_lookup (code, condition) VALUES (14, 'Thin broken 15: Broken');
INSERT INTO sky_condition_lookup (code, condition) VALUES (16, 'Dark broken 17: Thin overcast 18: Overcast');
INSERT INTO sky_condition_lookup (code, condition) VALUES (19, 'Dark overcast');
daily_aggregate_temperature
CREATE TABLE daily_aggregate_temperature (
weather_station text,
year int,
month int,
day int,
high double,
low double,
mean double,
variance double,
stdev double,
PRIMARY KEY ((weather_station), year, month, day)
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC);
SELECT high, low FROM daily_aggregate_temperature
WHERE weather_station='010010:99999'
AND year=2005 AND month=12 AND day=3;
high | low
------+------
1.8 | -1.5
daily_aggregate_precip
CREATE TABLE daily_aggregate_precip (
weather_station text,
year int,
month int,
day int,
precipitation double,
PRIMARY KEY ((weather_station), year, month, day)
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC);
SELECT precipitation FROM daily_aggregate_precip
WHERE weather_station='010010:99999'
AND year=2005 AND month=12 AND day>=1 AND day <= 7;
0
10
20
30
40
1 2 3 4 5 6 7
17
26
2
0
33
12
0
year_cumulative_precip
CREATE TABLE year_cumulative_precip (
weather_station text,
year int,
precipitation double,
PRIMARY KEY ((weather_station), year)
) WITH CLUSTERING ORDER BY (year DESC);
SELECT precipitation FROM year_cumulative_precip
WHERE weather_station='010010:99999'
AND year=2005;
precipitation
---------------
20.1
SELECT precipitation FROM year_cumulative_precip
WHERE weather_station='010010:99999'
AND year=2005;
precipitation
---------------
33.7
Select a couple
days later
Weather Station Analysis
• Weather station collects data
• Cassandra stores in sequence
• Spark rolls up data into new
tables
Windsor California
July 1, 2014
High: 73.4F
Low : 51.4F
Roll-up table
CREATE TABLE daily_aggregate_temperature (
wsid text,
year int,
month int,
day int,
high double,
low double,
PRIMARY KEY ((wsid), year, month, day)
);
• Weather Station Id(wsid) is unique
• High and low temp for each day
Setup connection
def main(args: Array[String]): Unit = {
// the setMaster("local") lets us run & test the job right in our IDE
val conf = new SparkConf(true).set("spark.cassandra.connection.host", "127.0.0.1").setMaster("local")
// "local" here is the master, meaning we don't explicitly have a spark master set up
val sc = new SparkContext("local", "weather", conf)
val connector = CassandraConnector(conf)
val cc = new CassandraSQLContext(sc)
cc.setKeyspace("isd_weather_data")
Get data and aggregate
// Create SparkSQL statement
val aggregationSql = "SELECT wsid, year, month, day, max(temperature) high, min(temperature) low " +
"FROM raw_weather_data " +
"WHERE month = 6 " +
"GROUP BY wsid, year, month, day;"
val srdd: SchemaRDD = cc.sql(aggregationSql);
val resultSet = srdd.map(row => (
new daily_aggregate_temperature(
row.getString(0), row.getInt(1), row.getInt(2), row.getInt(3), row.getDouble(4), row.getDouble(5))))
.collect()
// Case class to store row data
case class daily_aggregate_temperature (wsid: String, year: Int, month: Int, day: Int, high:Double, low:Double)
Store back into Cassandra
connector.withSessionDo(session => {
// Create a single prepared statement
val prepared = session.prepare(insertStatement)
val bound = prepared.bind
// Iterate over result set and bind variables
for (row <- resultSet) {
bound.setString("wsid", row.wsid)
bound.setInt("year", row.year)
bound.setInt("month", row.month)
bound.setInt("day", row.day)
bound.setDouble("high", row.high)
bound.setDouble("low", row.low)
// Insert new row in database
session.execute(bound)
}
})
Result
wsid | year | month | day | high | low
--------------+------+-------+-----+------+------
725300:94846 | 2012 | 9 | 30 | 18.9 | 10.6
725300:94846 | 2012 | 9 | 29 | 25.6 | 9.4
725300:94846 | 2012 | 9 | 28 | 19.4 | 11.7
725300:94846 | 2012 | 9 | 27 | 17.8 | 7.8
725300:94846 | 2012 | 9 | 26 | 22.2 | 13.3
725300:94846 | 2012 | 9 | 25 | 25 | 11.1
725300:94846 | 2012 | 9 | 24 | 21.1 | 4.4
725300:94846 | 2012 | 9 | 23 | 15.6 | 5
725300:94846 | 2012 | 9 | 22 | 15 | 7.2
725300:94846 | 2012 | 9 | 21 | 18.3 | 9.4
725300:94846 | 2012 | 9 | 20 | 21.7 | 11.7
725300:94846 | 2012 | 9 | 19 | 22.8 | 5.6
725300:94846 | 2012 | 9 | 18 | 17.2 | 9.4
725300:94846 | 2012 | 9 | 17 | 25 | 12.8
725300:94846 | 2012 | 9 | 16 | 25 | 10.6
725300:94846 | 2012 | 9 | 15 | 26.1 | 11.1
725300:94846 | 2012 | 9 | 14 | 23.9 | 11.1
725300:94846 | 2012 | 9 | 13 | 26.7 | 13.3
725300:94846 | 2012 | 9 | 12 | 29.4 | 17.2
725300:94846 | 2012 | 9 | 11 | 28.3 | 11.7
725300:94846 | 2012 | 9 | 10 | 23.9 | 12.2
725300:94846 | 2012 | 9 | 9 | 21.7 | 12.8
725300:94846 | 2012 | 9 | 8 | 22.2 | 12.8
725300:94846 | 2012 | 9 | 7 | 25.6 | 18.9
725300:94846 | 2012 | 9 | 6 | 30 | 20.6
725300:94846 | 2012 | 9 | 5 | 30 | 17.8
725300:94846 | 2012 | 9 | 4 | 32.2 | 21.7
725300:94846 | 2012 | 9 | 3 | 30.6 | 21.7
725300:94846 | 2012 | 9 | 2 | 27.2 | 21.7
725300:94846 | 2012 | 9 | 1 | 27.2 | 21.7
SELECT wsid, year, month, day, high, low
FROM daily_aggregate_temperature
WHERE wsid = '725300:94846'
AND year=2012 AND month=9 ;
What just happened?
• Data is read from raw_weather_data table
• Transformed
• Inserted into the daily_aggregate_temperature table
Table:
raw_weather_data
Table:
daily_aggregate_tem
perature
Read data
from table
Transform
Insert data
into table
Weather Station Stream Analysis
• Weather station collects data
• Data processed in stream
• Data stored in Cassandra
Windsor California
Today
Rainfall total: 1.2cm
High: 73.4F
Low : 51.4F
Spark Streaming Reduce Example
val sc = new SparkContext(..)
val ssc = new StreamingContext(sc, Seconds(5))
val stream = TwitterUtils.createStream(ssc, auth, filters, StorageLevel.MEMORY_ONLY_SER_2)

val transform = (cruft: String) =>
Pattern.findAllIn(cruft).flatMap(_.stripPrefix("#"))



/** Note that Cassandra is doing the sorting for you here. */

stream.flatMap(_.getText.toLowerCase.split("""s+"""))

.map(transform)

.countByValueAndWindow(Seconds(5), Seconds(5))

.transform((rdd, time) => rdd.map { case (term, count) => (term, count, now(time))})
.saveToCassandra(keyspace, suspicious, SomeColumns(“suspicious", "count", “timestamp")) 

KafkaStreamingActor
• Pulls from Kafka Queue
• Immediately saves to Cassandra Counter
kafkaStream.map { weather =>

