SlideShare a Scribd company logo
pixels arranged in a 2D grid, where each pixel carries intensity or color information.
DIGITAL IMAGE
PROCESSING
Prepared by
K.Indragandhi,AP(Sr.Gr.)/ECE
DIGITAL IMAGE
PROCESSING
Basic Relationships between Pixels
Neighbors of a Pixel
f(0,0) f(0,1) f(0,2) f(0,3) f(0,4) - - - - -
f(1,0) f(1,1) f(1,2) f(1,3) f(1,4) - - - - -
f(x,y) = f(2,0) f(2,1) f(2,2) f(2,3) f(2,4) - - - - -
f(3,0) f(3,1) f(3,2) f(3,3) f(3,4) - - - - -
I I I I I - - - - -
I I I I I - - - - -
Neighbors of a Pixel
 A Pixel p at coordinates ( x, y) has 4 horizontal and vertical neighbors.
 Their coordinates are given by:
(x+1, y) (x-1, y) (x, y+1) &
(x, y-1)
f(2,1) f(0,1) f(1,2)
f(1,0)
 This set of pixels is called the 4-neighbors of p denoted by N4(p).
 Each pixel is unit distance from ( x ,y).
f(0,0) f(0,1) f(0,2) f(0,3) f(0,4) - - - - -
f(1,0) f(1,1) f(1,2) f(1,3) f(1,4) - - - - -
f(x,y) = f(2,0) f(2,1) f(2,2) f(2,3) f(2,4) - - - - -
f(3,0) f(3,1) f(3,2) f(3,3) f(3,4) - - - - -
I I I I I - - - - -
I I I I I - - - - -
Neighbors of a Pixel
 A Pixel p at coordinates ( x, y) has 4 diagonal neighbors.
 Their coordinates are given by:
(x+1, y+1) (x+1, y-1) (x-1, y+1) &
(x-1, y-1)
f(2,2) f(2,0) f(0,2)
f(0,0)
 This set of pixels is called the diagonal-neighbors of p denoted by
ND(p).

f(0,0) f(0,1) f(0,2) f(0,3) f(0,4) - - - - -
f(1,0) f(1,1) f(1,2) f(1,3) f(1,4) - - - - -
f(x,y) = f(2,0) f(2,1) f(2,2) f(2,3) f(2,4) - - - - -
f(3,0) f(3,1) f(3,2) f(3,3) f(3,4) - - - - -
I I I I I - - - - -
I I I I I - - - - -
Adjacency, Connectivity
Adjacency: Two pixels are adjacent if they are neighbors and
their intensity level ‘V’ satisfy some specific criteria of
similarity.
e.g. V = {1}
V = { 0, 2}
Binary image = { 0, 1}
Gray scale image = { 0, 1, 2, ------, 255}
In binary images, 2 pixels are adjacent if they are neighbors &
have some intensity values either 0 or 1.
In gray scale, image contains more gray level values in range 0
to 255.
Adjacency, Connectivity
4-adjacency: Two pixels p and q with the values from set ‘V’
are 4-adjacent if q is in the set of N4(p).
e.g. V = { 0, 1}
1 1 2
1 1 0
1 0 1
p in RED color
q can be any value in GREEN color.
Adjacency, Connectivity
8-adjacency: Two pixels p and q with the values from set ‘V’
are 8-adjacent if q is in the set of N8(p).
e.g. V = { 1, 2}
0 1 1
0 2 0
0 0 1
p in RED color
q can be any value in GREEN color
Adjacency, Connectivity
m-adjacency: Two pixels p and q with the values from set ‘V’
are m-adjacent if
(i) q is in N4(p) OR
(ii) q is in ND(p) & the set N4(p) n N4(q) have no pixels
whose values are from ‘V’.
