SlideShare a Scribd company logo
ISSN 2349-7815
International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE)
Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org
Page | 1
Paper Publications
Performance Analysis of DFIG Wind Turbine
Preeti Chakrawarti1
, Prof. Preeti Jain2
1
M.E. 4TH SEM., Electrical Engineering, J.E.C. Jabalpur, India.
2
Assistant Professor, Dept. of Electrical Engineering, J.E.C., Jabalpur, India.
Abstract: Wind energy is becoming the most effective renewable energy source mainly because of the growing
concerns over carbon emissions and uncertainties in fossil fuel supplies and the government policy impetus. The
increasing penetration of wind power in distribution systems may significantly affect VAR compensation and max.
Power tracking of the systems, particularly during wind turbine cut-in and cut-off disturbances.
A DFIG based wind turbine has an ability to generate maximum power with varying and adjustable speed, ability
to control active and reactive power by the integration of electronic power converters, low power rating of cost
converter components, and so on. This study presents an overview and literature survey over past few decades on
the different problems associated due to penetration of WT-DFIG in the power system and control aspects of
DFIG.
Keywords: Wind energy, doubly-fed induction generator- wind turbine, var compensation, ax power tracking
characteristics.
I. INTRODUCTION
World's largest sum of electricity generation contributed by non-renewable sources of fuel such as coal, gas and oil.These
fuels emit lots of CO2 other harmful gases to the atmosphere and their residues in the water, which raised global warming
issues of earth health problems of human and wild-life issues [1]. According to FatihBirol, Chief Economist, International
Energy Agency of the Organization for Economic Cooperation and Development (IEA), world electricity demand is
projected to double between 2000 and 2030, growing at an annual rate of 2.4%. This is faster than any other energy
demand. Total share of electric energy consumption rises from 18% in 2000 to 22% in 2030. Electricity demand growth is
strongest in developing countries, where demand will climb by over 4% per year over the projected period, which gets
more than triple by 2030. Consequently, the electric energy demand in developing countries will rise global electricity
share from 27% in 2000 to 43% in 2030[2].In recent years, wind energy has become one of the most economical
renewable energy. Hence, wind power could be utilized by mechanically converting it to electrical power using wind
turbine ,WT. Various WT concepts have a quick development of wind power. Variable speed operation and direct drive
WTs have been the modern developments in the technology of wind energy conversion system, WECS.
Variable-speed operation has many advantages over fixed-speed generation such as increased energy capture, operation at
MPPT over a wide range of wind speeds, high power quality, reduced mechanical stresses, aerodynamic noise improved
system reliability, and it can provide (10-15) % higher output power and has less mechanical stresses in comparison with
the operation at a fixed speed[3][4].
The DFIG wind turbine is a wound-rotor induction generator operated by controlling slip rings or by the power converter
interconnected with the grid. There are around thousands of research IEEE activities (Research Publications) on DFIG
control aspects during past few decades.
ISSN 2349-7815
International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE)
Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org
Page | 2
Paper Publications
II. DOUBLY - FED INDUCTION GENERATOR (DFIG) WIND TURBINE
The DFIG wind turbine is a wound-rotor induction generator operated by controlling slip rings or by the power converter
interconnected with the grid. See Figure1 for the DFIG wind turbine schematic. The AC/DC/AC converter is divided into
two components: the rotor-side converter (Crotor) and the grid-side converter (Cgrid). Crotor and Cgrid are Voltage-Sourced
Converters that use forced-commutated power electronic devices (IGBTs) to synthesize an AC voltage from a DC voltage
source. A capacitor connected on the DC side acts as the DC voltage source. A coupling inductor L is used to connect
Cgrid to the grid. The three-phase rotor winding is connected to Crotor by slip rings and brushes and the three-phase stator
winding is directly connected to the grid. The power captured by the wind turbine is converted into electrical power by the
induction generator and it is transmitted to the grid by the stator and the rotor winding. The control system generates the
pitch angle command and the voltage command signals Vr and Vgc for Crotor and Cgrid respectively in order to control the
power of the wind turbine, the DC bus voltage and the reactive power or the voltage at the grid[5]
Fig.1: The Doubly-Fed Induction Generator System
III. EMERGING ISSUES AND THEIR CONTROL MEASURES OF DFIG BASED WECS
The Emerging Issues and their Control of DFIG based WECS are shown in the above fig.2 and described one by one as
follows:
(a) Coordinated control of frequency regulation capability:
A (DFIG)-based WECS not provide frequency response because of the decoupling between the output power and the grid
frequency. Power reserve margin also problem for DFIG because of the maximum power point tracking (MPPT)
operation.[6] presented a novel frequency regulation by DFIG-based wind turbines to coordinate inertial control, rotor
speed control and pitch angle control, under low and high wind speed variations.
(b) Battery Control Operation (BESS) L:
[7] presented a new based on battery energy storage system (BESS) and tried to reduce the power fluctuations on the grid
for uncertain wind conditions and also, compared with an existing control strategies like the maximum power point
extraction at unity power factor condition of the DFIG.[8] presented the modified rotor side of DFIG with DC link
capacitor is replaced with the BES. The co-ordinate tuning of the associated controllers using bacterial foraging technique
(based on Eigen-value) to damp out power oscillations. Furthermore, an evolutionary iterative particle swarm
optimization (PSO) approach for the optimal wind-battery coordination in a power system was proposed in [9][10].
ISSN 2349-7815
International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE)
Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org
Page | 3
Paper Publications
(c) Stator Current Harmonic Control:
[11] Proposed a sixth-order resonant circuit to eliminate negative sequence 5th harmonic and positive sequence 7th
harmonics currents from fundamental component of stator current. A stator current harmonic control loop is added to the
conventional rotor current control loop for harmonic suppression. The affects of voltage harmonics from the grid on the
DFIG are also have been discussed in [12]–[13]. Resonant controllers have been widely used in harmonic control and
unbalanced control for both DFIG and power converter systems .The use of resonant circuits aims to achieve high
bandwidth at certain frequencies and also eliminate current harmonics in the three-phase power converter systems [14]
and the DFIG during grid voltage distortion. In [15], the resonant controllers are used to keep the current output balanced
during a grid voltage imbalance.
(d) Fault Ride Through:
A grid fault posed an overload condition to DFIG when it trying to stabilize the wind farm. This would check the fault
ride through capability of the DFIG.
[16] Proposed the dc-link chopper-controlled braking resistor with the supplementary rotor current (SRC) control of the
rotor side converter of the DFIG and series dynamic braking resistor (SDBR) connected to the stator of the DFIG. [17] a
study focused on stabilizing FSWT without using any FACTS device. A series dynamic braking resistor (SDBR) was
used to improve the FRT of large wind farms composed of IGs in[18], while in [19] the SDBR was connected to the rotor
side converter of the DFIG to improve its Fault Ride Through capability. A superconducting fault current limiter (SFCL)
[20], passive resistance network , and series anti-parellel thyristors connected to the stator side of a grid connected DFIG.
[21] Proposed a new control strategy using a dc-chopper inserted into the dc-link circuit of the DFIG and a small value of
SDBR connected in series in the stator of the DFIG, the former of which acts as a damping load to suppress the dc-link
voltage during a grid fault.
(e) Regulation of active/reactive power:
DFIG is a electromechanical device and is modeled as non-linear system with rotor voltages and blade pitch angle as its
inputs, active and reactive powers as its outputs, and aerodynamic and mechanical parameters as its uncertainties. A
controller was developed that is capable of maximizing the active power in the maximum power tracking (MPT) mode,
regulating the active power in the power regulation(PR) mode for simultaneously adjusting the reactive power to achieve
a desired power factor. For MPPT adaptive controls [22], fuzzy methodologies [23] were proposed despite not knowing
the Cp-surface. In [24] developed a non-linear controller that simultaneously enables control of the active power in both
the MPT and PR modes with aerodynamic and mechanical parameters were known. [25]presented a dynamic model of
BDFIG with two machines‘ rotor electromechanically interconnected. The method used to extract maximum power at any
given wind speed is to implement maximum power point tracking (MPPT) algorithm based on the various control
strategies for the VSR have been discussed in[26].It has been demonstrated in [27] that the proposed BDFIG system can
be used for the large off-shore wind energy application with reduced system maintenance cost. [27] proposed a model-
based predictive controller for a power control of DFIG and internal mode controller[28] have satisfactory performance
when compared with the response of PI, but it is difficult to implement one due to the formulation of a predictive
functional controller and the internal mode controller.
