SlideShare a Scribd company logo
Peak shaving of an EV Aggregator
Using Quadratic Programming
Mingyu Seo
mgseo@knu.ac.kr
1
contents
2
Agenda
 Introduction
 Research background
 V2X project in korea
 Project facilities
 Systems
 Frame work
 Sequence
 Flow chart
 Algorithms
 Frame work
 Structure
 Case study
 Simulation
 Result
 KPI
 Conclusion
Introduction: Research Background
• The number of EV is
increasing rapidly every year.
• What will happen?
3
year Accumulated
Source: Ministry of Environment, Korea
Source: US Energy Information Administration
TSO
- cost reduction
DSO
- Install additional facilities
Introduction: V2X project in korea
• Why Korea Gov(Daegu) do this project?
• Why in daegu?
– Daegu is filled with electric car chargers and commercial vehicle manufacturers.
– The above conditions are good requirements for pilot projects.
Build smart city & Develop technology
(maximize the EV usage not for only drive)
ex) V2B,V2G...
 Reduction Co2, electric cost
Facilities
5
Equipment room
(ESS, PCS, Local EMS) PCS
ESS Local EMS
Facilities
6
Fast chargerNissan Leaf
Slow chargerPV
Introduction: I-SMART data(KEPCO)
7
2013 2014 2015 2016 2017 2018 2019
KW 186.72 332.16 357.6 378.72 299.76 360.72 372.72
186.72
332.16
357.6
378.72
299.76
360.72 372.72
KW
yearly peak trend
2019.
04
2019.
03
2019.
02
2019.
01
2018.
12
2018.
11
2018.
10
2018.
09
2018.
08
2018.
07
2018.
06
2018.
05
KW 299.3 300.5 372.7 313.9 350.4 316.1 315.1 339.1 360.7 280.6 308.6 329
299.28300.48
372.72
313.92
350.4
316.08315.12
339.12
360.72
280.56
308.64
329.04
KW
Monthly peak trend
• I-SMART contains 2 company (KIAPI, KARTECH)
– Contract power = 1750 kW (30% is 525kw)
– In data, maximum peak is around 370 kw => Peak load control(PLC) is no meaning
• Install meter for main building
• Constitution of virtual billing system based on electricity rate
V2X Project in Korea
• whole structure(contains installed meter and )
8
M2
(Our meter) EVSE1
ESS1
PV1
EVSE2
ESS2
PV2
PCS2
M1
(KEPCO ISMART)
EV1
Other load (test equipment, etc.)
M0~8:
Measurement
point
Target
building
PCS1
Virtual charge application office load
24kwh
50kw
50kw
50kw
250kwh
250kwh
50kw
Systems: Flow chart
9
• Load and EV Prediction
- How much is the peak tomorrow?
- When will the peak comes tomorrow?
- When EV will come to the office?
• EV scheduling
- What is the best schedule of EVs?
• Evaluation & Analysis
- How much we shaved the peak?
10
TEMS.jar/dll Logs
CSV files
Flags / Operation Codes
gridOS
demandModelDev.dll
EVModelDev.dll
PVModelDev.dll
Model Dev
demandForecast.dll
EVForecast.dll
PVForecast.dll
Model
Forecast
objV2X.dll
Model
Optimize
HMI
HMI side
Algorithm side
Input
Data CSV,
OP codes
Output
Result CSV,
Flags
ⓐ HMI
ⓑ Input/Output
Interface
ⓒ Shell java scriptⓓ API
ⓔ Logs
Model Development
- LTData.csv
- LTV.csv
- LTP.csv
Forecast and Optimize
- STD.csv
- forecastDemandData.csv
- STV.csv
- forecastEVData.csv
- STP.csv
- forecastPVData.csv
- EV_Config_xxx.csv
Operation
- EV_Config.csv
- EV_Results.csv
- PV_Results.csv
- Demand_Results.csv
System: Frame work
Result files
Forecast result
- Demand forecast result.csv
- PV forecast result.csv
- EV forecast result.csv
Scheduling result
- VFR
- % Peak reduction
- % Cost reduction
HMI Dashboard
11
HMI Demand
12
HMI PV
13
HMI EV
14
Algorithms: Frame work
15
EV-EMS
EV Config.
Tariffs
Base Load
Renewable energy
Demand load
EV
PLC
TOU
PLC+TOU
Operation type Dispatch control
Operation Summery
SOC
Power
EV Schedule
Algorithms: structure
• Objective function
– PLC+TOU : arg min 𝑜𝑢𝑡=1
24
𝑐𝑖=𝑖𝑛
𝑜𝑢𝑡
𝐷 + 𝑃 2
+ 𝑋ℎ × 𝑇𝑎𝑟𝑖𝑓𝑓
• Constraints
– 𝑆𝑂𝐶 𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶 𝑚𝑎𝑥