e.g. V = { 1 }
0 a 1 b 1 c
0 d 1 e 0 f
0 g 0 h 1 i
Adjacency, Connectivity
m-adjacency: Two pixels p and q with the values from set ‘V’
are m-adjacent if
(i) q is in N4(p)
e.g. V = { 1 }
(i) b & c
0 a 1 b 1 c
0 d 1 e 0 f
0 g 0 h 1 I
Adjacency, Connectivity
m-adjacency: Two pixels p and q with the values from set ‘V’
are m-adjacent if
(i) q is in N4(p)
e.g. V = { 1 }
(i) b & c
0 a 1 b 1 c
0 d 1 e 0 f
0 g 0 h 1 I
Soln: b & c are m-adjacent.
Adjacency, Connectivity
m-adjacency: Two pixels p and q with the values from set ‘V’
are m-adjacent if
(i) q is in N4(p)
e.g. V = { 1 }
(ii) b & e
0 a 1 b 1 c
0 d 1 e 0 f
0 g 0 h 1 I
Adjacency, Connectivity
m-adjacency: Two pixels p and q with the values from set ‘V’
are m-adjacent if
(i) q is in N4(p)
e.g. V = { 1 }
(ii) b & e
0 a 1 b 1 c
0 d 1 e 0 f
0 g 0 h 1 I
Soln: b & e are m-adjacent.
Adjacency, Connectivity
m-adjacency: Two pixels p and q with the values from set ‘V’
are m-adjacent if
(i) q is in N4(p) OR
e.g. V = { 1 }
(iii) e & i
0 a 1 b 1 c
0 d 1 e 0 f
0 g 0 h 1 i
Adjacency, Connectivity
m-adjacency: Two pixels p and q with the values from set ‘V’
are m-adjacent if
(i) q is in ND(p) & the set N4(p) n N4(q) have no pixels
whose values are from ‘V’.
e.g. V = { 1 }
(iii) e & i
0 a 1 b 1 c
0 d 1 e 0 f
0 g 0 h 1 I
Adjacency, Connectivity
m-adjacency: Two pixels p and q with the values from set ‘V’
are m-adjacent if
(i) q is in ND(p) & the set N4(p) n N4(q) have no pixels
whose values are from ‘V’.
e.g. V = { 1 }
(iii) e & i
0 a 1 b 1 c
0 d 1 e 0 f
0 g 0 h 1 I
Soln: e & i are m-adjacent.
Adjacency, Connectivity
m-adjacency: Two pixels p and q with the values from set ‘V’
are m-adjacent if
(i) q is in N4(p) OR
(ii) q is in ND(p) & the set N4(p) n N4(q) have no pixels
whose values are from ‘V’.
e.g. V = { 1 }
(iv) e & c
0 a 1 b 1 c
0 d 1 e 0 f
0 g 0 h 1 I
Adjacency, Connectivity
m-adjacency: Two pixels p and q with the values from set ‘V’
are m-adjacent if
(i) q is in N4(p) OR
(ii) q is in ND(p) & the set N4(p) n N4(q) have no pixels
whose values are from ‘V’.
e.g. V = { 1 }
(iv) e & c
0 a 1 b 1 c
0 d 1 e 0 f
0 g 0 h 1 I
Soln: e & c are NOT m-adjacent.
Adjacency, Connectivity
Connectivity: 2 pixels are said to be connected if their exists a path
between them.
Let ‘S’ represent subset of pixels in an image.
Two pixels p & q are said to be connected in ‘S’ if their exists a path
between them consisting entirely of pixels in ‘S’.
For any pixel p in S, the set of pixels that are connected to it in S is
called a connected component of S.
Paths
Paths: A path from pixel p with coordinate ( x, y)
with pixel q with coordinate ( s, t) is a sequence of
distinct sequence with coordinates (x0, y0), (x1, y1),
….., (xn, yn) where
(x, y) = (x0, y0)
& (s, t) = (xn, yn)
Closed path: (x0, y0) = (xn, yn)
Paths
Example # 1: Consider the image segment shown in figure.