Fuzzy based DFIG power control can be realized [23].
(f) Voltage Unbalance Control:
[29] Wind energy is often installed in rural, remote areas characterized by weak, unbalanced power transmission grids.
Voltage unbalance factor (VUF) is defined as the negative sequence magnitude divided by the positive sequence
magnitude. The control topology is fairly standard (based on stator-voltage-oriented dq vector control is used. This
orientation can be called grid flux oriented control[30] implemented new rotor current control scheme which consists of a
proportional–integral (PI) regulator and a harmonic resonant (R) to suppress 5th and 7th harmonics. The steady-state and
transient response of DFIG-based wind power generation system under balanced [31] and unbalanced [32] grid voltage
conditions have been well understood. [33] proposed proportional–integral (PI). plus resonant tuned at twice the grid
ISSN 2349-7815
International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE)
Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org
Page | 4
Paper Publications
frequency current controllers for both grid- and rotor-side converters. For instance, standards IEEE-519–1992 [34] and
ER G5/4–1 [35] have, respectively, recommended different practices and requirements for harmonic control in electrical
power systems. As indicated in [36] ,the presence of harmonics in the supply system results in torque pulsations and
increased copper and iron losses in electrical machines. [37] Presented a feedback/feed forward nonlinear controller for
DFIG. The mechanical and electrical parts of the wind turbines are considered separately in most of the current literature:
[36,37] considered only the mechanical part, while [38][39] considered only the electrical part, focusing mostly on the
DFIGs. [40] Considered both these parts, its controller was designed to maximize wind energy conversion, as opposed to
achieving power regulation (i.e., only operate in the MPT mode).
(g) Direct Torque Control:
Direct power control (DPC) was based on the principles of direct torque control. The DPC applied to the DFIG power
control has been presented in [41].This strategy calculates the rotor voltage space vector based on stator flux estimated
and power errors. An alternative to DPC is power error vector control [42]. This strategy is less complex and obtains
results similar to those of direct control of power. A anti-jamming control has been proposed by [43] to improve the
controller performance.
The predictive control is an alternative control technique that was applied in machine drives and inverters.Some
investigations like long-range predictive control general predictive control and model predictive control were applied to
the induction motor drives. power converter systems [16]–[20] and the DFIG [17] during grid voltage distortion. In [22]–
[24], the resonant controllers are used to keep the current output balanced during a grid voltage imbalance.
The steady-state and transient response of DFIG-based wind power generation system under balanced [43]–[46] and
unbalanced [40] grid voltage conditions have been well understood. [41] and [42] proposed proportional–integral (PI) plus
resonant tuned at twice the grid frequency current controllers for both grid- and rotor-side converters. For instance,
standards IEEE-519–1992 [45] and ER G5/4–1 [66] have, respectively, recommended different practices and
requirements for harmonic control in electrical power systems. As indicated in [37] and [38][39], the presence of
harmonics in the supply system results in torque pulsations and increased copper and iron losses in electrical machines.
[50] presented a feedback/feed forward nonlinear controller for DFIG. The mechanical and electrical parts of the wind
turbines are considered separately in most of the current literature.[46] considered only the mechanical part, while
[47]considered only the electrical part, focusing mostly on the DFIGs. [48] considered both these parts, its controller was
designed to maximize wind energy conversion, as opposed to achieving power regulation (i.e., only operate in the MPT
mode),general predictive control and model predictive control were applied to the induction motor drives. principle used
in DTC/DPC, have suggested replacing the conventional PI current regulator with a nonlinear predictive current regulator
[53].
(h) Dynamic Stability Using FACT Devices:
[54] Proposed a damping controller of the STATCOM is designed by using modal control theory to contribute effective
.The analyzed results of stability improvement of power systems using STATCOMs and the damping controller design
STATCOMs were presented in [54].System modeling and controller design for fast load voltage regulation and mitigation
of voltage flicker using a STATCOM were demonstrated in [53][54]. A new DSTATCOM control algorithm enabling
separate control of positive- and negative-sequence currents was proposed in [55]investigated the dynamic performance of
a STATCOM and a static synchronous series compensator(SSSC).
(i) MPPT algorithms for a WT with wind speed sensor:
(i).1. Tip Speed Ratio (TSR) technique:
The TSR control method regulates the rotational speed of the generator to maintain an optimal TSR at which power
extracted is maximum [56]. The target optimum power extracted from wind turbine can be written as [57]:
Where, ( )
ISSN 2349-7815
International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE)
Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org
Page | 5
Paper Publications
And,
The power for a certain wind speed is maximum at a certain value of rotational speed called optimum rotational speed,
ωopt. This optimum rotational speed corresponds to optimum tip speed ratio, λopt. In order to track maximum possible
power, the turbine should always operate at λopt. This is achieved by controlling the rotational speed of the WT so that it
always rotates at the optimum rotational speed. As shown in Figure 3,for TSR calculation, both the wind speed and
turbine speed need to be measured, and the optimal TSR must be given to the controller. The first barrier to implement
TSR control is the wind speed measurement, which adds to system cost and presents difficulties in practical
implementations. The second barrier is the need to obtain the optimal value of TSR, this value is different from one
system to another. This depends on the turbine-generator characteristics results in custom-designed control software
tailored for individual wind turbines:
Fig.3 block dig of tip speed ratio control
(i).2. Power Signal Feedback (PSF) control:
In PSF control [56], it is required to have the knowledge of the wind turbine’s maximum power curve, and track this
curve through its control mechanisms. The maximum power curves need to be obtained via simulations or off-line
experiment on individual wind turbines or from the datasheet of WT which makes it difficult to implement with accuracy
in practical applications. In this method, reference power is generated using a maximum power data curve or using the
mechanical power equation of the wind turbine where wind speed or the rotational speed is used as the input. Figure 4
shows the block diagram of a WECS with PSF controller for maximum power extraction. The PSF control block
generates the optimal power command Popt which is then applied to the grid side converter control system for maximum
power extraction.
Fig.4 block dig of power signal feedback control
(j) MPPT algorithms for a WT without wind speed sensor:
(j).1. Hill-Climb Searching (HCS):
The HCS [55], control algorithm continuously searches for the peak power of the wind turbine. The maximum power can
be extracted from WTG without requiring information about the wind and generator speed.
ISSN 2349-7815
International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE)
Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org
Page | 6
Paper Publications
It can overcome some of the common problems normally associated with the other two methods, TSR and PSF. The
tracking algorithm depends on the location of the operating point. According to the changes in power and speed the
desired optimum signal has been computed in order to track the point of maximum power.
VI. CONCLUSION
Wind energy is very important non renewable resources of energy. From the above research, it has been shown that with
the help of coordinated control of frequency regulation capability method, rotor speed control, pitch angle control can be
possible. But with the help of battery control operation, power fluctuation can be reduced. Harmonics currents control can
be possible with the help of stator current harmonic control method..Regulation of active and reactive power and hill
climb methods are used for maximum power tracking mode.With the help of above methods, maximum power can be
achieved.
REFERENCES
[1] M. Tazil, V. Kumar, R.C. Bansal, S. Kong, Z.Y. Dong, W. Freitas,H.D. Mathur ―Three-phase doubly fed induction
generators: an overview‖ IET Electr. Power, Vol. 4, Iss. 2, pp. 75–89, Appl., 2010..
[2] FatihBirol, ―Power to the People : The World Outlook for Electricity Investment‖ International Energy Agency of
the Organisation for Economic
[3] Cooperation and Development, http: // www .iaea. org/ Publications/ Magazines /Bulletin / Bull461 /
power_to_the_people _3.html.
[4] Vahid, O, & Hassan, N. Maximum power extraction for a wind-turbine generator with no wind speed sensor. in
Proc. on IEEE, Conversion and Delivery of Electrical Energy in the 21st Cen. (2008). , 1-6.
[5] Thomas, A, & Lennart, S. An overview of wind energy status (2002). Renewable and sustainable energy reviews
2002, 6:67-128.
[6] Z.-S. Zhang,Y.-Z. Sun, J. Lin, G.-J. Li ―Coordinated frequency regulation by doubly fed induction generator-based
wind power plants‖ IET Renew. Power Gener., Vol. 6, Iss. 1, pp. 38–47, 2012.
