SlideShare a Scribd company logo
2.1
Chapter 2
Network Models
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
2.2
2-1 LAYERED TASKS
2-1 LAYERED TASKS
We use the concept of
We use the concept of layers
layers in our daily life. As an
in our daily life. As an
example, let us consider two friends who communicate
example, let us consider two friends who communicate
through postal mail. The process of sending a letter to a
through postal mail. The process of sending a letter to a
friend would be complex if there were no services
friend would be complex if there were no services
available from the post office.
available from the post office.
Sender, Receiver, and Carrier
Hierarchy
Topics discussed in this section:
Topics discussed in this section:
2.3
Figure 2.1 Tasks involved in sending a letter
2.4
2-2 THE OSI MODEL
2-2 THE OSI MODEL
Established in 1947, the International Standards
Established in 1947, the International Standards
Organization (
Organization (ISO
ISO) is a multinational body dedicated to
) is a multinational body dedicated to
worldwide agreement on international standards. An ISO
worldwide agreement on international standards. An ISO
standard that covers all aspects of network
standard that covers all aspects of network
communications is the Open Systems Interconnection
communications is the Open Systems Interconnection
(
(OSI
OSI) model. It was first introduced in the late 1970s.
) model. It was first introduced in the late 1970s.
Layered Architecture
Peer-to-Peer Processes
Encapsulation
Topics discussed in this section:
Topics discussed in this section:
2.5
ISO is the organization.
OSI is the model.
Note
2.6
Figure 2.2 Seven layers of the OSI model
2.7
Figure 2.3 The interaction between layers in the OSI model
2.8
Figure 2.4 An exchange using the OSI model
2.9
2-3 LAYERS IN THE OSI MODEL
2-3 LAYERS IN THE OSI MODEL
In this section we briefly describe the functions of each
In this section we briefly describe the functions of each
layer in the OSI model.
layer in the OSI model.
Physical Layer
Data Link Layer
Network Layer
Transport Layer
Session Layer
Presentation Layer
Application Layer
Topics discussed in this section:
Topics discussed in this section:
2.10
Figure 2.5 Physical layer
2.11
The physical layer is responsible for movements of
individual bits from one hop (node) to the next.
Note
2.12
Figure 2.6 Data link layer
2.13
The data link layer is responsible for moving
frames from one hop (node) to the next.
Note
2.14
Figure 2.7 Hop-to-hop delivery
2.15
Figure 2.8 Network layer
2.16
The network layer is responsible for the
delivery of individual packets from
the source host to the destination host.
Note
2.17
Figure 2.9 Source-to-destination delivery
2.18
Figure 2.10 Transport layer
2.19
The transport layer is responsible for the delivery
of a message from one process to another.
Note
2.20
Figure 2.11 Reliable process-to-process delivery of a message
2.21
Figure 2.12 Session layer
2.22
The session layer is responsible for dialog
control and synchronization.
Note
2.23
Figure 2.13 Presentation layer
2.24
The presentation layer is responsible for translation,
compression, and encryption.
Note
2.25
Figure 2.14 Application layer
2.26
The application layer is responsible for
providing services to the user.
Note
2.27
Figure 2.15 Summary of layers
2.28
2-4 TCP/IP PROTOCOL SUITE
2-4 TCP/IP PROTOCOL SUITE
The layers in the
The layers in the TCP/IP protocol suite
TCP/IP protocol suite do not exactly
do not exactly
match those in the OSI model. The original TCP/IP
match those in the OSI model. The original TCP/IP
protocol suite was defined as having four layers:
protocol suite was defined as having four layers: host-to-
host-to-
network
network,
, internet
internet,
, transport
transport, and
, and application
application. However,
. However,
when TCP/IP is compared to OSI, we can say that the
when TCP/IP is compared to OSI, we can say that the
TCP/IP protocol suite is made of five layers:
TCP/IP protocol suite is made of five layers: physical
physical,
,
data link
data link,
, network
network,
, transport
transport, and
, and application
application.
.
Physical and Data Link Layers
Network Layer
Transport Layer
Application Layer
Topics discussed in this section:
Topics discussed in this section:
2.29
Figure 2.16 TCP/IP and OSI model
2.30
2-5 ADDRESSING
2-5 ADDRESSING
Four levels of addresses are used in an internet employing
Four levels of addresses are used in an internet employing
the TCP/IP protocols:
the TCP/IP protocols: physical
physical,
, logical
logical,
, port
port, and
, and specific
specific.
.
Physical Addresses
Logical Addresses
Port Addresses
Specific Addresses
Topics discussed in this section:
Topics discussed in this section:
2.31
Figure 2.17 Addresses in TCP/IP
2.32
Figure 2.18 Relationship of layers and addresses in TCP/IP
2.33
In Figure 2.19 a node with physical address 10 sends a
frame to a node with physical address 87. The two nodes
are connected by a link (bus topology LAN). As the
figure shows, the computer with physical address 10 is
the sender, and the computer with physical address 87 is
the receiver.
Example 2.1
2.34
Figure 2.19 Physical addresses
2.35
Most local-area networks use a 48-bit (6-byte) physical
address written as 12 hexadecimal digits; every byte (2
hexadecimal digits) is separated by a colon, as shown
below:
Example 2.2
07:01:02:01:2C:4B
A 6-byte (12 hexadecimal digits) physical address.
2.36
Figure 2.20 shows a part of an internet with two routers
connecting three LANs. Each device (computer or
router) has a pair of addresses (logical and physical) for
each connection. In this case, each computer is
connected to only one link and therefore has only one
pair of addresses. Each router, however, is connected to
three networks (only two are shown in the figure). So
each router has three pairs of addresses, one for each
connection.
Example 2.3
2.37
Figure 2.20 IP addresses
2.38
Figure 2.21 shows two computers communicating via the
Internet. The sending computer is running three
processes at this time with port addresses a, b, and c. The
receiving computer is running two processes at this time
with port addresses j and k. Process a in the sending
computer needs to communicate with process j in the
receiving computer. Note that although physical
addresses change from hop to hop, logical and port
addresses remain the same from the source to
destination.
Example 2.4
2.39
Figure 2.21 Port addresses
2.40
The physical addresses will change from hop to hop,
but the logical addresses usually remain the same.
Note
2.41
Example 2.5
A port address is a 16-bit address represented by one
decimal number as shown.
753
A 16-bit port address represented
as one single number.