Compute length of the shortest-4, shortest-8 & shortest-m paths
between pixels p & q where,
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-4 path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-4 path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-4 path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-4 path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-4 path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-4 path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
So, Path does not exist.
Paths
Example # 1:
Shortest-8 path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-8 path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-8 path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-8 path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-8 path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-8 path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
So, shortest-8 path = 4
Paths
Example # 1:
Shortest-m path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-m path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-m path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-m path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-m path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-m path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
Paths
Example # 1:
Shortest-m path:
V = {1, 2}.
4 2 3 2 q
3 3 1 3
2 3 2 2
p 2 1 2 3
So, shortest-m path = 5
Regions & Boundaries
Region: Let R be a subset of pixels in an image. Two regions Ri
and Rj are said to be adjacent if their union form a connected set.
Regions that are not adjacent are said to be disjoint.
We consider 4- and 8- adjacency when referring to regions.
Below regions are adjacent only if 8-adjacency is used.
1 1 1
1 0 1 Ri
0 1 0
0 0 1
1 1 1 Rj
1 1 1
Regions & Boundaries
Boundaries (border or contour): The boundary of a region
R is the set of points that are adjacent to points in the
compliment of R.
0 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0
RED colored 1 is NOT a member of border if 4-connectivity is
used between region and background. It is if 8-connectivity is
used.
Example:
pixels arranged in a 2D grid, where each pixel carries intensity or color information.
pixels arranged in a 2D grid, where each pixel carries intensity or color information.
pixels arranged in a 2D grid, where each pixel carries intensity or color information.
pixels arranged in a 2D grid, where each pixel carries intensity or color information.
pixels arranged in a 2D grid, where each pixel carries intensity or color information.
pixels arranged in a 2D grid, where each pixel carries intensity or color information.
(1=2)
pixels arranged in a 2D grid, where each pixel carries intensity or color information.
(3=4)
pixels arranged in a 2D grid, where each pixel carries intensity or color information.
pixels arranged in a 2D grid, where each pixel carries intensity or color information.
(1=5)
pixels arranged in a 2D grid, where each pixel carries intensity or color information.
pixels arranged in a 2D grid, where each pixel carries intensity or color information.
Distance Measures
Distance Measures: Distance between pixels p, q & z with
co-ordinates ( x, y), ( s, t) & ( v, w) resp. is given by:
a) D( p, q) ≥ 0 [ D( p, q) = 0 if p = q] …………..called
reflexivity
b) D( p, q) = D( q, p) .………….called
symmetry
c) D( p, z) ≤ D( p, q) + D( q, z) ..………….called
transmitivity
Euclidean distance between p & q is defined as-
De( p, q) = [( x- s)2
+ (y - t)2
]1/2
Distance Measures
City Block Distance: The D4 distance between p & q is
defined as
D4( p, q) = |x - s| + |y - t|
In this case, pixels having D4 distance from ( x, y) less than or
equal to some value r form a diamond centered at ( x, y).
2
2 1 2
2 1 0 1 2
2 1 2
2
Pixels with D4 distance ≤ 2 forms the following contour of
constant distance.
Distance Measures
Chess-Board Distance: The D8 distance between p & q is
defined as
D8( p, q) = max( |x - s| , |y - t| )
In this case, pixels having D8 distance from ( x, y) less than or
equal to some value r form a square centered at ( x, y).
2 2 2 2 2
2 1 1 1 2
2 1 0 1 2
2 1 1 1 2
2 2 2 2 2
Pixels with D8 distance ≤ 2 forms the following contour of
constant distance.
Set operations
Logical operations
 The AND operator is usually used to mask out
part of an image.
 Parts of another image can be added with a
logical OR operator.
Result of AND Result of OR
OR
pixels arranged in a 2D grid, where each pixel carries intensity or color information.