[7] Vijay Chand Ganti, Bhim Singh, Shiv Kumar Aggarwal and Tara Chandra Kandpal ―DFIG-Based Wind Power
Conversion With Grid Power Leveling for Reduced Gusts‖, IEEE Transactions on Sustainable Energy, Vol. 3, No. 1,
pp-12-18, January 2012.
[8] Y. Mishra, Member, S. Mishra, ―Coordinated Tuning of DFIG-Based Wind Turbines and Batteries Using Bacteria
Foraging Technique for Maintaining Constant Grid Power Output‖ IEEE SYSTEMS JOURNAL, VOL. 6, NO. 1,pp-
16-26, ,March 2012.
[9] T. Y. Lee, ―Optimal wind battery coordination in a power system using evolutionary iterative particle swarm
optimization,‖ IEE Proc.-Gener Trans. Distrib., vol. 2, no. 2, pp. 291–300, Mar. 2008.
[10] T. Y. Lee, ―Operating schedule of battery energy storage system in a time-of-use rate industrial user with wind
turbine generators: A multi-pass iteration particle swarm optimization approach,‖ IEEE Trans. Energy Conversion,
vol. 22, no. 3, pp. 774–782,Sep. 2007.
[11] Changjin Liu, FredeBlaabjerg, Wenjie Chen, and Dehong, ―Stator Current Harmonic Control With Resonant
Controller for Doubly Fed Induction Generator‖ IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27,
NO. 7, JULY 2014.
[12] Changjin Liu, Frede Blaabjerg, Wenjie Chen, and Dehong, ―Stator Current Harmonic Control With Resonant
Controller for Doubly Fed Induction Generator‖ IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27,
NO. 7, JULY 2012
[13] S. Djurovi´c and S. Williamson, ―Influence of supply harmonic voltages on DFIG stator current and power
spectrum,‖ in Proc. Int. Conf. Electr., pp. 1–6, Mach., 2010.
ISSN 2349-7815
International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE)
Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org
Page | 7
Paper Publications
[14] L. Fan, S. Yuvarajan, and R. Kavasseri, ―Harmonics analysis of a DFIG for a wind energy conversion system,‖
IEEE Trans. Energy Convers.,vol. 25, no. 1, pp. 181–190, Mar. 2010.
[15] J. Hu, H. Nian, H. Xu, and Y. He, ―Dynamic modeling and improved control of DFIG under distorted grid voltage
conditions,‖ IEEE Trans. Energy Convers., vol. 26, no. 1, pp. 163–175, Mar. 2011.
[16] Y. Suh and T. A. Lipo, ―A control scheme of improved transient response for PWM AC/DC converter under
generalized unbalanced operating conditions,‖ in Proc. Power Electron. Spec. Conf., pp. 189–195, 2004,.
[17] E. Okedu, M. Muyeen, ― Wind Farms Fault Ride Through Using DFIG With New Protection Scheme Kenneth‖,
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 3, NO. 2, APRIL 2012
[18] J. M. Rodriguez, J. L. Fernandez, D. Beato, R. Iturbe, J. Usaola, P. Ledesma, and J. R. Wilhelmi, ―Incidence on
power system dynamics of high penetration of fixed speed and doubly fed wind energy systems: Study of the
Spanish case,‖ IEEE Trans. Power Syst., vol. 17, no. 4, pp. 1089– 1095,, Nov. 2002.
[19] G. Pannell, D. J. Atkinson, and B. Zahawi, ―Minimum-threshold crowbar for a fault ride through grid code
compliant DFIG wind turbine ‖EEE Trans. Energy Conver., vol. 25, no. 3, pp. 750–759, Sep. 2010.
[20] A. Causebrook, D. J. Atkinson, and A. G. Jack, ―Fault ride through of large wind farms using series dynamic
braking resistors,‖ IEEE Trans. Power Syst., vol. 22, no. 3,pp. 966–975,Mar. 2007 .
[21] J. Yang, E. Fletcher, and J. O‘Reilly, ―A series dynamic resistor based converter protection schemes for doubly fed
induction generator during various fault conditions,‖ IEEE Tran. Energy Convers., vol. 25, no. 2, , pp. 422–432, Jun.
2010.
[22] W. Park, B. C. Sung, and J. W. Park, ―The effect of SFCL on electric power grid with wind turbine generation
system,‖ IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 1177–1181, Jun. 2010.
[23] X. Yan, G. Venkataramanan, and Y. Wang, ―Grid fault tolerant operation of DFIG wind turbine generator using a
passive resistance network,‖ in Proc. Energy Conversion Congress and Exposition (IEEEECCE), San Jose, CA,
2009.
[24] A. Petersson, S. Lundberg, and T. Thiringer, ―A DFIG wind turbine ride through system influence on energy
production,‖ Wind Energy J., vol. 8,pp. 251–263, 2005.
[25] PSCAD/EMTDC Manual,‖ Manitoba HVDC Research Center, 1994.
[26] Y. Guo, S.H. Hosseini, J.N. Jiang, C.Y. Tang, R.G. Ramakumar, ―Voltage/pitch control for maximisation and
regulation of active/reactive powers in wind turbines with uncertainties‖, IET Renew. Power Gener., Vol. 6, Iss. 2,
pp. 99–109, 2012.
[27] Galdi, V., Piccolo, A., Siano, P.: ‗Designing an adaptive fuzzy controller for maximum wind energy extraction‘,
IEEE Trans. Energy Convers.,23, (2), pp. 559–569,2008.
[28] Calderaro, V., Galdi, V., Piccolo, A., Siano, P.: ‗A fuzzy controller for maximum energy extraction from variable
speed wind power generation systems‘, Electr. Power Syst. Res, 78, (6), pp. 1109–1118,2008.
[29] Galdi, V., Piccolo, A., Siano, P.: ‗Exploiting maximum energy from variable speed wind power generation systems
by using an adaptive Takagi- Sugeno-Kang fuzzy model‘, Energy Convers. Manage., 50, (2), pp. 413–421, 2009.
[30] Tang, C.Y., Guo, Y., Jiang, J.N.: ‗Nonlinear dual-mode control of variable-speed wind turbines with doubly fed
induction generators‘, IEEE Trans. Control Syst. Technol., 19, (4), pp. 744–756,2011.
[31] KostyantynProtsenko and Dewei Xu ―Modeling and Control of Brushless Doubly-Fed Induction Generators in
Wind Energy Application,IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 3, ,pp-1191-1197,
MAY 2008.
[32] Q. P. Ha, J. G. Zhu, and G. Boardman, ―Power flow in doubly fed twin stator induction machines in Proc.
AUPEC‘01, pp. 37–42, 2001.
ISSN 2349-7815
International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE)
Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org
Page | 8
Paper Publications
[33] L. Mihet-Popa, F. Blaabjerg, and I. Boldea, ―Wind turbine generator modeling and simulation where rotational
speed is the controlled variable, IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 3–10, Jan./Feb. 2004.
[34] Alfeu J. SguareziFilho, Milton E. de Oliveira Filho ―A Predictive Power Control for Wind Energy‖, IEEE
TRANSACTIONS ONSUSTAINABLE ENERGY, VOL. 2, NO. 1, pp-97-105, JANUARY 2011.
[35] Z. Xin-fang, X. Da-ping, and L. Yi-bing, ―Predictive functional control of a doubly fed induction generator for
variable speed wind turbines,‖inProc. IEEE World Congress on Intelligent Control and Automation, vol. 4, pp.
3315–3319,Jun. 2004.
[36] J. Morren, M. Sjoerd, and W. H. de Haan, ―Ridethrough of wind turbines with doubly-fed induction generator
during a voltage dip,‖ IEEE Trans.Energy Convers., vol. 20, no. 2, pp. 435–441, Jun. 2005.
[37] J. Guo, X. Cai, and Y. Gong, ―Decoupled control of active and reactive power for a grid-connected doubly-fed
induction generator,‖ in Proc.Third Int. Conf. Electric Utility Deregulation and Restructuring and Power
Technologies (DRPT), pp. 2620–2625, Apr. 2008.
[38] X. Yao, Y. Jing, and Z. Xing, ―Direct torque control of a doubly-fed wind generator based on grey-fuzzy logic,‖ in
Proc. Int. Conf. Mechatronics and Automation (ICMA 2007), pp. 3587–3592,Aug. 2007, .