(weather.wsid, weather.year, weather.month, weather.day,
weather.oneHourPrecip)

}.saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)
Temperature High/Low Stream
Weather
Stations
Receive API
Apache Kafka
Producer
TemperatureActor
TemperatureActor
TemperatureActor
Consumer
NodeGuardian
TemperatureActor
class TemperatureActor(sc: SparkContext, settings: WeatherSettings)
extends WeatherActor with ActorLogging {
def receive : Actor.Receive = {
case e: GetDailyTemperature => daily(e.day, sender)
case e: DailyTemperature => store(e)
case e: GetMonthlyHiLowTemperature => highLow(e, sender)
}
TemperatureActor
/** Computes and sends the daily aggregation to the `requester` actor.
* We aggregate this data on-demand versus in the stream.
*
* For the given day of the year, aggregates 0 - 23 temp values to statistics:
* high, low, mean, std, etc., and persists to Cassandra daily temperature table
* by weather station, automatically sorted by most recent - due to our cassandra schema -
* you don't need to do a sort in spark.
*
* Because the gov. data is not by interval (window/slide) but by specific date/time
* we look for historic data for hours 0-23 that may or may not already exist yet
* and create stats on does exist at the time of request.
*/
def daily(day: Day, requester: ActorRef): Unit =
(for {
aggregate <- sc.cassandraTable[Double](keyspace, rawtable)
.select("temperature").where("wsid = ? AND year = ? AND month = ? AND day = ?",
day.wsid, day.year, day.month, day.day)
.collectAsync()
} yield forDay(day, aggregate)) pipeTo requester
TemperatureActor
/**
* Would only be handling handles 0-23 small items or fewer.
*/
private def forDay(key: Day, temps: Seq[Double]): WeatherAggregate =
if (temps.nonEmpty) {
val stats = StatCounter(temps)
val data = DailyTemperature(
key.wsid, key.year, key.month, key.day,
high = stats.max, low = stats.min,
mean = stats.mean, variance = stats.variance, stdev = stats.stdev)
self ! data
data
} else NoDataAvailable(key.wsid, key.year, classOf[DailyTemperature])
TemperatureActor
class TemperatureActor(sc: SparkContext, settings: WeatherSettings)
extends WeatherActor with ActorLogging {
def receive : Actor.Receive = {
case e: GetDailyTemperature => daily(e.day, sender)
case e: DailyTemperature => store(e)
case e: GetMonthlyHiLowTemperature => highLow(e, sender)
}
TemperatureActor
/** Stores the daily temperature aggregates asynchronously which are triggered
* by on-demand requests during the `forDay` function's `self ! data`
* to the daily temperature aggregation table.
*/
private def store(e: DailyTemperature): Unit =
sc.parallelize(Seq(e)).saveToCassandra(keyspace, dailytable)
Fun with code
Owning time series with team apache   Strata San Jose 2015
Run code
sbt app/run
Run code
> sbt clients/run
[1] com.datastax.killrweather.DataFeedApp
[2] com.datastax.killrweather.KillrWeatherClientApp
Enter number: 1
[DEBUG] [2015-02-18 06:49:12,073]
[com.datastax.killrweather.FileFeedActor]: Sending
'725030:14732,2008,12,15,12,10.0,6.7,1028.3,160,2.6,8,0.0,-0.1'
> sbt clients/run
[1] com.datastax.killrweather.DataFeedApp
[2] com.datastax.killrweather.KillrWeatherClientApp
Enter number: 2
[INFO] [2015-02-18 06:50:10,369]
[com.datastax.killrweather.WeatherApiQueries]: Requesting the current
weather for weather station 722020:12839
[INFO] [2015-02-18 06:50:10,369]
[com.datastax.killrweather.WeatherApiQueries]: Requesting annual
precipitation for weather station 722020:12839 in year 2008
[INFO] [2015-02-18 06:50:10,369]
[com.datastax.killrweather.WeatherApiQueries]: Requesting top-k
Precipitation for weather station 722020:12839
[INFO] [2015-02-18 06:50:10,369]
[com.datastax.killrweather.WeatherApiQueries]: Requesting the daily
temperature aggregate for weather station 722020:12839
[INFO] [2015-02-18 06:50:10,370]
[com.datastax.killrweather.WeatherApiQueries]: Requesting the high-low
temperature aggregate for weather station 722020:12839
[INFO] [2015-02-18 06:50:10,370]
[com.datastax.killrweather.WeatherApiQueries]: Requesting weather
station 722020:12839
Terminal 1 Terminal 2
What’s happening
DataFeedApp Apache Kafka
Producer
Consumer
NodeGuardian
killrweather/data/load/ny-2008.csv.gz
Spark Streaming KillrWeatherClientApp
Play time!!
Thank you!
Bring the questions
Follow me on twitter
@PatrickMcFadin

More Related Content

PDF
An Introduction to time series with Team Apache
PDF
Apache cassandra and spark. you got the the lighter, let's start the fire
PDF
Laying down the smack on your data pipelines
PDF
Introduction to cassandra 2014
PDF
Time series with Apache Cassandra - Long version
PDF
Nike Tech Talk: Double Down on Apache Cassandra and Spark
PDF
Successful Architectures for Fast Data
PDF
Time series with apache cassandra strata
An Introduction to time series with Team Apache
Apache cassandra and spark. you got the the lighter, let's start the fire
Laying down the smack on your data pipelines
Introduction to cassandra 2014
Time series with Apache Cassandra - Long version
Nike Tech Talk: Double Down on Apache Cassandra and Spark
Successful Architectures for Fast Data
Time series with apache cassandra strata

What's hot (20)

PDF
Analytics with Cassandra & Spark
PPTX
Analyzing Time-Series Data with Apache Spark and Cassandra - StampedeCon 2016
PDF
Cassandra 2.0 and timeseries
PDF
Cassandra Basics, Counters and Time Series Modeling
PPTX
Real time data pipeline with spark streaming and cassandra with mesos
PDF
Maximum Overdrive: Tuning the Spark Cassandra Connector (Russell Spitzer, Dat...
PPTX
Analytics with Cassandra, Spark & MLLib - Cassandra Essentials Day
PDF
Spark cassandra connector.API, Best Practices and Use-Cases
PDF
C* Summit 2013: Real-time Analytics using Cassandra, Spark and Shark by Evan ...
PDF
Spark Streaming with Cassandra
PDF
Apache cassandra & apache spark for time series data
PDF
Big data analytics with Spark & Cassandra
PDF
OLAP with Cassandra and Spark
PDF
Spark Cassandra Connector: Past, Present, and Future
PDF
Cassandra and Spark: Optimizing for Data Locality-(Russell Spitzer, DataStax)
PDF
Introduction to data modeling with apache cassandra
PDF
Spark and Cassandra 2 Fast 2 Furious
PPTX
Maximum Overdrive: Tuning the Spark Cassandra Connector
PDF
Delivering Meaning In Near-Real Time At High Velocity In Massive Scale with A...
PDF
Escape From Hadoop: Spark One Liners for C* Ops
Analytics with Cassandra & Spark
Analyzing Time-Series Data with Apache Spark and Cassandra - StampedeCon 2016
Cassandra 2.0 and timeseries
Cassandra Basics, Counters and Time Series Modeling
Real time data pipeline with spark streaming and cassandra with mesos
Maximum Overdrive: Tuning the Spark Cassandra Connector (Russell Spitzer, Dat...
Analytics with Cassandra, Spark & MLLib - Cassandra Essentials Day
Spark cassandra connector.API, Best Practices and Use-Cases
C* Summit 2013: Real-time Analytics using Cassandra, Spark and Shark by Evan ...
Spark Streaming with Cassandra
Apache cassandra & apache spark for time series data
Big data analytics with Spark & Cassandra
OLAP with Cassandra and Spark
Spark Cassandra Connector: Past, Present, and Future
Cassandra and Spark: Optimizing for Data Locality-(Russell Spitzer, DataStax)
Introduction to data modeling with apache cassandra
Spark and Cassandra 2 Fast 2 Furious
Maximum Overdrive: Tuning the Spark Cassandra Connector
Delivering Meaning In Near-Real Time At High Velocity In Massive Scale with A...
Escape From Hadoop: Spark One Liners for C* Ops
Ad

