SlideShare a Scribd company logo
Interference and Diffraction 
February 4, 2016 
Section 002 
Gary Schultz and Rachel Weyand 
 
Abstract:  
The purpose of this lab was to calculate the wavelength of light intensity for single and 
double slits. When the light passes through single slits, the result is interference and diffraction. 
For purposes of this lab, the interference wave was used by experimentally measuring between 
the first minima on either side of the centroid for values of a. Intensity was found through 
where I​m​ is the maximum intensity and  is given by  Here, a is(sinα/α)I = Im
2
α πasinθ/λ). α = (  
the width of each slit, already measured, and   is the wavelength. The slope of the best fit curveλ  
of sin( vs 1/a was used to find wavelength. The manufacturer’s   is 670  nm and the)θ λ 0 ± 1  
experimental   is 600  10 nm. This yielded a 10.4% error. For both experiments, the method ofλ ±  
measuring the distance between the minima created a significant amount of error which is 
discussed in the conclusion. 
Experiment two of the lab used a double slit instead and the diffraction wave was used by 
measuring the distance between the first four minima on either side of the central maximum 
using the same laser. For intensity of a double slit, the equation is  , where(cosβ) (sinα/α)I = Im
2 2
 
 is the same as the first experiment and  is given by  . The distance between theα β πdsinθ/λ)β = (  
slits is given by d and is provided. 620  20 nm was the experimental wavelength calculated±  
using averages. The percent error for experiment 2 was 7.46%.  
Data:  
Table 1: ​The table below shows the measured lengths of the central maximum created by single 
slits of various lengths. ​ ​Here,  x is the measured distance between minima. 
Data number   width of slit (a) 
(mm) 
x​1​ (mm)  x​2​ (mm)  average x (mm) 
1  0.02  62.0  .05± 0   59.9  0.05±   60.95  0.7±  
2  0.04  34.0  0.03±   29.8  0.03±   31.9  1.0±  
3  0.08  15.3  0.01±   15.1  0.01±   15.2  0.07±  
4  0.16  7.9  0.01±   8.3  0.01±   8.1  0.1±  
 
*Uncertainty for a is assumed to be zero because the value was provided on the slits.  
*Uncertainties for x​1 ​and x​2​ for ​Tables 1 and 2​ were estimated based on the error from 
measuring the distance between the minima. 
 
Table 2:  ​The table below shows the distances measured between the first four minima sets, x 
and the average of the two recordings.  
Data number  x​1  0.01(mm)±   x​2  0.01 (mm)±   x average (mm) 
1  2.3     2.6   2.45  0.1±  
2  7.9     7.8     7.85  0.04±  
3  12.2     12.6     12.4  0.1±  
4  16.8   16.9   16.85  0.04±  
 
Sample Calculation for average distance between minima, x (used for tables 1 and 2) 
x​ave​=(x​1​+x​2​)/2 
x​ave​=(62.0+59.9)/2 
x​ave​=60.95mm 
 
Calculation of standard deviation for average x (used for tables 1 and 2) 
/2((x ) x ) )σxave = 1 1 − xave
2
+ ( 2 − xave
2 1/2
 
=½((62.0­60.95)​2​
+(59.9­60. 95)​2​
)​1/2
σxave
 
=0.74246mmσxave  
 
 
 
 
 
 
 
 
   
Analysis: 
Calculation for sin ᵰ 
sin ᵰ = 0.5x/(L​2​
+0.25x​2​
)​½​
 where x is the distance measured between the minima and L is the 
distance from the slit to the screen.  
sin ᵰ = 0.5(60.95mm)(1000mm​2​
+0.25(60.95mm)​2​
)​½
 
sin ᵰ = 0.030461 
 
Propagation of uncertainty for sin ᵰ 
sinθ {d/dt(sin(arctan(xave/1000)))} ]Δ = [ 2 1/2
 
sinθ {1000cos(arctan(xave/1000))/(xave 000000)} ]Δ = [ 2 + 1 2 1/2
 
sinθ {1000cos(arctan(60.95/1000))/(60.95 000000)} ]Δ = [ 2
+ 1 2 1/2
 
0.0001sinθΔ =  
 
Table 3: ​The table below shows the calculated values of sin ᵰ  and  sin ᵰ.Δ    
 
Data number  a (mm)  1/a (1/mm)  sin ᵰ   sin ᵰΔ    
1  0.02  50  0.030461     0.0001±  
2  0.04  25  0.015948  0.0001±  
3  0.08  12.5  0.0076  0.0001±  
4  0.16  6.25  0.00405  0.0001±  
 
*Uncertainty for a and 1/a are assumed to be zero because the values were provided on the slits.  
 