[39] Dynamic Modeling and Improved Control of DFIG Under Distorted Grid Voltage Conditions Jiabing Hu, Member,
IEEE, HengNian, Member,IEEE, Hailiang Xu, IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 26,
NO. 1, PP-163-175,MARCH 2011.
[40] R. Pena, J. C. Clare, and G. M. Asher, ―Doubly fed induction generator using back-to-back PWM converters and
its application to variable-speed wind-energy generation,‖ IEE Proc. Electric Power Appl., vol. 143, no. 3, pp. 231–
241, May 1996.
[41] S. Seman, J. Niiranen, and A. Arkkio, ―Ride-through analysis of doubly fed induction wind-power generator under
unsymmetrical network disturbance,‖ IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1782–1789, , Nov.2006.
[42] J. Hu, Y. He, L. Xu, and B. W. Williams, ―Improved control of DFIG systems during network unbalance using PI-
R current regulators,‖ IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 439–459, Feb. 2009
[43] J. Hu, Y. He, L. Xu, and B. W. Williams, ―Improved control of DFIG systems during network unbalance using PI-
R current regulators,‖ IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 439–459, Feb. 2009.
[44] J. Hu and Y. He, ―Modeling and enhanced control of DFIG under unbalanced grid voltage conditions,‖ Electric
Power Syst. Res., vol. 79, no. 2, ,pp. 273–281, Feb. 2009.
[45] IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE Standard
519–1992, 1993.
[46] G. K. Singh, ―Power system harmonics research: A survey,‖ Eur. Trans.Electr. Power, vol. 19, no. 2, Aug. 2007,
pp. 151–172.
[47] Nonlinear Dual-Mode Control of Variable- Speed Wind Turbines With Doubly Fed Induction Generators ChoonYik
Tang, Member, IEEE, Yi Guo, Student Member, IEEE, IEEE Transactions on Control Systems Technology, VOL.
19, NO. 4, pp 744-756, JULY 2011.
[48] M. A. M. Prats, J. M. Carrasco, E. Galvan, J. A. Sanchez, L. G. Franquelo, and C. Batista, ―Improving transition
between power optimization and power limitation of variable speed, variable pitch wind turbines using fuzzy control
techniques,‖ in Proc. Conf. Ind. Electron. Soc., Nagoya, Japan, , pp. 1497–1502, 2000
[49] J. Zhang, M. Cheng, Z. Chen, and X. Fu, ―Pitch angle control for variable speed wind turbines,‖ in Proc. Int. Conf.
Electric Utility Deregulation Restructuring Power Technol., Nanjing, China, 2008, pp. 2691–2696.
[50] H. Li, Z. Chen, and J. K. Pedersen, ―Optimal power control strategy of maximizing wind energy tracking and
conversion for VSCF doubly fed induction generator system,‖ in Proc. CES/IEEE Int. Power Electron. Motion
Control Conf., Shanghai, China, 2006, pp. 1–6.
ISSN 2349-7815
International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE)
Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org
Page | 9
Paper Publications
[51] A. D. Hansen, P. Sorensen, F. Iov, and F. Blaabjerg, ―Control of variable speed wind turbines with doubly-fed
induction generators,‖ Wind Eng., vol. 28, no. 4, pp. 411–434, Jun. 2004.
[52] I. Takahashi and T. Noguchi, ―A new quick-response and high-efficiency control strategy of an induction motor,‖
IEEE Trans. Ind. Appl., vol.IA-22, no. 5, pp. 820–827, Sep./Oct. 1986.
[53] D. Zhi and L. Xu, ―Direct power control of DFIG with constant switching frequency and improved transient
performance,‖ IEEE Trans. Energy Convers., vol. 22, no. 1, pp. 110–118, Mar. 2007.
[54] I. de Alegria, J. Andreu, P. Ibanez, J. L. Villate, and I. Gabiola, ―Novel power error vector control for wind turbine
with doubly fed induction generator,‖ in Proc. 30th Annu. Conf. IEEE Industrial Electronics Society, 2004 (IECON
2004), Nov. 2004, vol. 2, pp. 1218–1223.
[55] G. Xiao-Ming, S. Dan, H. Ben-Teng, and H. Ling-Ling, ―Direct power control for wind-turbine driven doubly-fed
induction generator with constant switch frequency,‖ in Proc. Int. Conf. Electrical Machines and Systems, Oct. 2007,
pp. 253–258.
[56] R. Kennel, A. Linder, and M. Linke, ―Generalized predictive control (gpc)-ready for use in drive applications?,‖ in
Proc. IEEE Power Electronics Specialists Conf. (PESC), 2001, vol. 4, pp. 1839–1844.

More Related Content

PDF
Constant Control of the Power of DFIG Wind Turbines
PDF
IRJET- Performance Enhancement of DFIG based Wind Farms Integrated in Power S...
PDF
Modeling, simulation and control of a doubly-fed induction generator for wind...
PDF
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
PDF
Controlling Flicker Caused Due to Power Fluctuations by Using Individual Pitc...
PDF
The transient stability analysis of wind turbines interconected to grid under...
PDF
journal publishing, how to publish research paper, Call For research paper, i...
Constant Control of the Power of DFIG Wind Turbines
IRJET- Performance Enhancement of DFIG based Wind Farms Integrated in Power S...
Modeling, simulation and control of a doubly-fed induction generator for wind...
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
Controlling Flicker Caused Due to Power Fluctuations by Using Individual Pitc...
The transient stability analysis of wind turbines interconected to grid under...
journal publishing, how to publish research paper, Call For research paper, i...

What's hot (20)

PDF
Performance analysis of various parameters by comparison of conventional pitc...
PDF
Performance analysis of various parameters by comparison of conventional pitc...
PDF
Stability analysis of photovoltaic system under grid faults
PDF
G010234652
PDF
3.10 eet in electrical systems
PDF
A Fuzzy Logic Control Strategy for Doubly Fed Induction Generator for Improve...
PDF
ENHANCED CONTROL OF DFIG IN WIND ENERGY CONVERSION SYSTEM
PDF
STATCOM Based Wind Energy System by using Hybrid Fuzzy Logic Controller
PDF
Integration of a Wind Turbine Based Doubly Fed Induction Generator Using STAT...
PDF
DFIG wind turbine under unbalanced power system conditions using adaptive fuz...
PDF
A Performance Comparison of DFIG using Power Transfer Matrix and Direct Power...
PDF
E010343239
PDF
IRJET- Decoupled Control Technique of DFIG with Dual PWM Converters for Wind ...
PDF
D045051926
PDF
Control Strategy Used in DFIG and PMSG Based Wind Turbines an Overview
PDF
Dynamic Modeling of Autonomous Wind–diesel system with Fixed-speed Wind Turbine
PDF
International Journal of Engineering Inventions (IJEI)
PDF
Voltage Compensation in Wind Power System using STATCOM Controlled by Soft Co...
PDF
GA Based Controller for Autonomous Wind-DG Micro grid
Performance analysis of various parameters by comparison of conventional pitc...
Performance analysis of various parameters by comparison of conventional pitc...
Stability analysis of photovoltaic system under grid faults
G010234652
3.10 eet in electrical systems
A Fuzzy Logic Control Strategy for Doubly Fed Induction Generator for Improve...
ENHANCED CONTROL OF DFIG IN WIND ENERGY CONVERSION SYSTEM
STATCOM Based Wind Energy System by using Hybrid Fuzzy Logic Controller
Integration of a Wind Turbine Based Doubly Fed Induction Generator Using STAT...
DFIG wind turbine under unbalanced power system conditions using adaptive fuz...
A Performance Comparison of DFIG using Power Transfer Matrix and Direct Power...
E010343239
IRJET- Decoupled Control Technique of DFIG with Dual PWM Converters for Wind ...
D045051926
Control Strategy Used in DFIG and PMSG Based Wind Turbines an Overview
Dynamic Modeling of Autonomous Wind–diesel system with Fixed-speed Wind Turbine
International Journal of Engineering Inventions (IJEI)
Voltage Compensation in Wind Power System using STATCOM Controlled by Soft Co...