Viewers also liked (18)

PDF
Cassandra 3.0 advanced preview
PDF
Storing time series data with Apache Cassandra
PDF
Cassandra 2.0 better, faster, stronger
PPT
Toronto jaspersoft meetup
PDF
Making money with open source and not losing your soul: A practical guide
PDF
Cassandra data modeling talk
PDF
Cassandra EU - Data model on fire
PDF
Building Antifragile Applications with Apache Cassandra
PDF
Cassandra at scale
PDF
Real data models of silicon valley
PDF
The world's next top data model
PDF
A Cassandra + Solr + Spark Love Triangle Using DataStax Enterprise
PDF
Become a super modeler
PDF
Cassandra Virtual Node talk
PDF
The data model is dead, long live the data model
PDF
Advanced data modeling with apache cassandra
PDF
Analyzing Time Series Data with Apache Spark and Cassandra
PPTX
BI, Reporting and Analytics on Apache Cassandra
Cassandra 3.0 advanced preview
Storing time series data with Apache Cassandra
Cassandra 2.0 better, faster, stronger
Toronto jaspersoft meetup
Making money with open source and not losing your soul: A practical guide
Cassandra data modeling talk
Cassandra EU - Data model on fire
Building Antifragile Applications with Apache Cassandra
Cassandra at scale
Real data models of silicon valley
The world's next top data model
A Cassandra + Solr + Spark Love Triangle Using DataStax Enterprise
Become a super modeler
Cassandra Virtual Node talk
The data model is dead, long live the data model
Advanced data modeling with apache cassandra
Analyzing Time Series Data with Apache Spark and Cassandra
BI, Reporting and Analytics on Apache Cassandra
Ad

Similar to Owning time series with team apache Strata San Jose 2015 (20)

PDF
Spark and cassandra (Hulu Talk)
PDF
Data Science Lab Meetup: Cassandra and Spark
PDF
Real-Time Analytics with Apache Cassandra and Apache Spark
PDF
Real-Time Analytics with Apache Cassandra and Apache Spark,
PDF
Getting started with Spark & Cassandra by Jon Haddad of Datastax
PPTX
Presentation
PDF
Cassandra Summit 2014: Interactive OLAP Queries using Apache Cassandra and Spark
PDF
Cassandra Talk: Austin JUG
PDF
Spark & Cassandra - DevFest Córdoba
PDF
PySpark Cassandra - Amsterdam Spark Meetup
PPTX
NoSQL for the SQL Server Pro
PDF
Apache Cassandra and Python for Analyzing Streaming Big Data
DOCX
Cassandra data modelling best practices
PDF
About "Apache Cassandra"
PDF
1 Dundee - Cassandra 101
PDF
Lambda Architecture with Spark, Spark Streaming, Kafka, Cassandra, Akka and S...
PDF
TupleJump: Breakthrough OLAP performance on Cassandra and Spark
PDF
FiloDB - Breakthrough OLAP Performance with Cassandra and Spark
ODP
Nyc summit intro_to_cassandra
PDF
Lambda at Weather Scale - Cassandra Summit 2015
Spark and cassandra (Hulu Talk)
Data Science Lab Meetup: Cassandra and Spark
Real-Time Analytics with Apache Cassandra and Apache Spark
Real-Time Analytics with Apache Cassandra and Apache Spark,
Getting started with Spark & Cassandra by Jon Haddad of Datastax
Presentation
Cassandra Summit 2014: Interactive OLAP Queries using Apache Cassandra and Spark
Cassandra Talk: Austin JUG
Spark & Cassandra - DevFest Córdoba
PySpark Cassandra - Amsterdam Spark Meetup
NoSQL for the SQL Server Pro
Apache Cassandra and Python for Analyzing Streaming Big Data
Cassandra data modelling best practices
About "Apache Cassandra"
1 Dundee - Cassandra 101
Lambda Architecture with Spark, Spark Streaming, Kafka, Cassandra, Akka and S...
TupleJump: Breakthrough OLAP performance on Cassandra and Spark
FiloDB - Breakthrough OLAP Performance with Cassandra and Spark
Nyc summit intro_to_cassandra
Lambda at Weather Scale - Cassandra Summit 2015

Recently uploaded (20)

PPTX
MYSQL Presentation for SQL database connectivity
PDF
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PDF
solutions_manual_-_materials___processing_in_manufacturing__demargo_.pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Review of recent advances in non-invasive hemoglobin estimation
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
Cloud computing and distributed systems.
PDF
Network Security Unit 5.pdf for BCA BBA.
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
Big Data Technologies - Introduction.pptx
PDF
Advanced IT Governance
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
MYSQL Presentation for SQL database connectivity
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
CIFDAQ's Market Insight: SEC Turns Pro Crypto
solutions_manual_-_materials___processing_in_manufacturing__demargo_.pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Reach Out and Touch Someone: Haptics and Empathic Computing
Per capita expenditure prediction using model stacking based on satellite ima...
The Rise and Fall of 3GPP – Time for a Sabbatical?
Review of recent advances in non-invasive hemoglobin estimation
Understanding_Digital_Forensics_Presentation.pptx
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Cloud computing and distributed systems.
Network Security Unit 5.pdf for BCA BBA.
“AI and Expert System Decision Support & Business Intelligence Systems”
Big Data Technologies - Introduction.pptx
Advanced IT Governance
Diabetes mellitus diagnosis method based random forest with bat algorithm