More Related Content

PPTX
Pixelrelationships
PPT
pixelrelationships-m-1.pptx.ppt
PPTX
Basic Relationships between Pixels- Digital Image Processing
PDF
Basic Relationship between pixels and adjacency
PPT
DIP7_Relationships_between_pixels.ppt
PPT
3.ppt
PDF
chapter_4_1ST_PART_BASIC_RELATION_OF_PIXELSchapter_2_dip_5th_sem.pdf
Pixelrelationships
pixelrelationships-m-1.pptx.ppt
Basic Relationships between Pixels- Digital Image Processing
Basic Relationship between pixels and adjacency
DIP7_Relationships_between_pixels.ppt
3.ppt
chapter_4_1ST_PART_BASIC_RELATION_OF_PIXELSchapter_2_dip_5th_sem.pdf

Similar to pixels arranged in a 2D grid, where each pixel carries intensity or color information. (20)

PPT
Lecture4.ppt
PDF
Ip unit 1
PPT
digTop.ppt
PPT
Digital image processing for relationship of pixels
PDF
Biomedical engineering 20230918-Fundamentals.pdf
PPT
Lecture 07.ppt that is minimun hiiiga maruuua
PPT
Image_Processing-ch2surface r_part_2.ppt
PDF
Pixel Relationships Examples
PPTX
Image Acquisition and Representation
PDF
2. IP Fundamentals.pdf
PDF
Lecture 4 Relationship between pixels
DOCX
The Digital Image Processing Q@A
PDF
Digital image processing fundamental explanation
PPTX
Digital Image Processing
PPT
Chapter 2 Image Processing: Pixel Relation
PPTX
Digital-Image-processing-fundamenntal.pptx
PPT
03 digital image fundamentals DIP
PDF
bstract Point processing uses only the information in individual pixels to pr...
PPTX
computer Vision and Machine learning Chapter 1
PPTX
Topic 1- computer vision and machine learning
Lecture4.ppt
Ip unit 1
digTop.ppt
Digital image processing for relationship of pixels
Biomedical engineering 20230918-Fundamentals.pdf
Lecture 07.ppt that is minimun hiiiga maruuua
Image_Processing-ch2surface r_part_2.ppt
Pixel Relationships Examples
Image Acquisition and Representation
2. IP Fundamentals.pdf
Lecture 4 Relationship between pixels
The Digital Image Processing Q@A
Digital image processing fundamental explanation
Digital Image Processing
Chapter 2 Image Processing: Pixel Relation
Digital-Image-processing-fundamenntal.pptx
03 digital image fundamentals DIP
bstract Point processing uses only the information in individual pixels to pr...
computer Vision and Machine learning Chapter 1
Topic 1- computer vision and machine learning
Ad

More from DeviPriyaMohan1 (7)

DOCX
mcq virtual instrumentation unit 1 mcq
PPTX
Understanding Myself as Co-existence of the Self and.pptx
PDF
A digital image is a representation of a two-dimensional image using binary n...
PDF
digital image processing lecture notes e
PDF
Database-SQL -in computer appliacation of pharmcay
PDF
computer application in pharmacy number system
DOCX
SILICON CAPACITIVE ACCELEROMETER.docx
mcq virtual instrumentation unit 1 mcq
Understanding Myself as Co-existence of the Self and.pptx
A digital image is a representation of a two-dimensional image using binary n...