GA Based Controller for Autonomous Wind-DG Micro grid
Ad

Viewers also liked (13)

PDF
An Enhanced Message Digest Hash Algorithm for Information Security
PDF
Three Phase Twelve Pulse Controlled Rectifier with Reduced Output Current Har...
PDF
Inverter for Fuel Cell Based On PWM Cycloconverter
PDF
RFID Based Museum Guide for Tourist
PDF
A 5 Degree Feedback Control Robotic Arm (Haptic Arm)
PDF
Share point essentials toolkit 2016 user guide
PPTX
Evaluation
PPT
Eθισμος στο κάπνισμα σαρικλόγλου - πασχάλη
PPTX
Proyecto de vida
PDF
Sts論壇文府抗空汙簡報
DOCX
Seminario 4
PPT
Trastornos de la excreción
PPTX
Practica de la psicología del desarrollo I
An Enhanced Message Digest Hash Algorithm for Information Security
Three Phase Twelve Pulse Controlled Rectifier with Reduced Output Current Har...
Inverter for Fuel Cell Based On PWM Cycloconverter
RFID Based Museum Guide for Tourist
A 5 Degree Feedback Control Robotic Arm (Haptic Arm)
Share point essentials toolkit 2016 user guide
Evaluation
Eθισμος στο κάπνισμα σαρικλόγλου - πασχάλη
Proyecto de vida
Sts論壇文府抗空汙簡報
Seminario 4
Trastornos de la excreción
Practica de la psicología del desarrollo I
Ad

Similar to Performance Analysis of DFIG Wind Turbine (20)

PDF
Enhanced Crowbar Protection for Fault Ride through Capability of Wind Generat...
PDF
Comparison of crowbar control and novel control methods for dfig wind turbine...
PDF
IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...
PDF
Mh3621022106
PPTX
dfigppt-221029141308-fdd782dd.pptx
PDF
Stability check of doubly fed induction generator (DFIG) micro grid power system
PDF
The voltage dip and doubly fed induction generator with considering uncertain...
PPTX
PDF
Review on stability analysis of grid connected wind power generating system1
PDF
Review on stability analysis of grid connected wind power generating system1
PDF
Study of DFIG Connected to Grid using Wind Energy System
PDF
A Frame Work for Control of Gird Connected Wind Power Using Two Layer Control
PDF
Cy36602610
PDF
0178__Waseda__HCMUT
PDF
Performance of Doubly-Fed Induction Generator by changing various system para...
PPTX
DFIG BASED WIND TURBINE
PDF
Application of crowbar protection on dfig based wind turbine connected to grid-2
PDF
H011117484
PDF
Optimized servo-speed control of wind turbine coupled to doubly fed inductio...
PDF
IRJET- A Review of Power Control Strategies for DFIG based Wind Energy Conver...
Enhanced Crowbar Protection for Fault Ride through Capability of Wind Generat...
Comparison of crowbar control and novel control methods for dfig wind turbine...
IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...
Mh3621022106
dfigppt-221029141308-fdd782dd.pptx
Stability check of doubly fed induction generator (DFIG) micro grid power system
The voltage dip and doubly fed induction generator with considering uncertain...
Review on stability analysis of grid connected wind power generating system1
Review on stability analysis of grid connected wind power generating system1
Study of DFIG Connected to Grid using Wind Energy System
A Frame Work for Control of Gird Connected Wind Power Using Two Layer Control
Cy36602610
0178__Waseda__HCMUT
Performance of Doubly-Fed Induction Generator by changing various system para...
DFIG BASED WIND TURBINE
Application of crowbar protection on dfig based wind turbine connected to grid-2
H011117484
Optimized servo-speed control of wind turbine coupled to doubly fed inductio...
IRJET- A Review of Power Control Strategies for DFIG based Wind Energy Conver...

Recently uploaded (20)

PPTX
Sustainable Sites - Green Building Construction
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPT
Mechanical Engineering MATERIALS Selection
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
DOCX
573137875-Attendance-Management-System-original
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
Construction Project Organization Group 2.pptx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
Sustainable Sites - Green Building Construction
Automation-in-Manufacturing-Chapter-Introduction.pdf
Lecture Notes Electrical Wiring System Components
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Internet of Things (IOT) - A guide to understanding
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Mechanical Engineering MATERIALS Selection
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
573137875-Attendance-Management-System-original
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
OOP with Java - Java Introduction (Basics)
Construction Project Organization Group 2.pptx
Embodied AI: Ushering in the Next Era of Intelligent Systems

Performance Analysis of DFIG Wind Turbine

  • 1. ISSN 2349-7815 International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE) Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org Page | 1 Paper Publications Performance Analysis of DFIG Wind Turbine Preeti Chakrawarti1 , Prof. Preeti Jain2 1 M.E. 4TH SEM., Electrical Engineering, J.E.C. Jabalpur, India. 2 Assistant Professor, Dept. of Electrical Engineering, J.E.C., Jabalpur, India. Abstract: Wind energy is becoming the most effective renewable energy source mainly because of the growing concerns over carbon emissions and uncertainties in fossil fuel supplies and the government policy impetus. The increasing penetration of wind power in distribution systems may significantly affect VAR compensation and max. Power tracking of the systems, particularly during wind turbine cut-in and cut-off disturbances. A DFIG based wind turbine has an ability to generate maximum power with varying and adjustable speed, ability to control active and reactive power by the integration of electronic power converters, low power rating of cost converter components, and so on. This study presents an overview and literature survey over past few decades on the different problems associated due to penetration of WT-DFIG in the power system and control aspects of DFIG. Keywords: Wind energy, doubly-fed induction generator- wind turbine, var compensation, ax power tracking characteristics. I. INTRODUCTION World's largest sum of electricity generation contributed by non-renewable sources of fuel such as coal, gas and oil.These fuels emit lots of CO2 other harmful gases to the atmosphere and their residues in the water, which raised global warming issues of earth health problems of human and wild-life issues [1]. According to FatihBirol, Chief Economist, International Energy Agency of the Organization for Economic Cooperation and Development (IEA), world electricity demand is projected to double between 2000 and 2030, growing at an annual rate of 2.4%. This is faster than any other energy demand. Total share of electric energy consumption rises from 18% in 2000 to 22% in 2030. Electricity demand growth is strongest in developing countries, where demand will climb by over 4% per year over the projected period, which gets more than triple by 2030. Consequently, the electric energy demand in developing countries will rise global electricity share from 27% in 2000 to 43% in 2030[2].In recent years, wind energy has become one of the most economical renewable energy. Hence, wind power could be utilized by mechanically converting it to electrical power using wind turbine ,WT. Various WT concepts have a quick development of wind power. Variable speed operation and direct drive WTs have been the modern developments in the technology of wind energy conversion system, WECS. Variable-speed operation has many advantages over fixed-speed generation such as increased energy capture, operation at MPPT over a wide range of wind speeds, high power quality, reduced mechanical stresses, aerodynamic noise improved system reliability, and it can provide (10-15) % higher output power and has less mechanical stresses in comparison with the operation at a fixed speed[3][4]. The DFIG wind turbine is a wound-rotor induction generator operated by controlling slip rings or by the power converter interconnected with the grid. There are around thousands of research IEEE activities (Research Publications) on DFIG control aspects during past few decades.