 
 
 
 
Figure 1: ​The figure shows the graph of sin ᵰ vs. 1/a.  
 
 
 
Figure 2: ​The figure below shows the linear regression analysis from the excel output of the data 
from ​Figure 1.   
   Coefficients  Standard Error 
Intercept  0.000296129  0.000356282 
X Variable 1  0.000606657  1.23661E­05 
 
To calculate the wavelength, take the slope of ​Figure 1​.  
 
Calculated wavelength​:​ 607   12 nm±    
Percent error: 
  ​% error = ( ​exp ​­ ​known​) / ( ​known ​) *100λ λ λ λ  
(600­670)/(670)*100= 10.4%   
Calculations below are for ​Table 4 
Calculation for   where d is given on the double slit and is constant for all values of m.λ   
sinθL /(m .5)λ = d 2
+ 0  
0.25)(0.001225)(1000 )/(0 .5)λ = ( 2
+ 0  
612.50 nmλ =  
 
Calculation propagation of uncertainty  Δ λ 
λ 000(0.25 000 os(arctan(xave/1000)) sinθ/(xave 000)(m .5)))Δ = 1 * 1 * c * Δ 2 + 1 + 0  
λ 000(0.25 000 os(arctan(2.45/1000)) 0.0001)/(2.45 000)(0 .5)))Δ = 1 * 1 * c * ( 2
+ 1 + 0  
0.5 nmλΔ =  
Calculations for sin( and  sin( are the same as the previous experiment.)θ Δ )θ   
 
Table 4 ​The table below shows sin( ) compared to wavelength calculated from the orderθ  
integer.  
Order 
integer, M 
sin( )θ   sin(Δ )θ   wavelength, λ
(nm) 
(nm)  Δ λ  
0  0.001225  0.0001±   612.50  0.5±  
1  0.003925  0.0001±   654.16  0.2±  
2  0.0062  0.0001±   619.99  0.1±  
3  0.008425  0.0001±   601.76  0.07±  
 
 
 
 
Average wavelength:  
(612.5+654.16+619.99+601.76)/4 = 622.10 nm 
 
Standard deviation of wavelength:  
/2((λ ) λ ) )σλave = 1 1 − λave
2
+ ( 2 − λave
2 1/2
 
=½((612.5­622.10)​2​
+(654.16­622.10)​2​
+(619.99­622.10)​2 ​
+(601.76 ­ 622.10)​2​
)​1/2
σλave
  
= 19.609 nmσλave   
 
Calculated wavelength: 622 20 nm±    
Percent error 
% error = ( ​exp ​­ ​known​) / ( ​known ​) *100λ λ λ λ  
(620­670)/(670)*100= 7.46% 
 
 
   
Discussion: 
Results  
actual  70 0 nmλ = 6 ± 1  
exp 1   00 0 nmλ = 6 ± 1  
% error = 10.4 % 
range = 590   ­ 610 mn mn  
exp 2   20 0 nmλ = 6 ± 2  
% error = 7.46 % 
range= 600   ­ 640 mn mn  
 
Conclusion: 
For experiment 1, using linear regression, the experimental value of wavelength for the 
laser was found to be under the actual, not even falling in the range. Most of the error occurred 
while measuring the x distance between minima. Between reading mm on a ruler and measuring 
the distance of light propagated most of the error. The smaller slit distance, a, was harder to 
measure creating a larger estimated error.  
For experiment 2, the wavelength was found using averages, but again the experimental 
wavelength range was under the actual wavelength of the laser. For similar reasons as 
experiment 1, the distance of x was difficult to measure leading to human error.  
 
 
   
Post lab Questions: 
  
1. Single Slit: Using that ƛ = 650 nm and single slit width a=0.04 mm, plot the intensity (relative 
to the max I​m​) from α = 0 to 4π. Find the maximum value of the intensity for α between π and 2π.  
Givens:  
  ƛ = 650 nm,  a=0.04 mm, α = 0 to 4π   
Solution: 
Using the equation  , intensity vs alpha is plotted below from values ranging  m((sin α) /α))I = I 2
 
from 0 to 4π.   
 