More Related Content

PPT
PPT
Lecture 1 osi model
PPT
Data Communication And Networking - Network Models
PPT
Data communication and networking with network module
PPT
Network Models computer networks important.ppt
PPT
02 Network Models
PPT
Network Models in Networking.
PPT
Lecture 1 osi model
Data Communication And Networking - Network Models
Data communication and networking with network module
Network Models computer networks important.ppt
02 Network Models
Network Models in Networking.

Similar to Physical Layer Data communication and Networking Forouzan (20)

PPT
Chapter 2 Network Models 27 2.1 LAYERED TASKS 27 Sender, Receiver, and Carrie...
PPT
Data Communications AND NetworkingData Communications AND Networking
PPT
Osi model34
PPT
PPT
Chapter 2 network models -computer_network
PPT
Unit-1 Layers in Computer Networks and Protocols
PPT
Chapter 2
PPT
Chapter 2 - Network Models
PPTX
Computer Network - Chapter 2
PPTX
Network Models Data Communications and networking
PPT
CH02.PPTdfsffdsffsdffsdfdfsdfsddsfsdfdsffdsf
PPT
Data Communications and Networking ch02
PPT
PPT
Lecture-2 Data Communication ~www.fida.com.bd
PPT
Lec2_CH02.PPT
PPTX
ch2_v1.pptx
PPT
ch2_v1.ppt
PPT
Network.ppt
Chapter 2 Network Models 27 2.1 LAYERED TASKS 27 Sender, Receiver, and Carrie...
Data Communications AND NetworkingData Communications AND Networking
Osi model34
Chapter 2 network models -computer_network
Unit-1 Layers in Computer Networks and Protocols
Chapter 2
Chapter 2 - Network Models
Computer Network - Chapter 2
Network Models Data Communications and networking
CH02.PPTdfsffdsffsdffsdfdfsdfsddsfsdfdsffdsf
Data Communications and Networking ch02
Lecture-2 Data Communication ~www.fida.com.bd
Lec2_CH02.PPT
ch2_v1.pptx
ch2_v1.ppt
Network.ppt
Ad