  • 2. ISSN 2349-7815 International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE) Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org Page | 2 Paper Publications II. DOUBLY - FED INDUCTION GENERATOR (DFIG) WIND TURBINE The DFIG wind turbine is a wound-rotor induction generator operated by controlling slip rings or by the power converter interconnected with the grid. See Figure1 for the DFIG wind turbine schematic. The AC/DC/AC converter is divided into two components: the rotor-side converter (Crotor) and the grid-side converter (Cgrid). Crotor and Cgrid are Voltage-Sourced Converters that use forced-commutated power electronic devices (IGBTs) to synthesize an AC voltage from a DC voltage source. A capacitor connected on the DC side acts as the DC voltage source. A coupling inductor L is used to connect Cgrid to the grid. The three-phase rotor winding is connected to Crotor by slip rings and brushes and the three-phase stator winding is directly connected to the grid. The power captured by the wind turbine is converted into electrical power by the induction generator and it is transmitted to the grid by the stator and the rotor winding. The control system generates the pitch angle command and the voltage command signals Vr and Vgc for Crotor and Cgrid respectively in order to control the power of the wind turbine, the DC bus voltage and the reactive power or the voltage at the grid[5] Fig.1: The Doubly-Fed Induction Generator System III. EMERGING ISSUES AND THEIR CONTROL MEASURES OF DFIG BASED WECS The Emerging Issues and their Control of DFIG based WECS are shown in the above fig.2 and described one by one as follows: (a) Coordinated control of frequency regulation capability: A (DFIG)-based WECS not provide frequency response because of the decoupling between the output power and the grid frequency. Power reserve margin also problem for DFIG because of the maximum power point tracking (MPPT) operation.[6] presented a novel frequency regulation by DFIG-based wind turbines to coordinate inertial control, rotor speed control and pitch angle control, under low and high wind speed variations. (b) Battery Control Operation (BESS) L: [7] presented a new based on battery energy storage system (BESS) and tried to reduce the power fluctuations on the grid for uncertain wind conditions and also, compared with an existing control strategies like the maximum power point extraction at unity power factor condition of the DFIG.[8] presented the modified rotor side of DFIG with DC link capacitor is replaced with the BES. The co-ordinate tuning of the associated controllers using bacterial foraging technique (based on Eigen-value) to damp out power oscillations. Furthermore, an evolutionary iterative particle swarm optimization (PSO) approach for the optimal wind-battery coordination in a power system was proposed in [9][10].
  • 3. ISSN 2349-7815 International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE) Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org Page | 3 Paper Publications (c) Stator Current Harmonic Control: [11] Proposed a sixth-order resonant circuit to eliminate negative sequence 5th harmonic and positive sequence 7th harmonics currents from fundamental component of stator current. A stator current harmonic control loop is added to the conventional rotor current control loop for harmonic suppression. The affects of voltage harmonics from the grid on the DFIG are also have been discussed in [12]–[13]. Resonant controllers have been widely used in harmonic control and unbalanced control for both DFIG and power converter systems .The use of resonant circuits aims to achieve high bandwidth at certain frequencies and also eliminate current harmonics in the three-phase power converter systems [14] and the DFIG during grid voltage distortion. In [15], the resonant controllers are used to keep the current output balanced during a grid voltage imbalance. (d) Fault Ride Through: A grid fault posed an overload condition to DFIG when it trying to stabilize the wind farm. This would check the fault ride through capability of the DFIG. [16] Proposed the dc-link chopper-controlled braking resistor with the supplementary rotor current (SRC) control of the rotor side converter of the DFIG and series dynamic braking resistor (SDBR) connected to the stator of the DFIG. [17] a study focused on stabilizing FSWT without using any FACTS device. A series dynamic braking resistor (SDBR) was used to improve the FRT of large wind farms composed of IGs in[18], while in [19] the SDBR was connected to the rotor side converter of the DFIG to improve its Fault Ride Through capability. A superconducting fault current limiter (SFCL) [20], passive resistance network , and series anti-parellel thyristors connected to the stator side of a grid connected DFIG. [21] Proposed a new control strategy using a dc-chopper inserted into the dc-link circuit of the DFIG and a small value of SDBR connected in series in the stator of the DFIG, the former of which acts as a damping load to suppress the dc-link voltage during a grid fault. (e) Regulation of active/reactive power: DFIG is a electromechanical device and is modeled as non-linear system with rotor voltages and blade pitch angle as its inputs, active and reactive powers as its outputs, and aerodynamic and mechanical parameters as its uncertainties. A controller was developed that is capable of maximizing the active power in the maximum power tracking (MPT) mode, regulating the active power in the power regulation(PR) mode for simultaneously adjusting the reactive power to achieve a desired power factor. For MPPT adaptive controls [22], fuzzy methodologies [23] were proposed despite not knowing the Cp-surface. In [24] developed a non-linear controller that simultaneously enables control of the active power in both the MPT and PR modes with aerodynamic and mechanical parameters were known. [25]presented a dynamic model of BDFIG with two machines‘ rotor electromechanically interconnected. The method used to extract maximum power at any given wind speed is to implement maximum power point tracking (MPPT) algorithm based on the various control strategies for the VSR have been discussed in[26].It has been demonstrated in [27] that the proposed BDFIG system can be used for the large off-shore wind energy application with reduced system maintenance cost. [27] proposed a model- based predictive controller for a power control of DFIG and internal mode controller[28] have satisfactory performance when compared with the response of PI, but it is difficult to implement one due to the formulation of a predictive functional controller and the internal mode controller. Fuzzy based DFIG power control can be realized [23]. (f) Voltage Unbalance Control: [29] Wind energy is often installed in rural, remote areas characterized by weak, unbalanced power transmission grids. Voltage unbalance factor (VUF) is defined as the negative sequence magnitude divided by the positive sequence magnitude. The control topology is fairly standard (based on stator-voltage-oriented dq vector control is used. This orientation can be called grid flux oriented control[30] implemented new rotor current control scheme which consists of a proportional–integral (PI) regulator and a harmonic resonant (R) to suppress 5th and 7th harmonics. The steady-state and transient response of DFIG-based wind power generation system under balanced [31] and unbalanced [32] grid voltage conditions have been well understood. [33] proposed proportional–integral (PI). plus resonant tuned at twice the grid
  • 4. ISSN 2349-7815 International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE) Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org Page | 4 Paper Publications frequency current controllers for both grid- and rotor-side converters. For instance, standards IEEE-519–1992 [34] and ER G5/4–1 [35] have, respectively, recommended different practices and requirements for harmonic control in electrical power systems. As indicated in [36] ,the presence of harmonics in the supply system results in torque pulsations and increased copper and iron losses in electrical machines. [37] Presented a feedback/feed forward nonlinear controller for DFIG. The mechanical and electrical parts of the wind turbines are considered separately in most of the current literature: [36,37] considered only the mechanical part, while [38][39] considered only the electrical part, focusing mostly on the DFIGs. [40] Considered both these parts, its controller was designed to maximize wind energy conversion, as opposed to achieving power regulation (i.e., only operate in the MPT mode). (g) Direct Torque Control: Direct power control (DPC) was based on the principles of direct torque control. The DPC applied to the DFIG power control has been presented in [41].This strategy calculates the rotor voltage space vector based on stator flux estimated and power errors. An alternative to DPC is power error vector control [42]. This strategy is less complex and obtains results similar to those of direct control of power. A anti-jamming control has been proposed by [43] to improve the controller performance. The predictive control is an alternative control technique that was applied in machine drives and inverters.Some investigations like long-range predictive control general predictive control and model predictive control were applied to the induction motor drives. power converter systems [16]–[20] and the DFIG [17] during grid voltage distortion. In [22]– [24], the resonant controllers are used to keep the current output balanced during a grid voltage imbalance. The steady-state and transient response of DFIG-based wind power generation system under balanced [43]–[46] and unbalanced [40] grid voltage conditions have been well understood. [41] and [42] proposed proportional–integral (PI) plus resonant tuned at twice the grid frequency current controllers for both grid- and rotor-side converters. For instance, standards IEEE-519–1992 [45] and ER G5/4–1 [66] have, respectively, recommended different practices and requirements for harmonic control in electrical power systems. As indicated in [37] and [38][39], the presence of harmonics in the supply system results in torque pulsations and increased copper and iron losses in electrical machines. [50] presented a feedback/feed forward nonlinear controller for DFIG. The mechanical and electrical parts of the wind turbines are considered separately in most of the current literature.[46] considered only the mechanical part, while [47]considered only the electrical part, focusing mostly on the DFIGs. [48] considered both these parts, its controller was designed to maximize wind energy conversion, as opposed to achieving power regulation (i.e., only operate in the MPT mode),general predictive control and model predictive control were applied to the induction motor drives. principle used in DTC/DPC, have suggested replacing the conventional PI current regulator with a nonlinear predictive current regulator [53]. (h) Dynamic Stability Using FACT Devices: [54] Proposed a damping controller of the STATCOM is designed by using modal control theory to contribute effective .The analyzed results of stability improvement of power systems using STATCOMs and the damping controller design STATCOMs were presented in [54].System modeling and controller design for fast load voltage regulation and mitigation of voltage flicker using a STATCOM were demonstrated in [53][54]. A new DSTATCOM control algorithm enabling separate control of positive- and negative-sequence currents was proposed in [55]investigated the dynamic performance of a STATCOM and a static synchronous series compensator(SSSC). (i) MPPT algorithms for a WT with wind speed sensor: (i).1. Tip Speed Ratio (TSR) technique: The TSR control method regulates the rotational speed of the generator to maintain an optimal TSR at which power extracted is maximum [56]. The target optimum power extracted from wind turbine can be written as [57]: Where, ( )
  • 5. ISSN 2349-7815 International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE) Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org Page | 5 Paper Publications And, The power for a certain wind speed is maximum at a certain value of rotational speed called optimum rotational speed, ωopt. This optimum rotational speed corresponds to optimum tip speed ratio, λopt. In order to track maximum possible power, the turbine should always operate at λopt. This is achieved by controlling the rotational speed of the WT so that it always rotates at the optimum rotational speed. As shown in Figure 3,for TSR calculation, both the wind speed and turbine speed need to be measured, and the optimal TSR must be given to the controller. The first barrier to implement TSR control is the wind speed measurement, which adds to system cost and presents difficulties in practical implementations. The second barrier is the need to obtain the optimal value of TSR, this value is different from one system to another. This depends on the turbine-generator characteristics results in custom-designed control software tailored for individual wind turbines: Fig.3 block dig of tip speed ratio control (i).2. Power Signal Feedback (PSF) control: In PSF control [56], it is required to have the knowledge of the wind turbine’s maximum power curve, and track this curve through its control mechanisms. The maximum power curves need to be obtained via simulations or off-line experiment on individual wind turbines or from the datasheet of WT which makes it difficult to implement with accuracy in practical applications. In this method, reference power is generated using a maximum power data curve or using the mechanical power equation of the wind turbine where wind speed or the rotational speed is used as the input. Figure 4 shows the block diagram of a WECS with PSF controller for maximum power extraction. The PSF control block generates the optimal power command Popt which is then applied to the grid side converter control system for maximum power extraction. Fig.4 block dig of power signal feedback control (j) MPPT algorithms for a WT without wind speed sensor: (j).1. Hill-Climb Searching (HCS): The HCS [55], control algorithm continuously searches for the peak power of the wind turbine. The maximum power can be extracted from WTG without requiring information about the wind and generator speed.
