Core of Personalization at Polyvore: Style Profile 
By Jiang Zhu & Jennifer Louie 
 
Over the past year, our engineering team has undertaken the task of creating a more 
personalized experience for our users. We already have an amazing community of 
designers, artists, and fashion enthusiasts who come to Polyvore to get inspired around 
shopping. However, we felt that with a little bit of machine learning we could help users 
discover and shop for even more products that they may not have found on their own. 
 
In this blog post we’ll walk through some of the ways we are using machine learning to 
understand our users individual style, which we call a Style Profile, to recommend more 
personalized products and outfits. 
 
What is a Style Profile? 
When we first started building each user’s Style Profile, we quickly realized how tricky 
quantifying fashion can be. It’s intangible, means different things for different people and 
even when most people might own the same black shirt, they might wear it in 
completely different ways. Luckily, Polyvore is uniquely positioned to understand 
personal style through our users rich interactions on Polyvore, including: 
● Global factors: occasions, trends, seasonality and other contextual information 
● Catalog data: rich and high­quality metadata of products from our retail partners 
● Product data: product likes and dislikes, collections of products, products 
viewed and search queries 
● Shopper behavioral data: impressions, likes, outbound clicks while they are 
interacting with products, sets and other curated content 
● Community data: Our global community has generated billions of data points 
that helps us understand the relationship between retail products. Every time a 
user creates a set, they are implying that those products go together and share 
the same style.  
 
From a technology standpoint, a user’s Style Profile can be represented with a vector in 
a high­dimensional space and the component for each dimension, indicating the 
strength of their preference in a particular aspect or a combination of multiple aspects in 
fashion. The following is a simplified representation of two users’ style profile on 
combinations of color, category, material and brand: 
 
 
Figure 1: Style Profiles 
 
● Style Space Definition: a high dimensional space where any point represents 
the style of a user or product that is subject to constraints that points with similar 
style should be closer to each other than those with different tastes. 
● Style Vector Definition: the coordinates in the Style Space denote the taste 
vector for that particular user or product. 
 
How do you generate a Style Profile? 
In order to generate a Style Profile for a user, we use a special balance of different 
factors: 
● Products: We look at all the products the user engages with. Every product has 
multiple data points such as category, brand, retailer, color, material and style.  
● Categories: We look at each category and store the frequency of each attribute 
value. Users have different preferences for different categories, for example, a 
user might love bright colored tops but only like dark black shoes. Color also has 
a limited number of values so we calculate the spread of frequencies to 
determine how strong the preference is for certain colors.  
● Dislikes: If a user consistently dislikes certain categories or products with certain 
attributes, we’ll be less likely to recommend these products. On the other hand, a 
user might have both positive and negative signals for the same attributes. In this 
case, we discount the positive signals for that attribute. An interesting challenge 
we’re still tackling is understanding exactly what those negative signals. Since 
style is so intangible, it’s hard to say whether the user disliked the material, color, 
brand or the price. 
 
Figure 2: Generating Style Profiles 
 
How Does Polyvore Use The Style Profile To Generate Personalized 
Recommendations? 
Now that we’ve built a Style Profile for each user, we use it to generate three separate 
recommendation streams which we call attribute­affinity streams, collaborative filtering 
streams and co­occurrence streams. For this blog post, we’ll share a bit about 
attribute­affinity streams. 
 
Attribute­affinity streams generates recommendations based on user’s preferences on 
certain attributes of products, such as brand, color and material. We calculate this 
similarity score between the user’s Style Profile and each candidate product we 
recommend.The score is a weighted sum of matching attributes. The weight of each 
attribute is determined by its value in the Style Profile. If the score is above a certain 
threshold, we will recommend the item. If a candidate product has attributes not in their 
Style Profile we try to guess the user’s preference for it. For example, we see that a 
user has not liked or disliked any pink T­shirts, but they have liked multiple black 
T­shirts; so pink T­shirts are given a low score. If the user has likes a lot of colors 
equally, then pink will receive an average color score.  
 
If the product category is missing from the Style Profile, we try to use the parent 
category profile. For example, before recommending a pair of brown boots, even if the 
user has never liked boots, we tap into her overall preference for shoes until we get 
more signal.  
 
With the combination of these three recommendation streams, we are able to create 
Style Profiles for every user, making it easier for them to discover and shop for the 
things they love. 
 
Stay tuned for the next post, when we will talk more about how we measure users’ 
engagement of these personalized streams and what insights we’ve discovered.  
 
 
 
 
 
 
 
 
 
 
 
REMOVE: 
● Collaborative­filtering streams: generates recommendations based on similar 
user’s preferences. For example, people who like this product also like certain 
group of other products so Polyvore can recommend those similar products.  
● Co­Occurrence streams: generates recommendations by leveraging Polyvore’s 
global community by looking at which products are frequently used in different 
styles of sets and collections.  
For collaborative filtering streams and co­occurrence streams, we use techniques, 
which we will cover in subsequent posts, to generate the candidate recommendations 
and then use Style profile to rerank the results.  