More from RambabuReddy (6)

PPT
Faurozen Computer Networks Chapter Error Detection and Correction C N.ppt
PPTX
IC3_2025_CSE_ECE_Bridge_Korrapati_Final.pptx
PPTX
REAL ESTATE PRICE PROGNOSTICATION THROUGH MACHINE LEARNING MODELS.pptx
PPT
C N Example of using the DNS service.ppt
PPT
Introduction Data communication and Networking Forouzan
PPTX
Spread Spectrum.pptx
Faurozen Computer Networks Chapter Error Detection and Correction C N.ppt
IC3_2025_CSE_ECE_Bridge_Korrapati_Final.pptx
REAL ESTATE PRICE PROGNOSTICATION THROUGH MACHINE LEARNING MODELS.pptx
C N Example of using the DNS service.ppt
Introduction Data communication and Networking Forouzan
Spread Spectrum.pptx
Ad

Recently uploaded (20)

PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Computing-Curriculum for Schools in Ghana
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
STATICS OF THE RIGID BODIES Hibbelers.pdf
Supply Chain Operations Speaking Notes -ICLT Program
Module 4: Burden of Disease Tutorial Slides S2 2025
human mycosis Human fungal infections are called human mycosis..pptx
O7-L3 Supply Chain Operations - ICLT Program
Microbial disease of the cardiovascular and lymphatic systems
Computing-Curriculum for Schools in Ghana
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Renaissance Architecture: A Journey from Faith to Humanism
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
O5-L3 Freight Transport Ops (International) V1.pdf
Microbial diseases, their pathogenesis and prophylaxis
PPH.pptx obstetrics and gynecology in nursing
102 student loan defaulters named and shamed – Is someone you know on the list?
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...