Owning time series with team apache Strata San Jose 2015

  • 1. @PatrickMcFadin Owning Time Series with Team Apache: Kafka, Spark Cassandra 1 Patrick McFadin
 Chief Evangelist for Apache Cassandra, DataStax
  • 2. Agenda for the day Core Concepts: 9:00-10:30 • Prep for the tutorials • Introduction to Apache Cassandra • Why Cassandra is used for storing time series data • Data models for time series • Apache Spark • How Spark and Cassandra work so well together • Kafka Break: 10:30-11:00 Key Foundational Skills: • Using Apache Cassandra • Creating the right development environment • Basic integration with Apache Spark and Cassandra Integrating An End-To-End Data Pipeline • Technologies used: Spark, Spark Streaming, Cassandra, Kafka, Akka, Scala • Ingesting time series data into Kafka • Leveraging Spark Streaming to store the raw data in Cassandra for later analysis • Apply Spark Streaming transformations and aggregation to streaming data, and store material views in Cassandra
  • 3. Start your downloads! Linux/Mac: curl -L http://downloads.datastax.com/community/dsc-cassandra-2.1.2-bin.tar.gz | tar xz Windows: http://downloads.datastax.com/community/
  • 4. Check out code git clone https://github.com/killrweather/killrweather.git From the command line: Or from your favorite git client, get the following repo: https://github.com/killrweather/killrweather.git
  • 5. Build code cd killrweather sbt compile Download the internet… wait for it…. # For IntelliJ users, this creates Intellij project files sbt gen-idea
  • 9. Cassandra is… • Shared nothing • Masterless peer-to-peer • Based on Dynamo
  • 10. Scaling • Add nodes to scale • Millions Ops/s Cassandra HBase Redis MySQL THROUGHPUTOPS/SEC)
  • 11. Uptime • Built to replicate • Resilient to failure • Always on NONE
  • 13. Data Model • Familiar syntax • Collections • PRIMARY KEY for uniqueness CREATE TABLE videos ( videoid uuid, userid uuid, name varchar, description varchar, location text, location_type int, preview_thumbnails map<text,text>, tags set<varchar>, added_date timestamp, PRIMARY KEY (videoid) );
  • 14. Data Model - User Defined Types • Complex data in one place • No multi-gets (multi-partitions) • Nesting! CREATE TYPE address ( street text, city text, zip_code int, country text, cross_streets set<text> );
  • 15. Data Model - Updated • Now video_metadata is embedded in videos CREATE TYPE video_metadata ( height int, width int, video_bit_rate set<text>, encoding text ); CREATE TABLE videos ( videoid uuid, userid uuid, name varchar, description varchar, location text, location_type int, preview_thumbnails map<text,text>, tags set<varchar>, metadata set <frozen<video_metadata>>, added_date timestamp, PRIMARY KEY (videoid) );
  • 16. Data Model - Storing JSON { "productId": 2, "name": "Kitchen Table", "price": 249.99, "description" : "Rectangular table with oak finish", "dimensions": { "units": "inches", "length": 50.0, "width": 66.0, "height": 32 }, "categories": { { "category" : "Home Furnishings" { "catalogPage": 45, "url": "/home/furnishings" }, { "category" : "Kitchen Furnishings" { "catalogPage": 108, "url": "/kitchen/furnishings" } } } CREATE TYPE dimensions ( units text, length float, width float, height float ); CREATE TYPE category ( catalogPage int, url text ); CREATE TABLE product ( productId int, name text, price float, description text, dimensions frozen <dimensions>, categories map <text, frozen <category>>, PRIMARY KEY (productId) );
  • 17. Why… Cassandra for Time Series? Spark as a great addition to Cassandra?
  • 18. Example 1: Weather Station • Weather station collects data • Cassandra stores in sequence • Application reads in sequence
  • 19. Use case • Store data per weather station • Store time series in order: first to last • Get all data for one weather station • Get data for a single date and time • Get data for a range of dates and times Needed Queries Data Model to support queries
  • 20. Data Model • Weather Station Id and Time are unique • Store as many as needed CREATE TABLE temperature ( weather_station text, year int, month int, day int, hour int, temperature double, PRIMARY KEY ((weather_station),year,month,day,hour) ); INSERT INTO temperature(weather_station,year,month,day,hour,temperature) VALUES (‘10010:99999’,2005,12,1,7,-5.6); INSERT INTO temperature(weather_station,year,month,day,hour,temperature) VALUES (‘10010:99999’,2005,12,1,8,-5.1); INSERT INTO temperature(weather_station,year,month,day,hour,temperature) VALUES (‘10010:99999’,2005,12,1,9,-4.9); INSERT INTO temperature(weather_station,year,month,day,hour,temperature) VALUES (‘10010:99999’,2005,12,1,10,-5.3);
  • 21. Storage Model - Logical View 2005:12:1:7 -5.6 2005:12:1:8 -5.1 2005:12:1:9 -4.9 SELECT weather_station,hour,temperature FROM temperature WHERE weatherstation_id=‘10010:99999’ AND year = 2005 AND month = 12 AND day = 1; 10010:99999 10010:99999 10010:99999 weather_station hour temperature 2005:12:1:10 -5.3 10010:99999
  • 22. 2005:12:1:12 -5.4 2005:12:1:11 -4.9-5.3-4.9-5.1 2005:12:1:7 -5.6 Storage Model - Disk Layout 2005:12:1:8 2005:12:1:9 10010:99999 2005:12:1:10 Merged, Sorted and Stored Sequentially SELECT weather_station,hour,temperature FROM temperature WHERE weatherstation_id=‘10010:99999’ AND year = 2005 AND month = 12 AND day = 1;
  • 23. Primary key relationship PRIMARY KEY (weatherstation_id,year,month,day,hour)
  • 24. Primary key relationship PRIMARY KEY (weatherstation_id,year,month,day,hour) Partition Key
  • 25. Primary key relationship PRIMARY KEY (weatherstation_id,year,month,day,hour) Partition Key Clustering Columns
  • 26. Primary key relationship PRIMARY KEY (weatherstation_id,year,month,day,hour) Partition Key Clustering Columns 10010:99999
  • 27. 2005:12:1:7 -5.6 Primary key relationship PRIMARY KEY (weatherstation_id,year,month,day,hour) Partition Key Clustering Columns 10010:99999 -5.3-4.9-5.1 2005:12:1:8 2005:12:1:9 2005:12:1:10
  • 29. Query patterns • Range queries • “Slice” operation on disk SELECT weatherstation,hour,temperature FROM temperature WHERE weatherstation_id=‘10010:99999' AND year = 2005 AND month = 12 AND day = 1 AND hour >= 7 AND hour <= 10; Single seek on disk 2005:12:1:12 -5.4 2005:12:1:11 -4.9-5.3-4.9-5.1 2005:12:1:7 -5.6 2005:12:1:8 2005:12:1:9 10010:99999 2005:12:1:10 Partition key for locality
  • 30. Query patterns • Range queries • “Slice” operation on disk Programmers like this Sorted by event_time 2005:12:1:7 -5.6 2005:12:1:8 -5.1 2005:12:1:9 -4.9 10010:99999 10010:99999 10010:99999 weather_station hour temperature 2005:12:1:10 -5.3 10010:99999 SELECT weatherstation,hour,temperature FROM temperature WHERE weatherstation_id=‘10010:99999' AND year = 2005 AND month = 12 AND day = 1 AND hour >= 7 AND hour <= 10;
  • 32. Hadoop *Slow, everything written to disk *MapReduce is very powerful but is no longer enough *Huge overhead *Inefficient with respect to memory use, latency *Batch Only *Inflexible vs Dynamic Escape From Hadoop?
  • 35. Analytic Analytic Search • Fast, general cluster compute system • Originally developed in 2009 in UC Berkeley’s AMPLab • Fully open sourced in 2010 – now at Apache Software Foundation • Distributed, Scalable, Fault Tolerant What Is Apache Spark
  • 36. Apache Spark - Easy to Use & Fast • 10x faster on disk,100x faster in memory than Hadoop MR • Works out of the box on EMR • Fault Tolerant Distributed Datasets • Batch, iterative and streaming analysis • In Memory Storage and Disk • Integrates with Most File and Storage Options Analytic Analytic Search Up to 100× faster (2-10× on disk) 2-5× less code
  • 37. Spark Components Spark Core Spark SQL structured Spark Streaming real-time MLlib machine learning GraphX graph
  • 38. Part of most Big Data Platforms Analytic Search • All Major Hadoop Distributions Include Spark • Spark Is Also Integrated With Non-Hadoop Big Data Platforms like DSE • Spark Applications Can Be Written Once and Deployed Anywhere SQL Machine Learning Streaming Graph Core Deploy Spark Apps Anywhere
  • 39. • Functional • On the JVM • Capture functions and ship them across the network • Static typing - easier to control performance • Leverage REPL Spark REPL http://apache-spark-user-list.1001560.n3.nabble.com/Why-Scala- tp6536p6538.html Analytic Analytic Search Why Scala?
  • 41. • Like Collections API over large datasets • Functional programming model • Scala, Java and Python APIs, with Closure DSL coming • Stream processing • Easily integrate SQL, streaming, and complex analytics Analytic Analytic Search Intuitive Clean API
  • 43. org.apache.spark.rdd.RDD Resilient Distributed Dataset (RDD) •Created through transformations on data (map,filter..) or other RDDs •Immutable •Partitioned •Reusable
  • 44. RDD Operations •Transformations - Similar to scala collections API •Produce new RDDs •filter, flatmap, map, distinct, groupBy, union, zip, reduceByKey, subtract •Actions •Require materialization of the records to generate a value •collect: Array[T], count, fold, reduce..
  • 45. Some More Costly Transformations •sorting •groupBy, groupByKey •reduceByKey
  • 47. Collections and Files To RDD scala> val distData = sc.parallelize(Seq(1,2,3,4,5)
 distData: spark.RDD[Int] = spark.ParallelCollection@10d13e3e val distFile: RDD[String] = sc.textFile(“directory/*.txt”) val distFile = sc.textFile(“hdfs://namenode:9000/path/file”) val distFile = sc.sequenceFile(“hdfs://namenode:9000/path/file”)
  • 49. zillions of bytes gigabytes per second Spark Versus Spark Streaming
  • 51. DStream - Micro Batches μBatch (ordinary RDD) μBatch (ordinary RDD) μBatch (ordinary RDD) Processing of DStream = Processing of μBatches, RDDs DStream • Continuous sequence of micro batches • More complex processing models are possible with less effort • Streaming computations as a series of deterministic batch computations on small time intervals
  • 52. Windowing 0s 1s 2s 3s 4s 5s 6s 7s By default: window = slide = batch duration window slide
  • 53. Windowing 0s 1s 2s 3s 4s 5s 6s 7s window = 3s slide = 2s The resulting DStream consists of 3 seconds micro-batches Each resulting micro-batch overlaps the preceding one by 1 second
  • 55. Spark On Cassandra • Server-Side filters (where clauses) • Cross-table operations (JOIN, UNION, etc.) • Data locality-aware (speed) • Data transformation, aggregation, etc. • Natural Time Series Integration
  • 56. Spark Cassandra Connector • Loads data from Cassandra to Spark • Writes data from Spark to Cassandra • Implicit Type Conversions and Object Mapping • Implemented in Scala (offers a Java API) • Open Source • Exposes Cassandra Tables as Spark RDDs + Spark DStreams
  • 57. https://github.com/datastax/spark-cassandra-connector C* C* C*C*Cassandra Spark Executor C* Java (Soon Scala) Driver Spark-Cassandra Connector User Application Spark Cassandra Connector
  • 58. Apache Spark and Cassandra Open Source Stack Cassandra
  • 59. Analytics Workload Isolation Cassandra + Spark DC Cassandra Only DC Online App Analytical App Mixed Load Cassandra Cluster
  • 60. Spark Cassandra Example val conf = new SparkConf(loadDefaults = true) .set("spark.cassandra.connection.host", "127.0.0.1") .setMaster("spark://127.0.0.1:7077") val sc = new SparkContext(conf) val table: CassandraRDD[CassandraRow] = sc.cassandraTable("keyspace", "tweets") 
 val ssc = new StreamingContext(sc, Seconds(30))
 