More Related Content

KEY
Creative Commons Business Models
PPTX
The Freemium Model and A/B Testing
PPT
What is freemium
PDF
Lessons Learned along Insightly's Journey to Model Its Freemium Business - Ka...
PPT
Taking SlideShare From Free To Freemium
PPTX
Five common freemium app marketing mistakes
PDF
Freemium: New Software Business Model
PDF
meet Freemium
Creative Commons Business Models
The Freemium Model and A/B Testing
What is freemium
Lessons Learned along Insightly's Journey to Model Its Freemium Business - Ka...
Taking SlideShare From Free To Freemium
Five common freemium app marketing mistakes
Freemium: New Software Business Model
meet Freemium

Similar to Core of Personalization at Polyvore: Style Profile (20)

DOCX
Report
PDF
Wearcultue Company Profile
PPTX
Ppt for institutes.
PPTX
How did you use media technologies in the construction,research, planning and...
PPTX
How did you use media technologies in the constuction,research, planning and ...
PDF
I'Dior
PPTX
Technologies
PPTX
"Effortless Style: Our Fashion Brand Unveiled".pptx
PDF
True Spirit final
PDF
Style Galore
PDF
The tress and the forests, services to industry august 2012
DOCX
Fashion retailing research paper
PDF
nd8fashion.blogspot.com.pdf
PDF
The 10 Step Checklist to Creating a Show-Stopping Content Distribuion Plan
PDF
NFZ County pitch  2021
DOCX
Audience profiling
PDF
How to promote your company on Lookbook.nu
PDF
Portfolio riccardo prandi_branding through design and business innovation str...
Report
Wearcultue Company Profile
Ppt for institutes.
How did you use media technologies in the construction,research, planning and...
How did you use media technologies in the constuction,research, planning and ...
I'Dior
Technologies
"Effortless Style: Our Fashion Brand Unveiled".pptx
True Spirit final
Style Galore
The tress and the forests, services to industry august 2012
Fashion retailing research paper
nd8fashion.blogspot.com.pdf
The 10 Step Checklist to Creating a Show-Stopping Content Distribuion Plan
NFZ County pitch  2021
Audience profiling
How to promote your company on Lookbook.nu
Portfolio riccardo prandi_branding through design and business innovation str...
Ad

More from Jiang Zhu (12)

PDF
Behaviometrics: Behavior Modeling from Heterogeneous Sensory Time-Series
PDF
Big Data and Internet of Things: A Roadmap For Smart Environments, Fog Comput...
PPTX
KeySens: Passive User Authentication Through Micro Behavior Modeling of Soft ...
PPTX
Art and Science of Web Sites Performance: A Front-end Approach
PDF
Improving Web Siste Performance Using Edge Services in Fog Computing Architec...
PDF
Guest Lecture: SenSec - Mobile Security through BehavioMetrics
PPTX
ICNC 2013 SenSec Presentation
PPTX
BehavioMetrics: A Big Data Approach
DOC
美国云计算发展现状及趋势-2010
PDF
SenSec: Mobile Application Security through Passive Sensing
PDF
Mobile privacysurvey presentation
PPTX
Icccn2011 jiang-0802
Behaviometrics: Behavior Modeling from Heterogeneous Sensory Time-Series
Big Data and Internet of Things: A Roadmap For Smart Environments, Fog Comput...
KeySens: Passive User Authentication Through Micro Behavior Modeling of Soft ...
Art and Science of Web Sites Performance: A Front-end Approach
Improving Web Siste Performance Using Edge Services in Fog Computing Architec...
Guest Lecture: SenSec - Mobile Security through BehavioMetrics
ICNC 2013 SenSec Presentation
BehavioMetrics: A Big Data Approach
美国云计算发展现状及趋势-2010
SenSec: Mobile Application Security through Passive Sensing
Mobile privacysurvey presentation
Icccn2011 jiang-0802
Ad

Recently uploaded (20)

PDF
Systems Analysis and Design, 12th Edition by Scott Tilley Test Bank.pdf
PDF
Navigating the Thai Supplements Landscape.pdf
PPTX
modul_python (1).pptx for professional and student
PPTX
retention in jsjsksksksnbsndjddjdnFPD.pptx
PPTX
Lesson-01intheselfoflifeofthekennyrogersoftheunderstandoftheunderstanded
PPTX
CYBER SECURITY the Next Warefare Tactics
PPTX
Pilar Kemerdekaan dan Identi Bangsa.pptx
PPT
DU, AIS, Big Data and Data Analytics.ppt
PPT
Image processing and pattern recognition 2.ppt
PDF
Global Data and Analytics Market Outlook Report
PPTX
Managing Community Partner Relationships
PDF
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
PPTX
IMPACT OF LANDSLIDE.....................
PPT
statistic analysis for study - data collection
PDF
Introduction to the R Programming Language
PPTX
chrmotography.pptx food anaylysis techni
PDF
Tetra Pak Index 2023 - The future of health and nutrition - Full report.pdf
PPTX
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
DOCX
Factor Analysis Word Document Presentation
PPTX
FMIS 108 and AISlaudon_mis17_ppt_ch11.pptx
Systems Analysis and Design, 12th Edition by Scott Tilley Test Bank.pdf
Navigating the Thai Supplements Landscape.pdf
modul_python (1).pptx for professional and student
retention in jsjsksksksnbsndjddjdnFPD.pptx
Lesson-01intheselfoflifeofthekennyrogersoftheunderstandoftheunderstanded
CYBER SECURITY the Next Warefare Tactics
Pilar Kemerdekaan dan Identi Bangsa.pptx
DU, AIS, Big Data and Data Analytics.ppt
Image processing and pattern recognition 2.ppt
Global Data and Analytics Market Outlook Report
Managing Community Partner Relationships
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
IMPACT OF LANDSLIDE.....................
statistic analysis for study - data collection
Introduction to the R Programming Language
chrmotography.pptx food anaylysis techni
Tetra Pak Index 2023 - The future of health and nutrition - Full report.pdf
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
Factor Analysis Word Document Presentation
FMIS 108 and AISlaudon_mis17_ppt_ch11.pptx

Core of Personalization at Polyvore: Style Profile