digital image processing lecture notes e
Database-SQL -in computer appliacation of pharmcay
computer application in pharmacy number system
SILICON CAPACITIVE ACCELEROMETER.docx
Ad

Recently uploaded (20)

PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
composite construction of structures.pdf
PPTX
web development for engineering and engineering
PPT
Project quality management in manufacturing
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
additive manufacturing of ss316l using mig welding
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPT
Mechanical Engineering MATERIALS Selection
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
Sustainable Sites - Green Building Construction
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
Welding lecture in detail for understanding
Automation-in-Manufacturing-Chapter-Introduction.pdf
composite construction of structures.pdf
web development for engineering and engineering
Project quality management in manufacturing
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
additive manufacturing of ss316l using mig welding
CH1 Production IntroductoryConcepts.pptx
CYBER-CRIMES AND SECURITY A guide to understanding
Mechanical Engineering MATERIALS Selection
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Sustainable Sites - Green Building Construction
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Foundation to blockchain - A guide to Blockchain Tech
Welding lecture in detail for understanding

pixels arranged in a 2D grid, where each pixel carries intensity or color information.

  • 4. Neighbors of a Pixel f(0,0) f(0,1) f(0,2) f(0,3) f(0,4) - - - - - f(1,0) f(1,1) f(1,2) f(1,3) f(1,4) - - - - - f(x,y) = f(2,0) f(2,1) f(2,2) f(2,3) f(2,4) - - - - - f(3,0) f(3,1) f(3,2) f(3,3) f(3,4) - - - - - I I I I I - - - - - I I I I I - - - - -
  • 5. Neighbors of a Pixel  A Pixel p at coordinates ( x, y) has 4 horizontal and vertical neighbors.  Their coordinates are given by: (x+1, y) (x-1, y) (x, y+1) & (x, y-1) f(2,1) f(0,1) f(1,2) f(1,0)  This set of pixels is called the 4-neighbors of p denoted by N4(p).  Each pixel is unit distance from ( x ,y). f(0,0) f(0,1) f(0,2) f(0,3) f(0,4) - - - - - f(1,0) f(1,1) f(1,2) f(1,3) f(1,4) - - - - - f(x,y) = f(2,0) f(2,1) f(2,2) f(2,3) f(2,4) - - - - - f(3,0) f(3,1) f(3,2) f(3,3) f(3,4) - - - - - I I I I I - - - - - I I I I I - - - - -
  • 6. Neighbors of a Pixel  A Pixel p at coordinates ( x, y) has 4 diagonal neighbors.  Their coordinates are given by: (x+1, y+1) (x+1, y-1) (x-1, y+1) & (x-1, y-1) f(2,2) f(2,0) f(0,2) f(0,0)  This set of pixels is called the diagonal-neighbors of p denoted by ND(p).  f(0,0) f(0,1) f(0,2) f(0,3) f(0,4) - - - - - f(1,0) f(1,1) f(1,2) f(1,3) f(1,4) - - - - - f(x,y) = f(2,0) f(2,1) f(2,2) f(2,3) f(2,4) - - - - - f(3,0) f(3,1) f(3,2) f(3,3) f(3,4) - - - - - I I I I I - - - - - I I I I I - - - - -
  • 7. Adjacency, Connectivity Adjacency: Two pixels are adjacent if they are neighbors and their intensity level ‘V’ satisfy some specific criteria of similarity. e.g. V = {1} V = { 0, 2} Binary image = { 0, 1} Gray scale image = { 0, 1, 2, ------, 255} In binary images, 2 pixels are adjacent if they are neighbors & have some intensity values either 0 or 1. In gray scale, image contains more gray level values in range 0 to 255.
  • 8. Adjacency, Connectivity 4-adjacency: Two pixels p and q with the values from set ‘V’ are 4-adjacent if q is in the set of N4(p). e.g. V = { 0, 1} 1 1 2 1 1 0 1 0 1 p in RED color q can be any value in GREEN color.