 
 
According to the graph, the maximum value for the intensity between π and 2π is about 0.0472 I​m 
at 1.43π.   
2. Double Slit: Using the ƛ= 650 nm, single slit width of a=0.04 mm and the double slit distance 
d= 0.25 mm, calculate the intensity of the first through tenth maxima. 
Givens: 
ƛ= 650 nm, a=0.04 mm, d= 0.25 mm   
Solution: 
sinθ mλ d =    
First, solve for theta. 
rcsin(λm/d)θ = a  
rcsin((650 0 m)/(.25 0 ))θ = a × 1 −9
× 1 −3
 
Now plug the above expression into the  equation.β   
d sinθ/λ β = π  
(.25 0 )(650 0 )((m 650 0 ))/(.25 0 ))β = π × 1 −3
× 1 −9
× ( × 1 −9
× 1 −3
  
The .25*10​­3​
 and 650*10​­9​
 terms cancel which leaves 
mβ = π  
Now solve for alpha using the known numbers given in the problem in the following equation. 
a sinθ /λ  α = π  
(.04 0 )(650 0 )m/(.25 0 )(650 0 )α = π × 1 −3
× 1 −9
× 1 −3
× 1 −9
 
(.04 0 )m/(.25 0 ) 16πmα = π × 1 −3
× 1 −3
= .  
Finally, plug the derived expressions for alpha and beta into the intensity equation. 
m(cosβ) (sinα/α)I = I 2  2
 
m(cos (πm))(sin(.16πm)/.16πm)I = I 2 2
 
The cos​2 ​
( ) term goes to 1 for all values of m, which leaves.mπ  
m(sin(.16πm)/(.16πm))I = I 2
 
 
 
 
 
Table 5:​ The table below shows the calculated I values for the first ten maxima.  
 
m  I in terms of I​m  
1  0.918646 
2  0.705638 
3  0.43846 
4  0.202921 
5  0.054944 
6  0.001771 
7  0.010859 
8  0.036628 
9  0.047153 
10  0.035895 
 

More Related Content

PDF
Error propagation
PDF
0625 s12 qp_31
PPT
Application of Integrals
PDF
Integral table for electomagnetic
PDF
If chemistry workbook ch099 a
PPT
Multivariate Linear Regression.ppt
PPTX
Decoding Patterns: Customer Churn Prediction Data Analysis Project
PPTX
Principle of Least Square, its Properties, Regression line and standard error...
Error propagation
0625 s12 qp_31
Application of Integrals
Integral table for electomagnetic
If chemistry workbook ch099 a
Multivariate Linear Regression.ppt
Decoding Patterns: Customer Churn Prediction Data Analysis Project
Principle of Least Square, its Properties, Regression line and standard error...

What's hot (16)

PDF
Alpha decay - physical background and practical applications
PDF
The gw method in quantum chemistry
PPTX
Single linear regression
PDF
Solution manual-of-probability-statistics-for-engineers-scientists-9th-editio...
PPTX
Non Linear Equation
PDF
Integration
PPTX
Maxwell Boltzmann Velocity Distribution
PDF
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
PPTX
Aharonaov bohm effect
PPTX
Standing waves
PPT
Unit2 Presentation
PPT
chemistry calculations percent yield and atom economy
DOCX
exp 2 adsorbtion from solution
PPTX
nuclear fission and fusion
PPTX
CHARGE PARTICLE ACCELERATORCharge particle accelerator
Alpha decay - physical background and practical applications
The gw method in quantum chemistry
Single linear regression
Solution manual-of-probability-statistics-for-engineers-scientists-9th-editio...
Non Linear Equation
Integration
Maxwell Boltzmann Velocity Distribution
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
Aharonaov bohm effect
Standing waves
Unit2 Presentation
chemistry calculations percent yield and atom economy
exp 2 adsorbtion from solution
nuclear fission and fusion
CHARGE PARTICLE ACCELERATORCharge particle accelerator
Ad

Viewers also liked (20)