  • 6. ISSN 2349-7815 International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE) Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org Page | 6 Paper Publications It can overcome some of the common problems normally associated with the other two methods, TSR and PSF. The tracking algorithm depends on the location of the operating point. According to the changes in power and speed the desired optimum signal has been computed in order to track the point of maximum power. VI. CONCLUSION Wind energy is very important non renewable resources of energy. From the above research, it has been shown that with the help of coordinated control of frequency regulation capability method, rotor speed control, pitch angle control can be possible. But with the help of battery control operation, power fluctuation can be reduced. Harmonics currents control can be possible with the help of stator current harmonic control method..Regulation of active and reactive power and hill climb methods are used for maximum power tracking mode.With the help of above methods, maximum power can be achieved. REFERENCES [1] M. Tazil, V. Kumar, R.C. Bansal, S. Kong, Z.Y. Dong, W. Freitas,H.D. Mathur ―Three-phase doubly fed induction generators: an overview‖ IET Electr. Power, Vol. 4, Iss. 2, pp. 75–89, Appl., 2010.. [2] FatihBirol, ―Power to the People : The World Outlook for Electricity Investment‖ International Energy Agency of the Organisation for Economic [3] Cooperation and Development, http: // www .iaea. org/ Publications/ Magazines /Bulletin / Bull461 / power_to_the_people _3.html. [4] Vahid, O, & Hassan, N. Maximum power extraction for a wind-turbine generator with no wind speed sensor. in Proc. on IEEE, Conversion and Delivery of Electrical Energy in the 21st Cen. (2008). , 1-6. [5] Thomas, A, & Lennart, S. An overview of wind energy status (2002). Renewable and sustainable energy reviews 2002, 6:67-128. [6] Z.-S. Zhang,Y.-Z. Sun, J. Lin, G.-J. Li ―Coordinated frequency regulation by doubly fed induction generator-based wind power plants‖ IET Renew. Power Gener., Vol. 6, Iss. 1, pp. 38–47, 2012. [7] Vijay Chand Ganti, Bhim Singh, Shiv Kumar Aggarwal and Tara Chandra Kandpal ―DFIG-Based Wind Power Conversion With Grid Power Leveling for Reduced Gusts‖, IEEE Transactions on Sustainable Energy, Vol. 3, No. 1, pp-12-18, January 2012. [8] Y. Mishra, Member, S. Mishra, ―Coordinated Tuning of DFIG-Based Wind Turbines and Batteries Using Bacteria Foraging Technique for Maintaining Constant Grid Power Output‖ IEEE SYSTEMS JOURNAL, VOL. 6, NO. 1,pp- 16-26, ,March 2012. [9] T. Y. Lee, ―Optimal wind battery coordination in a power system using evolutionary iterative particle swarm optimization,‖ IEE Proc.-Gener Trans. Distrib., vol. 2, no. 2, pp. 291–300, Mar. 2008. [10] T. Y. Lee, ―Operating schedule of battery energy storage system in a time-of-use rate industrial user with wind turbine generators: A multi-pass iteration particle swarm optimization approach,‖ IEEE Trans. Energy Conversion, vol. 22, no. 3, pp. 774–782,Sep. 2007. [11] Changjin Liu, FredeBlaabjerg, Wenjie Chen, and Dehong, ―Stator Current Harmonic Control With Resonant Controller for Doubly Fed Induction Generator‖ IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 7, JULY 2014. [12] Changjin Liu, Frede Blaabjerg, Wenjie Chen, and Dehong, ―Stator Current Harmonic Control With Resonant Controller for Doubly Fed Induction Generator‖ IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 7, JULY 2012 [13] S. Djurovi´c and S. Williamson, ―Influence of supply harmonic voltages on DFIG stator current and power spectrum,‖ in Proc. Int. Conf. Electr., pp. 1–6, Mach., 2010.
  • 7. ISSN 2349-7815 International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE) Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org Page | 7 Paper Publications [14] L. Fan, S. Yuvarajan, and R. Kavasseri, ―Harmonics analysis of a DFIG for a wind energy conversion system,‖ IEEE Trans. Energy Convers.,vol. 25, no. 1, pp. 181–190, Mar. 2010. [15] J. Hu, H. Nian, H. Xu, and Y. He, ―Dynamic modeling and improved control of DFIG under distorted grid voltage conditions,‖ IEEE Trans. Energy Convers., vol. 26, no. 1, pp. 163–175, Mar. 2011. [16] Y. Suh and T. A. Lipo, ―A control scheme of improved transient response for PWM AC/DC converter under generalized unbalanced operating conditions,‖ in Proc. Power Electron. Spec. Conf., pp. 189–195, 2004,. [17] E. Okedu, M. Muyeen, ― Wind Farms Fault Ride Through Using DFIG With New Protection Scheme Kenneth‖, IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 3, NO. 2, APRIL 2012 [18] J. M. Rodriguez, J. L. Fernandez, D. Beato, R. Iturbe, J. Usaola, P. Ledesma, and J. R. Wilhelmi, ―Incidence on power system dynamics of high penetration of fixed speed and doubly fed wind energy systems: Study of the Spanish case,‖ IEEE Trans. Power Syst., vol. 17, no. 4, pp. 1089– 1095,, Nov. 2002. [19] G. Pannell, D. J. Atkinson, and B. Zahawi, ―Minimum-threshold crowbar for a fault ride through grid code compliant DFIG wind turbine ‖EEE Trans. Energy Conver., vol. 25, no. 3, pp. 750–759, Sep. 2010. [20] A. Causebrook, D. J. Atkinson, and A. G. Jack, ―Fault ride through of large wind farms using series dynamic braking resistors,‖ IEEE Trans. Power Syst., vol. 22, no. 3,pp. 966–975,Mar. 2007 . [21] J. Yang, E. Fletcher, and J. O‘Reilly, ―A series dynamic resistor based converter protection schemes for doubly fed induction generator during various fault conditions,‖ IEEE Tran. Energy Convers., vol. 25, no. 2, , pp. 422–432, Jun. 2010. [22] W. Park, B. C. Sung, and J. W. Park, ―The effect of SFCL on electric power grid with wind turbine generation system,‖ IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 1177–1181, Jun. 2010. [23] X. Yan, G. Venkataramanan, and Y. Wang, ―Grid fault tolerant operation of DFIG wind turbine generator using a passive resistance network,‖ in Proc. Energy Conversion Congress and Exposition (IEEEECCE), San Jose, CA, 2009. [24] A. Petersson, S. Lundberg, and T. Thiringer, ―A DFIG wind turbine ride through system influence on energy production,‖ Wind Energy J., vol. 8,pp. 251–263, 2005. [25] PSCAD/EMTDC Manual,‖ Manitoba HVDC Research Center, 1994. [26] Y. Guo, S.H. Hosseini, J.N. Jiang, C.Y. Tang, R.G. Ramakumar, ―Voltage/pitch control for maximisation and regulation of active/reactive powers in wind turbines with uncertainties‖, IET Renew. Power Gener., Vol. 6, Iss. 2, pp. 99–109, 2012. [27] Galdi, V., Piccolo, A., Siano, P.: ‗Designing an adaptive fuzzy controller for maximum wind energy extraction‘, IEEE Trans. Energy Convers.,23, (2), pp. 559–569,2008. [28] Calderaro, V., Galdi, V., Piccolo, A., Siano, P.: ‗A fuzzy controller for maximum energy extraction from variable speed wind power generation systems‘, Electr. Power Syst. Res, 78, (6), pp. 1109–1118,2008. [29] Galdi, V., Piccolo, A., Siano, P.: ‗Exploiting maximum energy from variable speed wind power generation systems by using an adaptive Takagi- Sugeno-Kang fuzzy model‘, Energy Convers. Manage., 50, (2), pp. 413–421, 2009. [30] Tang, C.Y., Guo, Y., Jiang, J.N.: ‗Nonlinear dual-mode control of variable-speed wind turbines with doubly fed induction generators‘, IEEE Trans. Control Syst. Technol., 19, (4), pp. 744–756,2011. [31] KostyantynProtsenko and Dewei Xu ―Modeling and Control of Brushless Doubly-Fed Induction Generators in Wind Energy Application,IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 3, ,pp-1191-1197, MAY 2008. [32] Q. P. Ha, J. G. Zhu, and G. Boardman, ―Power flow in doubly fed twin stator induction machines in Proc. AUPEC‘01, pp. 37–42, 2001.