 val stream = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](
 ssc, kafka.kafkaParams, Map(topic -> 1), StorageLevel.MEMORY_ONLY)
 
 stream.map(_._2).countByValue().saveToCassandra("demo", "wordcount")
 
 ssc.start()
 ssc.awaitTermination() Initialization Transformations and Action CassandraRDD Stream Initialization
  • 61. Spark Cassandra Example val sc = new SparkContext(..) val ssc = new StreamingContext(sc, Seconds(5)) val stream = TwitterUtils.createStream(ssc, auth, filters, StorageLevel.MEMORY_ONLY_SER_2)
 val transform = (cruft: String) => Pattern.findAllIn(cruft).flatMap(_.stripPrefix("#"))
 
 /** Note that Cassandra is doing the sorting for you here. */
 stream.flatMap(_.getText.toLowerCase.split("""s+"""))
 .map(transform)
 .countByValueAndWindow(Seconds(5), Seconds(5))
 .transform((rdd, time) => rdd.map { case (term, count) => (term, count, now(time))}) .saveToCassandra(keyspace, suspicious, SomeColumns(“suspicious", "count", “timestamp")) 

  • 62. val table = sc .cassandraTable[CassandraRow]("keyspace", "tweets") .select("user_name", "message") .where("user_name = ?", "ewa") row 
 representation keyspace table server side column and row selection Reading: From C* To Spark
  • 63. class CassandraRDD[R](..., keyspace: String, table: String, ...) 
 extends RDD[R](...) { // Splits the table into multiple Spark partitions,
 // each processed by single Spark Task
 override def getPartitions: Array[Partition] // Returns names of hosts storing given partition (for data locality!)
 override def getPreferredLocations(split: Partition): Seq[String] // Returns iterator over Cassandra rows in the given partition
 override def compute(split: Partition, context: TaskContext): Iterator[R] } CassandraRDD
  • 64. /** RDD representing a Cassandra table for Spark Streaming.
 * @see [[com.datastax.spark.connector.rdd.CassandraRDD]] */
 class CassandraStreamingRDD[R] private[connector] (
 sctx: StreamingContext,
 connector: CassandraConnector,
 keyspace: String,
 table: String,
 columns: ColumnSelector = AllColumns,
 where: CqlWhereClause = CqlWhereClause.empty,
 readConf: ReadConf = ReadConf())(
 implicit ct : ClassTag[R], @transient rrf: RowReaderFactory[R])
 extends CassandraRDD[R](sctx.sparkContext, connector, keyspace, table, columns, where, readConf)
 CassandraStreamingRDD
  • 65. Paging Reads with .cassandraTable • Page size is configurable • Controls how many CQL rows to fetch at a time, when fetching a single partition • Connector returns an iterator for rows to Spark • Spark iterates over this, lazily • Handled by the java driver as well as spark
  • 66. Node 1 Client Cassandra Node 1request a page data processdata request a page data request a page Node 2 Client Cassandra Node 2request a page data processdata request a page data request a page ResultSet Paging and Pre-Fetching
  • 67. Co-locate Spark and C* for Best Performance 67 C* C*C* C* Spark
 Worker Spark
 Worker Spark Master Spark Worker Running Spark Workers on the same nodes as your C* Cluster will save network hops when reading and writing
  • 68. Analytic Analytic Search The Key To Speed - Data Locality • LocalNodeFirstLoadBalancingPolicy • Decides what node will become the coordinator for the given mutation/read • Selects local node first and then nodes in the local DC in random order • Once that node receives the request it will be distributed • Proximal Node Sort Defined by the C* snitch •https://github.com/apache/cassandra/blob/trunk/src/java/org/ apache/cassandra/locator/DynamicEndpointSnitch.java#L155- L190
  • 69. Spark Reads on Cassandra Awesome animation by DataStax’s own Russel Spitzer
  • 70. Spark RDDs Represent a Large Amount of Data Partitioned into Chunks RDD 1 2 3 4 5 6 7 8 9Node 2 Node 1 Node 3 Node 4
  • 71. Node 2 Node 1 Spark RDDs Represent a Large Amount of Data Partitioned into Chunks RDD 2 346 7 8 9 Node 3 Node 4 1 5
  • 72. Node 2 Node 1 RDD 2 346 7 8 9 Node 3 Node 4 1 5 Spark RDDs Represent a Large Amount of Data Partitioned into Chunks
  • 73. Cassandra Data is Distributed By Token Range
  • 74. Cassandra Data is Distributed By Token Range 0 500
  • 75. Cassandra Data is Distributed By Token Range 0 500 999
  • 76. Cassandra Data is Distributed By Token Range 0 500 Node 1 Node 2 Node 3 Node 4
  • 77. Cassandra Data is Distributed By Token Range 0 500 Node 1 Node 2 Node 3 Node 4 Without vnodes
  • 78. Cassandra Data is Distributed By Token Range 0 500 Node 1 Node 2 Node 3 Node 4 With vnodes
  • 79. Node 1 120-220 300-500 780-830 0-50 spark.cassandra.input.split.size 50 Reported density is 0.5 The Connector Uses Information on the Node to Make 
 Spark Partitions
  • 80. Node 1 120-220 300-500 0-50 spark.cassandra.input.split.size 50 Reported density is 0.5 The Connector Uses Information on the Node to Make 
 Spark Partitions 1 780-830
  • 81. 1 Node 1 120-220 300-500 0-50 spark.cassandra.input.split.size 50 Reported density is 0.5 The Connector Uses Information on the Node to Make 
 Spark Partitions 780-830
  • 82. 2 1 Node 1 300-500 0-50 spark.cassandra.input.split.size 50 Reported density is 0.5 The Connector Uses Information on the Node to Make 
 Spark Partitions 780-830
  • 83. 2 1 Node 1 300-500 0-50 spark.cassandra.input.split.size 50 Reported density is 0.5 The Connector Uses Information on the Node to Make 
 Spark Partitions 780-830
  • 84. 2 1 Node 1 300-400 0-50 spark.cassandra.input.split.size 50 Reported density is 0.5 The Connector Uses Information on the Node to Make 
 Spark Partitions 780-830 400-500
  • 85. 21 Node 1 0-50 spark.cassandra.input.split.size 50 Reported density is 0.5 The Connector Uses Information on the Node to Make 
 Spark Partitions 780-830 400-500
  • 86. 21 Node 1 0-50 spark.cassandra.input.split.size 50 Reported density is 0.5 The Connector Uses Information on the Node to Make 
 Spark Partitions 780-830 400-500 3
  • 87. 21 Node 1 0-50 spark.cassandra.input.split.size 50 Reported density is 0.5 The Connector Uses Information on the Node to Make 
 Spark Partitions 780-830 3 400-500
  • 88. 21 Node 1 0-50 spark.cassandra.input.split.size 50 Reported density is 0.5 The Connector Uses Information on the Node to Make 
 Spark Partitions 780-830 3
  • 89. 4 21 Node 1 0-50 spark.cassandra.input.split.size 50 Reported density is 0.5 The Connector Uses Information on the Node to Make 
 Spark Partitions 780-830 3
  • 90. 4 21 Node 1 0-50 spark.cassandra.input.split.size 50 Reported density is 0.5 The Connector Uses Information on the Node to Make 
 Spark Partitions 780-830 3
  • 91. 421 Node 1 spark.cassandra.input.split.size 50 Reported density is 0.5 The Connector Uses Information on the Node to Make 
 Spark Partitions 3
  • 92. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50780-830 Node 1
  • 93. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 780 and token(pk) <= 830 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50
  • 94. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 780 and token(pk) <= 830 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50
  • 95. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 780 and token(pk) <= 830 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50 50 CQL Rows
