This document compares the performance of various machine learning algorithms for predicting stock market performance based on stock market data and news data. It applies algorithms like linear regression, random forest, decision tree, K-nearest neighbors, logistic regression, linear discriminant analysis, XGBoost classifier, and Gaussian naive Bayes to datasets containing stock market values, news articles, and Reddit posts. It evaluates the algorithms based on metrics like accuracy, recall, precision and F1 score. The results suggest that linear discriminant analysis achieved the best performance at predicting stock market values based on the given datasets and evaluation metrics.