  • 8. ISSN 2349-7815 International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE) Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org Page | 8 Paper Publications [33] L. Mihet-Popa, F. Blaabjerg, and I. Boldea, ―Wind turbine generator modeling and simulation where rotational speed is the controlled variable, IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 3–10, Jan./Feb. 2004. [34] Alfeu J. SguareziFilho, Milton E. de Oliveira Filho ―A Predictive Power Control for Wind Energy‖, IEEE TRANSACTIONS ONSUSTAINABLE ENERGY, VOL. 2, NO. 1, pp-97-105, JANUARY 2011. [35] Z. Xin-fang, X. Da-ping, and L. Yi-bing, ―Predictive functional control of a doubly fed induction generator for variable speed wind turbines,‖inProc. IEEE World Congress on Intelligent Control and Automation, vol. 4, pp. 3315–3319,Jun. 2004. [36] J. Morren, M. Sjoerd, and W. H. de Haan, ―Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip,‖ IEEE Trans.Energy Convers., vol. 20, no. 2, pp. 435–441, Jun. 2005. [37] J. Guo, X. Cai, and Y. Gong, ―Decoupled control of active and reactive power for a grid-connected doubly-fed induction generator,‖ in Proc.Third Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), pp. 2620–2625, Apr. 2008. [38] X. Yao, Y. Jing, and Z. Xing, ―Direct torque control of a doubly-fed wind generator based on grey-fuzzy logic,‖ in Proc. Int. Conf. Mechatronics and Automation (ICMA 2007), pp. 3587–3592,Aug. 2007, . [39] Dynamic Modeling and Improved Control of DFIG Under Distorted Grid Voltage Conditions Jiabing Hu, Member, IEEE, HengNian, Member,IEEE, Hailiang Xu, IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 26, NO. 1, PP-163-175,MARCH 2011. [40] R. Pena, J. C. Clare, and G. M. Asher, ―Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation,‖ IEE Proc. Electric Power Appl., vol. 143, no. 3, pp. 231– 241, May 1996. [41] S. Seman, J. Niiranen, and A. Arkkio, ―Ride-through analysis of doubly fed induction wind-power generator under unsymmetrical network disturbance,‖ IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1782–1789, , Nov.2006. [42] J. Hu, Y. He, L. Xu, and B. W. Williams, ―Improved control of DFIG systems during network unbalance using PI- R current regulators,‖ IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 439–459, Feb. 2009 [43] J. Hu, Y. He, L. Xu, and B. W. Williams, ―Improved control of DFIG systems during network unbalance using PI- R current regulators,‖ IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 439–459, Feb. 2009. [44] J. Hu and Y. He, ―Modeling and enhanced control of DFIG under unbalanced grid voltage conditions,‖ Electric Power Syst. Res., vol. 79, no. 2, ,pp. 273–281, Feb. 2009. [45] IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE Standard 519–1992, 1993. [46] G. K. Singh, ―Power system harmonics research: A survey,‖ Eur. Trans.Electr. Power, vol. 19, no. 2, Aug. 2007, pp. 151–172. [47] Nonlinear Dual-Mode Control of Variable- Speed Wind Turbines With Doubly Fed Induction Generators ChoonYik Tang, Member, IEEE, Yi Guo, Student Member, IEEE, IEEE Transactions on Control Systems Technology, VOL. 19, NO. 4, pp 744-756, JULY 2011. [48] M. A. M. Prats, J. M. Carrasco, E. Galvan, J. A. Sanchez, L. G. Franquelo, and C. Batista, ―Improving transition between power optimization and power limitation of variable speed, variable pitch wind turbines using fuzzy control techniques,‖ in Proc. Conf. Ind. Electron. Soc., Nagoya, Japan, , pp. 1497–1502, 2000 [49] J. Zhang, M. Cheng, Z. Chen, and X. Fu, ―Pitch angle control for variable speed wind turbines,‖ in Proc. Int. Conf. Electric Utility Deregulation Restructuring Power Technol., Nanjing, China, 2008, pp. 2691–2696. [50] H. Li, Z. Chen, and J. K. Pedersen, ―Optimal power control strategy of maximizing wind energy tracking and conversion for VSCF doubly fed induction generator system,‖ in Proc. CES/IEEE Int. Power Electron. Motion Control Conf., Shanghai, China, 2006, pp. 1–6.
  • 9. ISSN 2349-7815 International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE) Vol. 2, Issue 1, pp: (1-9), Month: January - March 2015, Available at: www.paperpublications.org Page | 9 Paper Publications [51] A. D. Hansen, P. Sorensen, F. Iov, and F. Blaabjerg, ―Control of variable speed wind turbines with doubly-fed induction generators,‖ Wind Eng., vol. 28, no. 4, pp. 411–434, Jun. 2004. [52] I. Takahashi and T. Noguchi, ―A new quick-response and high-efficiency control strategy of an induction motor,‖ IEEE Trans. Ind. Appl., vol.IA-22, no. 5, pp. 820–827, Sep./Oct. 1986. [53] D. Zhi and L. Xu, ―Direct power control of DFIG with constant switching frequency and improved transient performance,‖ IEEE Trans. Energy Convers., vol. 22, no. 1, pp. 110–118, Mar. 2007. [54] I. de Alegria, J. Andreu, P. Ibanez, J. L. Villate, and I. Gabiola, ―Novel power error vector control for wind turbine with doubly fed induction generator,‖ in Proc. 30th Annu. Conf. IEEE Industrial Electronics Society, 2004 (IECON 2004), Nov. 2004, vol. 2, pp. 1218–1223. [55] G. Xiao-Ming, S. Dan, H. Ben-Teng, and H. Ling-Ling, ―Direct power control for wind-turbine driven doubly-fed induction generator with constant switch frequency,‖ in Proc. Int. Conf. Electrical Machines and Systems, Oct. 2007, pp. 253–258. [56] R. Kennel, A. Linder, and M. Linke, ―Generalized predictive control (gpc)-ready for use in drive applications?,‖ in Proc. IEEE Power Electronics Specialists Conf. (PESC), 2001, vol. 4, pp. 1839–1844.