  • 96. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 780 and token(pk) <= 830 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50 50 CQL Rows
  • 97. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 780 and token(pk) <= 830 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50 50 CQL Rows 50 CQL Rows
  • 98. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 780 and token(pk) <= 830 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50 50 CQL Rows50 CQL Rows
  • 99. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 780 and token(pk) <= 830 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50 50 CQL Rows50 CQL Rows 50 CQL Rows
  • 100. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 780 and token(pk) <= 830 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50 50 CQL Rows50 CQL Rows 50 CQL Rows
  • 101. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 780 and token(pk) <= 830 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50 50 CQL Rows50 CQL Rows 50 CQL Rows 50 CQL Rows
  • 102. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 780 and token(pk) <= 830 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50 50 CQL Rows50 CQL Rows 50 CQL Rows 50 CQL Rows
  • 103. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 780 and token(pk) <= 830 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50 50 CQL Rows50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows
  • 104. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 780 and token(pk) <= 830 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50 50 CQL Rows50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows
  • 105. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50 50 CQL Rows50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows
  • 106. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50 50 CQL Rows50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows
  • 107. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50 50 CQL Rows50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows
  • 108. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50 50 CQL Rows50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows
  • 109. 4 spark.cassandra.input.page.row.size 50 Data is Retrieved Using the DataStax Java Driver 0-50 780-830 Node 1 SELECT * FROM keyspace.table WHERE token(pk) > 0 and token(pk) <= 50 50 CQL Rows50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows 50 CQL Rows
  • 110. Connector Code and Docs https://github.com/datastax/spark-cassandra-connector Add It To Your Project: val connector = "com.datastax.spark" %% "spark-cassandra-connector" % "1.1.0-alpha3"
  • 112. Basic Architecture • Producers write data to brokers. • Consumers read data from brokers. • All this is distributed. • Data is stored in topics. • Topics are split into partitions, which are replicated. http://kafka.apache.org/documentation.html
  • 113. Partition • Topics is made up of partitions • Partitions are ordered and immutable • An appended log
  • 114. Partitons • Partition number determines how many parallel consumers
  • 115. Basic Architecture • More partitions == more parallelism • Client stores offsets in Zookeeper (<.8.2) • Multiple consumers can pull from one partition • Pretty much a PUB-SUB http://kafka.apache.org/documentation.html
  • 117. Install Apache Cassandra http://planetcassandra.org/cassandra/ •Download Apache Cassandra 2.1 •Linux & Mac: •Most cases a tar.gz is perfect •Windows: •msi package
  • 118. Install and run tar xvf dsc.tar.gz cd dsc-cassandra-2.1.0/bin ./cassandra Install msi Service should start automatically
  • 119. Verify install Run cqlsh Connected to Test Cluster at 127.0.0.1:9042. [cqlsh 5.0.1 | Cassandra 2.1.0 | CQL spec 3.2.0 | Native protocol v3] Use HELP for help. cqlsh> cd Program FilesDataStax Communityapache-cassandrabin cqlsh <from dsc-cassandra-2.1.0/bin> ./cqlsh Expected output
  • 120. Load schema Go to data directory > cd killrweather/data > ls > 2005.csv.gz create-timeseries.cql load-timeseries.cqlweather_stations.csv Load data > <cassandra_dir>/bin/cqlsh Connected to Test Cluster at 127.0.0.1:9042. [cqlsh 5.0.1 | Cassandra 2.1.0 | CQL spec 3.2.0 | Native protocol v3] Use HELP for help. cqlsh> source 'create-timeseries.cql'; cqlsh> source 'load-timeseries.cql'; cqlsh> describe keyspace isd_weather_data; cqlsh> use isd_weather_data; cqlsh:isd_weather_data> select * from weather_station limit 10; id | call_sign | country_code | elevation | lat | long | name | state_code --------------+-----------+--------------+-----------+--------+---------+-----------------------+------------ 408930:99999 | OIZJ | IR | 4 | 25.65 | 57.767 | JASK | null 725500:14942 | KOMA | US | 299.3 | 41.317 | -95.9 | OMAHA EPPLEY AIRFIELD | NE 725474:99999 | KCSQ | US | 394 | 41.017 | -94.367 | CRESTON | IA 480350:99999 | VBLS | BM | 749 | 22.933 | 97.75 | LASHIO | null 719380:99999 | CYCO | CN | 22 | 67.817 | -115.15 | COPPERMINE AIRPORT | null 992790:99999 | DB279 | US | 3 | 40.5 | -69.467 | ENVIRONM BUOY 44008 | null 85120:99999 | LPPD | PO | 72 | 37.733 | -25.7 | PONTA DELGADA/NORDE | null 150140:99999 | LRBM | RO | 218 | 47.667 | 23.583 | BAIA MARE | null 435330:99999 | null | MV | 1 | 6.733 | 73.15 | HANIMADU | null 536150:99999 | null | CI | 1005 | 38.467 | 106.27 |
  • 121. The End-To-End Data Pipeline
  • 122. Lambda Architecture Cassandra Spark Core Spark SQL structured Spark Streaming real-time MLlib machine learning GraphX graph Apache Kafka
  • 123. Schema
  • 124. raw_weather_data CREATE TABLE raw_weather_data ( weather_station text, // Composite of Air Force Datsav3 station number and NCDC WBAN number year int, // Year collected month int, // Month collected day int, // Day collected hour int, // Hour collected temperature double, // Air temperature (degrees Celsius) dewpoint double, // Dew point temperature (degrees Celsius) pressure double, // Sea level pressure (hectopascals) wind_direction int, // Wind direction in degrees. 0-359 wind_speed double, // Wind speed (meters per second) sky_condition int, // Total cloud cover (coded, see format documentation) sky_condition_text text, // Non-coded sky conditions one_hour_precip double, // One-hour accumulated liquid precipitation (millimeters) six_hour_precip double, // Six-hour accumulated liquid precipitation (millimeters) PRIMARY KEY ((weather_station), year, month, day, hour) ) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC); Reverses data in the storage engine.
  • 125. weather_station CREATE TABLE weather_station ( id text PRIMARY KEY, // Composite of Air Force Datsav3 station number and NCDC WBAN number name text, // Name of reporting station country_code text, // 2 letter ISO Country ID state_code text, // 2 letter state code for US stations call_sign text, // International station call sign lat double, // Latitude in decimal degrees long double, // Longitude in decimal degrees elevation double // Elevation in meters ); Lookup table