  • 9. Adjacency, Connectivity 8-adjacency: Two pixels p and q with the values from set ‘V’ are 8-adjacent if q is in the set of N8(p). e.g. V = { 1, 2} 0 1 1 0 2 0 0 0 1 p in RED color q can be any value in GREEN color
  • 10. Adjacency, Connectivity m-adjacency: Two pixels p and q with the values from set ‘V’ are m-adjacent if (i) q is in N4(p) OR (ii) q is in ND(p) & the set N4(p) n N4(q) have no pixels whose values are from ‘V’. e.g. V = { 1 } 0 a 1 b 1 c 0 d 1 e 0 f 0 g 0 h 1 i
  • 11. Adjacency, Connectivity m-adjacency: Two pixels p and q with the values from set ‘V’ are m-adjacent if (i) q is in N4(p) e.g. V = { 1 } (i) b & c 0 a 1 b 1 c 0 d 1 e 0 f 0 g 0 h 1 I
  • 12. Adjacency, Connectivity m-adjacency: Two pixels p and q with the values from set ‘V’ are m-adjacent if (i) q is in N4(p) e.g. V = { 1 } (i) b & c 0 a 1 b 1 c 0 d 1 e 0 f 0 g 0 h 1 I Soln: b & c are m-adjacent.
  • 13. Adjacency, Connectivity m-adjacency: Two pixels p and q with the values from set ‘V’ are m-adjacent if (i) q is in N4(p) e.g. V = { 1 } (ii) b & e 0 a 1 b 1 c 0 d 1 e 0 f 0 g 0 h 1 I
  • 14. Adjacency, Connectivity m-adjacency: Two pixels p and q with the values from set ‘V’ are m-adjacent if (i) q is in N4(p) e.g. V = { 1 } (ii) b & e 0 a 1 b 1 c 0 d 1 e 0 f 0 g 0 h 1 I Soln: b & e are m-adjacent.
  • 15. Adjacency, Connectivity m-adjacency: Two pixels p and q with the values from set ‘V’ are m-adjacent if (i) q is in N4(p) OR e.g. V = { 1 } (iii) e & i 0 a 1 b 1 c 0 d 1 e 0 f 0 g 0 h 1 i
  • 16. Adjacency, Connectivity m-adjacency: Two pixels p and q with the values from set ‘V’ are m-adjacent if (i) q is in ND(p) & the set N4(p) n N4(q) have no pixels whose values are from ‘V’. e.g. V = { 1 } (iii) e & i 0 a 1 b 1 c 0 d 1 e 0 f 0 g 0 h 1 I
  • 17. Adjacency, Connectivity m-adjacency: Two pixels p and q with the values from set ‘V’ are m-adjacent if (i) q is in ND(p) & the set N4(p) n N4(q) have no pixels whose values are from ‘V’. e.g. V = { 1 } (iii) e & i 0 a 1 b 1 c 0 d 1 e 0 f 0 g 0 h 1 I Soln: e & i are m-adjacent.
  • 18. Adjacency, Connectivity m-adjacency: Two pixels p and q with the values from set ‘V’ are m-adjacent if (i) q is in N4(p) OR (ii) q is in ND(p) & the set N4(p) n N4(q) have no pixels whose values are from ‘V’. e.g. V = { 1 } (iv) e & c 0 a 1 b 1 c 0 d 1 e 0 f 0 g 0 h 1 I
  • 19. Adjacency, Connectivity m-adjacency: Two pixels p and q with the values from set ‘V’ are m-adjacent if (i) q is in N4(p) OR (ii) q is in ND(p) & the set N4(p) n N4(q) have no pixels whose values are from ‘V’. e.g. V = { 1 } (iv) e & c 0 a 1 b 1 c 0 d 1 e 0 f 0 g 0 h 1 I Soln: e & c are NOT m-adjacent.
  • 20. Adjacency, Connectivity Connectivity: 2 pixels are said to be connected if their exists a path between them. Let ‘S’ represent subset of pixels in an image. Two pixels p & q are said to be connected in ‘S’ if their exists a path between them consisting entirely of pixels in ‘S’. For any pixel p in S, the set of pixels that are connected to it in S is called a connected component of S.