Physical Layer Data communication and Networking Forouzan

  • 1. 2.1 Chapter 2 Network Models Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
  • 2. 2.2 2-1 LAYERED TASKS 2-1 LAYERED TASKS We use the concept of We use the concept of layers layers in our daily life. As an in our daily life. As an example, let us consider two friends who communicate example, let us consider two friends who communicate through postal mail. The process of sending a letter to a through postal mail. The process of sending a letter to a friend would be complex if there were no services friend would be complex if there were no services available from the post office. available from the post office. Sender, Receiver, and Carrier Hierarchy Topics discussed in this section: Topics discussed in this section:
  • 3. 2.3 Figure 2.1 Tasks involved in sending a letter
  • 4. 2.4 2-2 THE OSI MODEL 2-2 THE OSI MODEL Established in 1947, the International Standards Established in 1947, the International Standards Organization ( Organization (ISO ISO) is a multinational body dedicated to ) is a multinational body dedicated to worldwide agreement on international standards. An ISO worldwide agreement on international standards. An ISO standard that covers all aspects of network standard that covers all aspects of network communications is the Open Systems Interconnection communications is the Open Systems Interconnection ( (OSI OSI) model. It was first introduced in the late 1970s. ) model. It was first introduced in the late 1970s. Layered Architecture Peer-to-Peer Processes Encapsulation Topics discussed in this section: Topics discussed in this section:
  • 5. 2.5 ISO is the organization. OSI is the model. Note
  • 6. 2.6 Figure 2.2 Seven layers of the OSI model
  • 7. 2.7 Figure 2.3 The interaction between layers in the OSI model
  • 8. 2.8 Figure 2.4 An exchange using the OSI model
  • 9. 2.9 2-3 LAYERS IN THE OSI MODEL 2-3 LAYERS IN THE OSI MODEL In this section we briefly describe the functions of each In this section we briefly describe the functions of each layer in the OSI model. layer in the OSI model. Physical Layer Data Link Layer Network Layer Transport Layer Session Layer Presentation Layer Application Layer Topics discussed in this section: Topics discussed in this section:
  • 11. 2.11 The physical layer is responsible for movements of individual bits from one hop (node) to the next. Note
  • 12. 2.12 Figure 2.6 Data link layer
  • 13. 2.13 The data link layer is responsible for moving frames from one hop (node) to the next. Note
  • 16. 2.16 The network layer is responsible for the delivery of individual packets from the source host to the destination host. Note
  • 19. 2.19 The transport layer is responsible for the delivery of a message from one process to another. Note
  • 20. 2.20 Figure 2.11 Reliable process-to-process delivery of a message
  • 22. 2.22 The session layer is responsible for dialog control and synchronization. Note
  • 24. 2.24 The presentation layer is responsible for translation, compression, and encryption. Note
  • 26. 2.26 The application layer is responsible for providing services to the user. Note
  • 28. 2.28 2-4 TCP/IP PROTOCOL SUITE 2-4 TCP/IP PROTOCOL SUITE The layers in the The layers in the TCP/IP protocol suite TCP/IP protocol suite do not exactly do not exactly match those in the OSI model. The original TCP/IP match those in the OSI model. The original TCP/IP protocol suite was defined as having four layers: protocol suite was defined as having four layers: host-to- host-to- network network, , internet internet, , transport transport, and , and application application. However, . However, when TCP/IP is compared to OSI, we can say that the when TCP/IP is compared to OSI, we can say that the TCP/IP protocol suite is made of five layers: TCP/IP protocol suite is made of five layers: physical physical, , data link data link, , network network, , transport transport, and , and application application. . Physical and Data Link Layers Network Layer Transport Layer Application Layer Topics discussed in this section: Topics discussed in this section:
  • 29. 2.29 Figure 2.16 TCP/IP and OSI model
  • 30. 2.30 2-5 ADDRESSING 2-5 ADDRESSING Four levels of addresses are used in an internet employing Four levels of addresses are used in an internet employing the TCP/IP protocols: the TCP/IP protocols: physical physical, , logical logical, , port port, and , and specific specific. . Physical Addresses Logical Addresses Port Addresses Specific Addresses Topics discussed in this section: Topics discussed in this section:
  • 32. 2.32 Figure 2.18 Relationship of layers and addresses in TCP/IP
  • 33. 2.33 In Figure 2.19 a node with physical address 10 sends a frame to a node with physical address 87. The two nodes are connected by a link (bus topology LAN). As the figure shows, the computer with physical address 10 is the sender, and the computer with physical address 87 is the receiver. Example 2.1
  • 35. 2.35 Most local-area networks use a 48-bit (6-byte) physical address written as 12 hexadecimal digits; every byte (2 hexadecimal digits) is separated by a colon, as shown below: Example 2.2 07:01:02:01:2C:4B A 6-byte (12 hexadecimal digits) physical address.
  • 36. 2.36 Figure 2.20 shows a part of an internet with two routers connecting three LANs. Each device (computer or router) has a pair of addresses (logical and physical) for each connection. In this case, each computer is connected to only one link and therefore has only one pair of addresses. Each router, however, is connected to three networks (only two are shown in the figure). So each router has three pairs of addresses, one for each connection. Example 2.3
  • 37. 2.37 Figure 2.20 IP addresses
  • 38. 2.38 Figure 2.21 shows two computers communicating via the Internet. The sending computer is running three processes at this time with port addresses a, b, and c. The receiving computer is running two processes at this time with port addresses j and k. Process a in the sending computer needs to communicate with process j in the receiving computer. Note that although physical addresses change from hop to hop, logical and port addresses remain the same from the source to destination. Example 2.4
  • 40. 2.40 The physical addresses will change from hop to hop, but the logical addresses usually remain the same. Note
  • 41. 2.41 Example 2.5 A port address is a 16-bit address represented by one decimal number as shown. 753 A 16-bit port address represented as one single number.