  • 126. sky_condition_lookup CREATE TABLE sky_condition_lookup ( code int PRIMARY KEY, condition text ); INSERT INTO sky_condition_lookup (code, condition) VALUES (0, 'None, SKC or CLR'); INSERT INTO sky_condition_lookup (code, condition) VALUES (1, 'One okta - 1/10 or less but not zero'); INSERT INTO sky_condition_lookup (code, condition) VALUES (2, 'Two oktas - 2/10 - 3/10, or FEW'); INSERT INTO sky_condition_lookup (code, condition) VALUES (3, 'Three oktas - 4/10'); INSERT INTO sky_condition_lookup (code, condition) VALUES (4, 'Four oktas - 5/10, or SCT'); INSERT INTO sky_condition_lookup (code, condition) VALUES (5, 'Five oktas - 6/10'); INSERT INTO sky_condition_lookup (code, condition) VALUES (6, 'Six oktas - 7/10 - 8/10'); INSERT INTO sky_condition_lookup (code, condition) VALUES (7, 'Seven oktas - 9/10 or more but not 10/10, or BKN'); INSERT INTO sky_condition_lookup (code, condition) VALUES (8, 'Eight oktas - 10/10, or OVC'); INSERT INTO sky_condition_lookup (code, condition) VALUES (9, 'Sky obscured, or cloud amount cannot be estimated'); INSERT INTO sky_condition_lookup (code, condition) VALUES (10, 'Partial obscuration 11: Thin scattered'); INSERT INTO sky_condition_lookup (code, condition) VALUES (12, 'Scattered'); INSERT INTO sky_condition_lookup (code, condition) VALUES (13, 'Dark scattered'); INSERT INTO sky_condition_lookup (code, condition) VALUES (14, 'Thin broken 15: Broken'); INSERT INTO sky_condition_lookup (code, condition) VALUES (16, 'Dark broken 17: Thin overcast 18: Overcast'); INSERT INTO sky_condition_lookup (code, condition) VALUES (19, 'Dark overcast');
  • 127. daily_aggregate_temperature CREATE TABLE daily_aggregate_temperature ( weather_station text, year int, month int, day int, high double, low double, mean double, variance double, stdev double, PRIMARY KEY ((weather_station), year, month, day) ) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC); SELECT high, low FROM daily_aggregate_temperature WHERE weather_station='010010:99999' AND year=2005 AND month=12 AND day=3; high | low ------+------ 1.8 | -1.5
  • 128. daily_aggregate_precip CREATE TABLE daily_aggregate_precip ( weather_station text, year int, month int, day int, precipitation double, PRIMARY KEY ((weather_station), year, month, day) ) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC); SELECT precipitation FROM daily_aggregate_precip WHERE weather_station='010010:99999' AND year=2005 AND month=12 AND day>=1 AND day <= 7; 0 10 20 30 40 1 2 3 4 5 6 7 17 26 2 0 33 12 0
  • 129. year_cumulative_precip CREATE TABLE year_cumulative_precip ( weather_station text, year int, precipitation double, PRIMARY KEY ((weather_station), year) ) WITH CLUSTERING ORDER BY (year DESC); SELECT precipitation FROM year_cumulative_precip WHERE weather_station='010010:99999' AND year=2005; precipitation --------------- 20.1 SELECT precipitation FROM year_cumulative_precip WHERE weather_station='010010:99999' AND year=2005; precipitation --------------- 33.7 Select a couple days later
  • 130. Weather Station Analysis • Weather station collects data • Cassandra stores in sequence • Spark rolls up data into new tables Windsor California July 1, 2014 High: 73.4F Low : 51.4F
  • 131. Roll-up table CREATE TABLE daily_aggregate_temperature ( wsid text, year int, month int, day int, high double, low double, PRIMARY KEY ((wsid), year, month, day) ); • Weather Station Id(wsid) is unique • High and low temp for each day
  • 132. Setup connection def main(args: Array[String]): Unit = { // the setMaster("local") lets us run & test the job right in our IDE val conf = new SparkConf(true).set("spark.cassandra.connection.host", "127.0.0.1").setMaster("local") // "local" here is the master, meaning we don't explicitly have a spark master set up val sc = new SparkContext("local", "weather", conf) val connector = CassandraConnector(conf) val cc = new CassandraSQLContext(sc) cc.setKeyspace("isd_weather_data")
  • 133. Get data and aggregate // Create SparkSQL statement val aggregationSql = "SELECT wsid, year, month, day, max(temperature) high, min(temperature) low " + "FROM raw_weather_data " + "WHERE month = 6 " + "GROUP BY wsid, year, month, day;" val srdd: SchemaRDD = cc.sql(aggregationSql); val resultSet = srdd.map(row => ( new daily_aggregate_temperature( row.getString(0), row.getInt(1), row.getInt(2), row.getInt(3), row.getDouble(4), row.getDouble(5)))) .collect() // Case class to store row data case class daily_aggregate_temperature (wsid: String, year: Int, month: Int, day: Int, high:Double, low:Double)
  • 134. Store back into Cassandra connector.withSessionDo(session => { // Create a single prepared statement val prepared = session.prepare(insertStatement) val bound = prepared.bind // Iterate over result set and bind variables for (row <- resultSet) { bound.setString("wsid", row.wsid) bound.setInt("year", row.year) bound.setInt("month", row.month) bound.setInt("day", row.day) bound.setDouble("high", row.high) bound.setDouble("low", row.low) // Insert new row in database session.execute(bound) } })
  • 135. Result wsid | year | month | day | high | low --------------+------+-------+-----+------+------ 725300:94846 | 2012 | 9 | 30 | 18.9 | 10.6 725300:94846 | 2012 | 9 | 29 | 25.6 | 9.4 725300:94846 | 2012 | 9 | 28 | 19.4 | 11.7 725300:94846 | 2012 | 9 | 27 | 17.8 | 7.8 725300:94846 | 2012 | 9 | 26 | 22.2 | 13.3 725300:94846 | 2012 | 9 | 25 | 25 | 11.1 725300:94846 | 2012 | 9 | 24 | 21.1 | 4.4 725300:94846 | 2012 | 9 | 23 | 15.6 | 5 725300:94846 | 2012 | 9 | 22 | 15 | 7.2 725300:94846 | 2012 | 9 | 21 | 18.3 | 9.4 725300:94846 | 2012 | 9 | 20 | 21.7 | 11.7 725300:94846 | 2012 | 9 | 19 | 22.8 | 5.6 725300:94846 | 2012 | 9 | 18 | 17.2 | 9.4 725300:94846 | 2012 | 9 | 17 | 25 | 12.8 725300:94846 | 2012 | 9 | 16 | 25 | 10.6 725300:94846 | 2012 | 9 | 15 | 26.1 | 11.1 725300:94846 | 2012 | 9 | 14 | 23.9 | 11.1 725300:94846 | 2012 | 9 | 13 | 26.7 | 13.3 725300:94846 | 2012 | 9 | 12 | 29.4 | 17.2 725300:94846 | 2012 | 9 | 11 | 28.3 | 11.7 725300:94846 | 2012 | 9 | 10 | 23.9 | 12.2 725300:94846 | 2012 | 9 | 9 | 21.7 | 12.8 725300:94846 | 2012 | 9 | 8 | 22.2 | 12.8 725300:94846 | 2012 | 9 | 7 | 25.6 | 18.9 725300:94846 | 2012 | 9 | 6 | 30 | 20.6 725300:94846 | 2012 | 9 | 5 | 30 | 17.8 725300:94846 | 2012 | 9 | 4 | 32.2 | 21.7 725300:94846 | 2012 | 9 | 3 | 30.6 | 21.7 725300:94846 | 2012 | 9 | 2 | 27.2 | 21.7 725300:94846 | 2012 | 9 | 1 | 27.2 | 21.7 SELECT wsid, year, month, day, high, low FROM daily_aggregate_temperature WHERE wsid = '725300:94846' AND year=2012 AND month=9 ;
  • 136. What just happened? • Data is read from raw_weather_data table • Transformed • Inserted into the daily_aggregate_temperature table Table: raw_weather_data Table: daily_aggregate_tem perature Read data from table Transform Insert data into table
  • 137. Weather Station Stream Analysis • Weather station collects data • Data processed in stream • Data stored in Cassandra Windsor California Today Rainfall total: 1.2cm High: 73.4F Low : 51.4F
  • 138. Spark Streaming Reduce Example val sc = new SparkContext(..) val ssc = new StreamingContext(sc, Seconds(5)) val stream = TwitterUtils.createStream(ssc, auth, filters, StorageLevel.MEMORY_ONLY_SER_2)
 val transform = (cruft: String) => Pattern.findAllIn(cruft).flatMap(_.stripPrefix("#"))
 