– −10 ≤ 𝑃𝑡 ≤ 20
– EEV
max
∗ 0.8 ≤ 𝐸 𝐸𝑉
𝑓𝑖𝑎𝑛𝑙
16
Charge/discharge
Power [kW]
𝑃0,2
2
Estimated
Plug in time
EV control
time
Estimated Plug
out time
Total charge / discharge required at
that time [kW]
where D : demand [kw]
P : EV charge/discharge [kw]
𝐸 𝐸𝑉 : EV SOC[kwh]
Case study: Simulation
• The case study simulates the
3 load profiles that appear in the
characteristics of the ISMART data
17
0
20
40
60
80
100
120
140
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
DEMAND[KW]
TIME[H]
Demand profile(case 1)
0
20
40
60
80
100
120
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
DEMAND[KW]
TIME[H]
Demand profile(Case 2)
0
50
100
150
200
250
300
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
DEMAND[KW]
TIME[H]
Demand profile(Case 3)
Simulation : Case study 1
18
0
20
40
60
80
100
120
140
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
DEMAND[KW]
TIME[H]
Demand profile(case 1)
0
20
40
60
80
100
120
140
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Price[won]
time[h]
Time of Use
highest peak TOU price Peak price Total cost cost reduction % cost reduction
No schedule 121 178,758 875,353 1,054,110 - -
Manual schedule 817 515,182 5,901,917 6,417,099 - -
TOU schedule 3,093 4,083 22,332,326 22,336,409 15,919,310 248%
PLC schedule 776 627,377 5,602,720 6,230,097 - 187,002 - 3%
TOU+PLC
schedule
309 291,581 2,230,402 2,521,984 - 3,895,116 - 61%
Simulation : Case study 2
19
0
20
40
60
80
100
120
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
DEMAND[KW]
TIME[H]
Demand profile(Case 2)
0
20
40
60
80
100
120
140
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Price[won]
time[h]
Time of Use
highest peak TOU price Peak price Total cost cost reduction % cost reduction
No schedule 97 80,043 697,885 777,928 - -
Manual schedule 817 515,182 5,901,917 6,417,099 - -
TOU schedule 3,017 4,083 22,332,326 22,336,409 15,919,310 248%
PLC schedule 744 617,428 5,368,936 5,986,364 - 430,735 - 7%
TOU+PLC
schedule
309 291,581 2,230,402 2,521,984 - 3,895,116 - 61%
0
20
40
60
80
100
120
140
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Price[won]
time[h]
Time of Use
Simulation : Case study 3
20
0
50
100
150
200
250
300
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
DEMAND[KW]
TIME[H]
Demand profile(Case 3)
highest peak TOU price Peak price Total cost cost reduction % cost reduction
No schedule 275 343,576 1,987,522 2,331,098 - -
Manual schedule 1,073 825,643 7,745,616 8,571,259 - -
TOU schedule 3,228 132,232 23,306,160 23,438,392 14,867,133 173%
PLC schedule 702 428,274 5,070,172.80 5,498,447 - 3,072,812 -36%
TOU+PLC
schedule
398 377,321 2,872,116 3,249,437 - 5,321,822 -62%
Case study: Results
21
Operation schedule
Avg. cost
reduction[%]
Avg. peak
reduction[%]
TOU 249 223
PLC - 16 - 15
PLC+TOU - 62 - 61
1 2 3
Series1 223% -15% -61%
-100%
-50%
0%
50%
100%
150%
200%
250%
%
Avg. peak reduction
TOU PLC PLC+TOU
Series1 249% -16% -62%
-100%
-50%
0%
50%
100%
150%
200%
250%
300%
Avg. cost reduction
Algorithms: KPI
(Key Performance Indicator)
22
TEMS 224,204 -8,7704 -4%
MACH
Energy
239,021 -4,770 -2%
Ice Energy 227,302 -5,962 -2.5%
Manual
Schedule
230,589 -2,385 -1%*
No
Schedule
232,974 0 0
Total Cost Reduced Cost %Reduced
Conclusion: future work
• Simulation results show that the algorithm applied to the Korean V2X
project shows a cost reduction of about 60%.
• The algorithms applied to the current V2X project are deterministic.
=> The algorithm will be upgraded considering the probabilistic concept.
• 3 charging modes are under development.
– Cost saving mode for grid
– User experience mode
– Intermediate mode
23
User
Experiences
Cost Saving
Thank you
24