  • 21. Paths Paths: A path from pixel p with coordinate ( x, y) with pixel q with coordinate ( s, t) is a sequence of distinct sequence with coordinates (x0, y0), (x1, y1), ….., (xn, yn) where (x, y) = (x0, y0) & (s, t) = (xn, yn) Closed path: (x0, y0) = (xn, yn)
  • 22. Paths Example # 1: Consider the image segment shown in figure. Compute length of the shortest-4, shortest-8 & shortest-m paths between pixels p & q where, V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 23. Paths Example # 1: Shortest-4 path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 24. Paths Example # 1: Shortest-4 path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 25. Paths Example # 1: Shortest-4 path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 26. Paths Example # 1: Shortest-4 path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 27. Paths Example # 1: Shortest-4 path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 28. Paths Example # 1: Shortest-4 path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3 So, Path does not exist.
  • 29. Paths Example # 1: Shortest-8 path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 30. Paths Example # 1: Shortest-8 path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 31. Paths Example # 1: Shortest-8 path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 32. Paths Example # 1: Shortest-8 path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 33. Paths Example # 1: Shortest-8 path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 34. Paths Example # 1: Shortest-8 path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3 So, shortest-8 path = 4
  • 35. Paths Example # 1: Shortest-m path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 36. Paths Example # 1: Shortest-m path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 37. Paths Example # 1: Shortest-m path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 38. Paths Example # 1: Shortest-m path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 39. Paths Example # 1: Shortest-m path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 40. Paths Example # 1: Shortest-m path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3
  • 41. Paths Example # 1: Shortest-m path: V = {1, 2}. 4 2 3 2 q 3 3 1 3 2 3 2 2 p 2 1 2 3 So, shortest-m path = 5
  • 42. Regions & Boundaries Region: Let R be a subset of pixels in an image. Two regions Ri and Rj are said to be adjacent if their union form a connected set. Regions that are not adjacent are said to be disjoint. We consider 4- and 8- adjacency when referring to regions. Below regions are adjacent only if 8-adjacency is used. 1 1 1 1 0 1 Ri 0 1 0 0 0 1 1 1 1 Rj 1 1 1
  • 43. Regions & Boundaries Boundaries (border or contour): The boundary of a region R is the set of points that are adjacent to points in the compliment of R. 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 RED colored 1 is NOT a member of border if 4-connectivity is used between region and background. It is if 8-connectivity is used.
  • 51. (1=2)
  • 53. (3=4)
  • 56. (1=5)
  • 59. Distance Measures Distance Measures: Distance between pixels p, q & z with co-ordinates ( x, y), ( s, t) & ( v, w) resp. is given by: a) D( p, q) ≥ 0 [ D( p, q) = 0 if p = q] …………..called reflexivity b) D( p, q) = D( q, p) .………….called symmetry c) D( p, z) ≤ D( p, q) + D( q, z) ..………….called transmitivity Euclidean distance between p & q is defined as- De( p, q) = [( x- s)2 + (y - t)2 ]1/2
  • 60. Distance Measures City Block Distance: The D4 distance between p & q is defined as D4( p, q) = |x - s| + |y - t| In this case, pixels having D4 distance from ( x, y) less than or equal to some value r form a diamond centered at ( x, y). 2 2 1 2 2 1 0 1 2 2 1 2 2 Pixels with D4 distance ≤ 2 forms the following contour of constant distance.
  • 61. Distance Measures Chess-Board Distance: The D8 distance between p & q is defined as D8( p, q) = max( |x - s| , |y - t| ) In this case, pixels having D8 distance from ( x, y) less than or equal to some value r form a square centered at ( x, y). 2 2 2 2 2 2 1 1 1 2 2 1 0 1 2 2 1 1 1 2 2 2 2 2 2 Pixels with D8 distance ≤ 2 forms the following contour of constant distance.
  • 64.  The AND operator is usually used to mask out part of an image.
  • 65.  Parts of another image can be added with a logical OR operator.
  • 66. Result of AND Result of OR OR