 /** Note that Cassandra is doing the sorting for you here. */
 stream.flatMap(_.getText.toLowerCase.split("""s+"""))
 .map(transform)
 .countByValueAndWindow(Seconds(5), Seconds(5))
 .transform((rdd, time) => rdd.map { case (term, count) => (term, count, now(time))}) .saveToCassandra(keyspace, suspicious, SomeColumns(“suspicious", "count", “timestamp")) 

  • 139. KafkaStreamingActor • Pulls from Kafka Queue • Immediately saves to Cassandra Counter kafkaStream.map { weather =>
 (weather.wsid, weather.year, weather.month, weather.day, weather.oneHourPrecip)
 }.saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)
  • 140. Temperature High/Low Stream Weather Stations Receive API Apache Kafka Producer TemperatureActor TemperatureActor TemperatureActor Consumer NodeGuardian
  • 141. TemperatureActor class TemperatureActor(sc: SparkContext, settings: WeatherSettings) extends WeatherActor with ActorLogging { def receive : Actor.Receive = { case e: GetDailyTemperature => daily(e.day, sender) case e: DailyTemperature => store(e) case e: GetMonthlyHiLowTemperature => highLow(e, sender) }
  • 142. TemperatureActor /** Computes and sends the daily aggregation to the `requester` actor. * We aggregate this data on-demand versus in the stream. * * For the given day of the year, aggregates 0 - 23 temp values to statistics: * high, low, mean, std, etc., and persists to Cassandra daily temperature table * by weather station, automatically sorted by most recent - due to our cassandra schema - * you don't need to do a sort in spark. * * Because the gov. data is not by interval (window/slide) but by specific date/time * we look for historic data for hours 0-23 that may or may not already exist yet * and create stats on does exist at the time of request. */ def daily(day: Day, requester: ActorRef): Unit = (for { aggregate <- sc.cassandraTable[Double](keyspace, rawtable) .select("temperature").where("wsid = ? AND year = ? AND month = ? AND day = ?", day.wsid, day.year, day.month, day.day) .collectAsync() } yield forDay(day, aggregate)) pipeTo requester
  • 143. TemperatureActor /** * Would only be handling handles 0-23 small items or fewer. */ private def forDay(key: Day, temps: Seq[Double]): WeatherAggregate = if (temps.nonEmpty) { val stats = StatCounter(temps) val data = DailyTemperature( key.wsid, key.year, key.month, key.day, high = stats.max, low = stats.min, mean = stats.mean, variance = stats.variance, stdev = stats.stdev) self ! data data } else NoDataAvailable(key.wsid, key.year, classOf[DailyTemperature])
  • 144. TemperatureActor class TemperatureActor(sc: SparkContext, settings: WeatherSettings) extends WeatherActor with ActorLogging { def receive : Actor.Receive = { case e: GetDailyTemperature => daily(e.day, sender) case e: DailyTemperature => store(e) case e: GetMonthlyHiLowTemperature => highLow(e, sender) }
  • 145. TemperatureActor /** Stores the daily temperature aggregates asynchronously which are triggered * by on-demand requests during the `forDay` function's `self ! data` * to the daily temperature aggregation table. */ private def store(e: DailyTemperature): Unit = sc.parallelize(Seq(e)).saveToCassandra(keyspace, dailytable)
  • 149. Run code > sbt clients/run [1] com.datastax.killrweather.DataFeedApp [2] com.datastax.killrweather.KillrWeatherClientApp Enter number: 1 [DEBUG] [2015-02-18 06:49:12,073] [com.datastax.killrweather.FileFeedActor]: Sending '725030:14732,2008,12,15,12,10.0,6.7,1028.3,160,2.6,8,0.0,-0.1' > sbt clients/run [1] com.datastax.killrweather.DataFeedApp [2] com.datastax.killrweather.KillrWeatherClientApp Enter number: 2 [INFO] [2015-02-18 06:50:10,369] [com.datastax.killrweather.WeatherApiQueries]: Requesting the current weather for weather station 722020:12839 [INFO] [2015-02-18 06:50:10,369] [com.datastax.killrweather.WeatherApiQueries]: Requesting annual precipitation for weather station 722020:12839 in year 2008 [INFO] [2015-02-18 06:50:10,369] [com.datastax.killrweather.WeatherApiQueries]: Requesting top-k Precipitation for weather station 722020:12839 [INFO] [2015-02-18 06:50:10,369] [com.datastax.killrweather.WeatherApiQueries]: Requesting the daily temperature aggregate for weather station 722020:12839 [INFO] [2015-02-18 06:50:10,370] [com.datastax.killrweather.WeatherApiQueries]: Requesting the high-low temperature aggregate for weather station 722020:12839 [INFO] [2015-02-18 06:50:10,370] [com.datastax.killrweather.WeatherApiQueries]: Requesting weather station 722020:12839 Terminal 1 Terminal 2
  • 150. What’s happening DataFeedApp Apache Kafka Producer Consumer NodeGuardian killrweather/data/load/ny-2008.csv.gz Spark Streaming KillrWeatherClientApp
  • 151. Play time!! Thank you! Bring the questions Follow me on twitter @PatrickMcFadin