More Related Content

PDF
Simcenter engineering solutions for intake and exhaust
PDF
Large scale topological optimisation: aircraft engine pylon case
PPTX
Topology optimization2 for sir
PDF
함정의 초기단계 설계영역탐색(design space exploration)의 효과적 적용
PPTX
Digital twin for ports and terminals schuett slideshare
PDF
Drilling grid Alternative with 3D Printing
PDF
ISC-2007-HPC-in-Aerodynamics-at-BMW-Norbert-Gruen
PDF
Reducing large S3 API costs using Alluxio at Datasapiens
Simcenter engineering solutions for intake and exhaust
Large scale topological optimisation: aircraft engine pylon case
Topology optimization2 for sir
함정의 초기단계 설계영역탐색(design space exploration)의 효과적 적용
Digital twin for ports and terminals schuett slideshare
Drilling grid Alternative with 3D Printing
ISC-2007-HPC-in-Aerodynamics-at-BMW-Norbert-Gruen
Reducing large S3 API costs using Alluxio at Datasapiens

What's hot (9)

PDF
ISC-2005-HPC-in-Aerodynamics-at-BMW
PDF
JSAE-20075018-Gruen
PDF
ICMMES-2004-68
PPT
3 g ngp228
PDF
2014-07-08-Speed-on-Ice
PDF
Automotive Virtual Sensors - Motorsport Applications
PDF
SideSlip Angle Estimator (SSE)
PPT
Formulation of detailed project report(final)
ISC-2005-HPC-in-Aerodynamics-at-BMW
JSAE-20075018-Gruen
ICMMES-2004-68
3 g ngp228
2014-07-08-Speed-on-Ice
Automotive Virtual Sensors - Motorsport Applications
SideSlip Angle Estimator (SSE)
Formulation of detailed project report(final)
Ad

Similar to Peak shaving of an EV Aggregator Using Quadratic Programming (20)

PPTX
PDF
Master's_Thesis_XuejiaoHAN
PDF
A Review of Different Types of Schedulers Used In Energy Management
PPSX
Energy conservation Activites of thermal power plant
PDF
Enhancing the Electric Grid Reliability through Data Analytics
PDF
Integration of renewable energy sources and demand-side management into distr...
PPTX
Optimal load scheduling
PDF
Smart optimization techniques for virtual power plants
PDF
A transition from manual to Intelligent Automated power system operation -A I...
PPTX
Bill-Randle-AE-SunSpec-Inverter-Controls-Status.pptx
PPTX
Energy storage system to reduce peak demand of domestic consumers
PDF
MA_Presentation_TUM
PPT
Electricity demand side management and end use efficiency
PDF
IRJET- Generation Planning using WASP Software
PDF
Load Shifting Technique on 24Hour Basis for a Smart-Grid to Reduce Cost and P...
PDF
EMEA14_CGI_FerreiraSergioPereira_WindEnergyManagementSystemPoweredbythePISyst...
PDF
Atomic Scheduling of Appliance Energy Consumption in Residential Smart Grid
PDF
International Journal of Engineering and Science Invention (IJESI)
PPTX
Applied optimization in Matlab for Power System_2.pptx
PDF
IRJET- Smart and Efficient Load Control System using Dynamic Tariff
Master's_Thesis_XuejiaoHAN
A Review of Different Types of Schedulers Used In Energy Management
Energy conservation Activites of thermal power plant
Enhancing the Electric Grid Reliability through Data Analytics
Integration of renewable energy sources and demand-side management into distr...
Optimal load scheduling
Smart optimization techniques for virtual power plants
A transition from manual to Intelligent Automated power system operation -A I...
Bill-Randle-AE-SunSpec-Inverter-Controls-Status.pptx
Energy storage system to reduce peak demand of domestic consumers
MA_Presentation_TUM
Electricity demand side management and end use efficiency
IRJET- Generation Planning using WASP Software
Load Shifting Technique on 24Hour Basis for a Smart-Grid to Reduce Cost and P...
EMEA14_CGI_FerreiraSergioPereira_WindEnergyManagementSystemPoweredbythePISyst...
Atomic Scheduling of Appliance Energy Consumption in Residential Smart Grid
International Journal of Engineering and Science Invention (IJESI)
Applied optimization in Matlab for Power System_2.pptx
IRJET- Smart and Efficient Load Control System using Dynamic Tariff
Ad

Recently uploaded (20)

PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPT
Mechanical Engineering MATERIALS Selection
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
OOP with Java - Java Introduction (Basics)
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Geodesy 1.pptx...............................................
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPT
Project quality management in manufacturing
PPTX
Sustainable Sites - Green Building Construction
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
Construction Project Organization Group 2.pptx
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Mechanical Engineering MATERIALS Selection
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
OOP with Java - Java Introduction (Basics)
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
CH1 Production IntroductoryConcepts.pptx
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Foundation to blockchain - A guide to Blockchain Tech
UNIT 4 Total Quality Management .pptx
Geodesy 1.pptx...............................................
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Project quality management in manufacturing
Sustainable Sites - Green Building Construction
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Construction Project Organization Group 2.pptx
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx

Peak shaving of an EV Aggregator Using Quadratic Programming

  • 1. Peak shaving of an EV Aggregator Using Quadratic Programming Mingyu Seo mgseo@knu.ac.kr 1
  • 2. contents 2 Agenda  Introduction  Research background  V2X project in korea  Project facilities  Systems  Frame work  Sequence  Flow chart  Algorithms  Frame work  Structure  Case study  Simulation  Result  KPI  Conclusion
  • 3. Introduction: Research Background • The number of EV is increasing rapidly every year. • What will happen? 3 year Accumulated Source: Ministry of Environment, Korea Source: US Energy Information Administration TSO - cost reduction DSO - Install additional facilities
  • 4. Introduction: V2X project in korea • Why Korea Gov(Daegu) do this project? • Why in daegu? – Daegu is filled with electric car chargers and commercial vehicle manufacturers. – The above conditions are good requirements for pilot projects. Build smart city & Develop technology (maximize the EV usage not for only drive) ex) V2B,V2G...  Reduction Co2, electric cost
  • 5. Facilities 5 Equipment room (ESS, PCS, Local EMS) PCS ESS Local EMS
  • 7. Introduction: I-SMART data(KEPCO) 7 2013 2014 2015 2016 2017 2018 2019 KW 186.72 332.16 357.6 378.72 299.76 360.72 372.72 186.72 332.16 357.6 378.72 299.76 360.72 372.72 KW yearly peak trend 2019. 04 2019. 03 2019. 02 2019. 01 2018. 12 2018. 11 2018. 10 2018. 09 2018. 08 2018. 07 2018. 06 2018. 05 KW 299.3 300.5 372.7 313.9 350.4 316.1 315.1 339.1 360.7 280.6 308.6 329 299.28300.48 372.72 313.92 350.4 316.08315.12 339.12 360.72 280.56 308.64 329.04 KW Monthly peak trend • I-SMART contains 2 company (KIAPI, KARTECH) – Contract power = 1750 kW (30% is 525kw) – In data, maximum peak is around 370 kw => Peak load control(PLC) is no meaning • Install meter for main building • Constitution of virtual billing system based on electricity rate
  • 8. V2X Project in Korea • whole structure(contains installed meter and ) 8 M2 (Our meter) EVSE1 ESS1 PV1 EVSE2 ESS2 PV2 PCS2 M1 (KEPCO ISMART) EV1 Other load (test equipment, etc.) M0~8: Measurement point Target building PCS1 Virtual charge application office load 24kwh 50kw 50kw 50kw 250kwh 250kwh 50kw
  • 9. Systems: Flow chart 9 • Load and EV Prediction - How much is the peak tomorrow? - When will the peak comes tomorrow? - When EV will come to the office? • EV scheduling - What is the best schedule of EVs? • Evaluation & Analysis - How much we shaved the peak?
  • 10. 10 TEMS.jar/dll Logs CSV files Flags / Operation Codes gridOS demandModelDev.dll EVModelDev.dll PVModelDev.dll Model Dev demandForecast.dll EVForecast.dll PVForecast.dll Model Forecast objV2X.dll Model Optimize HMI HMI side Algorithm side Input Data CSV, OP codes Output Result CSV, Flags ⓐ HMI ⓑ Input/Output Interface ⓒ Shell java scriptⓓ API ⓔ Logs Model Development - LTData.csv - LTV.csv - LTP.csv Forecast and Optimize - STD.csv - forecastDemandData.csv - STV.csv - forecastEVData.csv - STP.csv - forecastPVData.csv - EV_Config_xxx.csv Operation - EV_Config.csv - EV_Results.csv - PV_Results.csv - Demand_Results.csv System: Frame work Result files Forecast result - Demand forecast result.csv - PV forecast result.csv - EV forecast result.csv Scheduling result - VFR - % Peak reduction - % Cost reduction