PDF
Physics lab report tips
PPTX
Physics lab report
PPT
Option C Nuclear Physics, Radioactive decay and half life
DOCX
Physics lab rubric
DOCX
Recursos naturales.
DOCX
Mapa comprender y transformar la enseñanza (3)
PDF
AM hostess/modelle 2017
DOCX
Tarea 3-tecnologia-aplicada luisa maria
PPTX
PPT
Penggunaan internet sebagai medium pencarian bahan rujukan
DOCX
Lab report science
PPT
SYD 12103 (Laras Bahasa Penulisan Ilmiah)
DOC
4 Statistics of Successfull General Digital Marketing
PPTX
Presentacion del-lenguaje
PDF
Recursos naturales
PDF
Csec Physics lab manual
DOCX
Biology Lab
PPTX
Magic leap
DOCX
BIOLOGY SBA (LAB)
Physics lab report tips
Physics lab report
Option C Nuclear Physics, Radioactive decay and half life
Physics lab rubric
Recursos naturales.
Mapa comprender y transformar la enseñanza (3)
AM hostess/modelle 2017
Tarea 3-tecnologia-aplicada luisa maria
Penggunaan internet sebagai medium pencarian bahan rujukan
Lab report science
SYD 12103 (Laras Bahasa Penulisan Ilmiah)
4 Statistics of Successfull General Digital Marketing
Presentacion del-lenguaje
Recursos naturales
Csec Physics lab manual
Biology Lab
Magic leap
BIOLOGY SBA (LAB)
Ad

Similar to Physics Lab Report (20)

PPT
lecture note optics on diffraction 28.ppt
PPTX
Measurement Of The Speed Of Light
PDF
Davison German Exp.pdf
PDF
Diffraction-grating experiment ppt with full detail
PDF
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 10 Solutions
PPT
BASIC CONCEPT OF RADIATION SHIELDING AND ITS CALCULATION TECHNIQUES
PDF
OE Instrumentation_03_Interferometry_2.pdf
PDF
Blake chpater8
PDF
1138 schnopper[1]
PDF
17 session 2 fey - example sensitivity analysis
DOCX
Bright Fringes and Dark Fringes
PPT
Spectroscopic Techniques in Chemistry.ppt
DOC
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
DOC
Anschp37
DOC
Shock Test Report 04
PDF
Optical Absoprtion of Thin Film Semiconductors
PDF
Antenna Design Course work
PPT
Hp 15 win
PPT
Hp 15 win
PPTX
OFC Unit 1 Optical Fiber Communication Introduction
lecture note optics on diffraction 28.ppt
Measurement Of The Speed Of Light
Davison German Exp.pdf
Diffraction-grating experiment ppt with full detail
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 10 Solutions
BASIC CONCEPT OF RADIATION SHIELDING AND ITS CALCULATION TECHNIQUES
OE Instrumentation_03_Interferometry_2.pdf
Blake chpater8
1138 schnopper[1]
17 session 2 fey - example sensitivity analysis
Bright Fringes and Dark Fringes
Spectroscopic Techniques in Chemistry.ppt
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
Anschp37
Shock Test Report 04
Optical Absoprtion of Thin Film Semiconductors
Antenna Design Course work
Hp 15 win
Hp 15 win
OFC Unit 1 Optical Fiber Communication Introduction

Recently uploaded (20)

PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
Artificial Intelligence
PPTX
Current and future trends in Computer Vision.pptx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
DOCX
573137875-Attendance-Management-System-original
PPTX
OOP with Java - Java Introduction (Basics)
PDF
composite construction of structures.pdf
PPT
Mechanical Engineering MATERIALS Selection
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
Geodesy 1.pptx...............................................
PPTX
Safety Seminar civil to be ensured for safe working.
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
PPT on Performance Review to get promotions
CYBER-CRIMES AND SECURITY A guide to understanding
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Automation-in-Manufacturing-Chapter-Introduction.pdf
Artificial Intelligence
Current and future trends in Computer Vision.pptx
R24 SURVEYING LAB MANUAL for civil enggi
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
573137875-Attendance-Management-System-original
OOP with Java - Java Introduction (Basics)
composite construction of structures.pdf
Mechanical Engineering MATERIALS Selection
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Geodesy 1.pptx...............................................
Safety Seminar civil to be ensured for safe working.
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Internet of Things (IOT) - A guide to understanding
Foundation to blockchain - A guide to Blockchain Tech
PPT on Performance Review to get promotions

Physics Lab Report