  • 15. Algorithms: Frame work 15 EV-EMS EV Config. Tariffs Base Load Renewable energy Demand load EV PLC TOU PLC+TOU Operation type Dispatch control Operation Summery SOC Power EV Schedule
  • 16. Algorithms: structure • Objective function – PLC+TOU : arg min 𝑜𝑢𝑡=1 24 𝑐𝑖=𝑖𝑛 𝑜𝑢𝑡 𝐷 + 𝑃 2 + 𝑋ℎ × 𝑇𝑎𝑟𝑖𝑓𝑓 • Constraints – 𝑆𝑂𝐶 𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶 𝑚𝑎𝑥 – −10 ≤ 𝑃𝑡 ≤ 20 – EEV max ∗ 0.8 ≤ 𝐸 𝐸𝑉 𝑓𝑖𝑎𝑛𝑙 16 Charge/discharge Power [kW] 𝑃0,2 2 Estimated Plug in time EV control time Estimated Plug out time Total charge / discharge required at that time [kW] where D : demand [kw] P : EV charge/discharge [kw] 𝐸 𝐸𝑉 : EV SOC[kwh]
  • 17. Case study: Simulation • The case study simulates the 3 load profiles that appear in the characteristics of the ISMART data 17 0 20 40 60 80 100 120 140 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 DEMAND[KW] TIME[H] Demand profile(case 1) 0 20 40 60 80 100 120 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 DEMAND[KW] TIME[H] Demand profile(Case 2) 0 50 100 150 200 250 300 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 DEMAND[KW] TIME[H] Demand profile(Case 3)
  • 18. Simulation : Case study 1 18 0 20 40 60 80 100 120 140 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 DEMAND[KW] TIME[H] Demand profile(case 1) 0 20 40 60 80 100 120 140 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Price[won] time[h] Time of Use highest peak TOU price Peak price Total cost cost reduction % cost reduction No schedule 121 178,758 875,353 1,054,110 - - Manual schedule 817 515,182 5,901,917 6,417,099 - - TOU schedule 3,093 4,083 22,332,326 22,336,409 15,919,310 248% PLC schedule 776 627,377 5,602,720 6,230,097 - 187,002 - 3% TOU+PLC schedule 309 291,581 2,230,402 2,521,984 - 3,895,116 - 61%
  • 19. Simulation : Case study 2 19 0 20 40 60 80 100 120 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 DEMAND[KW] TIME[H] Demand profile(Case 2) 0 20 40 60 80 100 120 140 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Price[won] time[h] Time of Use highest peak TOU price Peak price Total cost cost reduction % cost reduction No schedule 97 80,043 697,885 777,928 - - Manual schedule 817 515,182 5,901,917 6,417,099 - - TOU schedule 3,017 4,083 22,332,326 22,336,409 15,919,310 248% PLC schedule 744 617,428 5,368,936 5,986,364 - 430,735 - 7% TOU+PLC schedule 309 291,581 2,230,402 2,521,984 - 3,895,116 - 61%
  • 20. 0 20 40 60 80 100 120 140 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Price[won] time[h] Time of Use Simulation : Case study 3 20 0 50 100 150 200 250 300 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 DEMAND[KW] TIME[H] Demand profile(Case 3) highest peak TOU price Peak price Total cost cost reduction % cost reduction No schedule 275 343,576 1,987,522 2,331,098 - - Manual schedule 1,073 825,643 7,745,616 8,571,259 - - TOU schedule 3,228 132,232 23,306,160 23,438,392 14,867,133 173% PLC schedule 702 428,274 5,070,172.80 5,498,447 - 3,072,812 -36% TOU+PLC schedule 398 377,321 2,872,116 3,249,437 - 5,321,822 -62%
  • 21. Case study: Results 21 Operation schedule Avg. cost reduction[%] Avg. peak reduction[%] TOU 249 223 PLC - 16 - 15 PLC+TOU - 62 - 61 1 2 3 Series1 223% -15% -61% -100% -50% 0% 50% 100% 150% 200% 250% % Avg. peak reduction TOU PLC PLC+TOU Series1 249% -16% -62% -100% -50% 0% 50% 100% 150% 200% 250% 300% Avg. cost reduction
  • 22. Algorithms: KPI (Key Performance Indicator) 22 TEMS 224,204 -8,7704 -4% MACH Energy 239,021 -4,770 -2% Ice Energy 227,302 -5,962 -2.5% Manual Schedule 230,589 -2,385 -1%* No Schedule 232,974 0 0 Total Cost Reduced Cost %Reduced
  • 23. Conclusion: future work • Simulation results show that the algorithm applied to the Korean V2X project shows a cost reduction of about 60%. • The algorithms applied to the current V2X project are deterministic. => The algorithm will be upgraded considering the probabilistic concept. • 3 charging modes are under development. – Cost saving mode for grid – User experience mode – Intermediate mode 23 User Experiences Cost Saving