SlideShare a Scribd company logo
Explaining the Postgres Query Optimizer 
BRUCE MOMJIAN 
January, 2012 
The optimizer is the "brain" of the database, interpreting SQL 
queries and determining the fastest method of execution. This 
talk uses the EXPLAIN command to show how the optimizer 
interprets queries and determines optimal execution. 
Creative Commons Attribution License http://momjian.us/presentations 
1 / 56
Postgres Query Execution 
User 
Terminal 
Code 
Database 
Server 
Application 
Queries 
Results 
PostgreSQL 
Libpq 
Explaining the Postgres Query Optimizer 2 / 56
Postgres Query Execution 
Postgres Postgres 
utility 
Postmaster 
Parse Statement 
Traffic Cop 
Query 
Generate Paths 
Optimal Path 
Plan 
Libpq 
Main 
Generate Plan 
Execute Plan 
e.g. CREATE TABLE, COPY 
SELECT, INSERT, UPDATE, DELETE 
Rewrite Query 
Utility 
Command 
Utilities Catalog Storage Managers 
Access Methods Nodes / Lists 
Explaining the Postgres Query Optimizer 3 / 56
Postgres Query Execution 
utility 
Parse Statement 
Traffic Cop 
Query 
Generate Paths 
Optimal Path 
Generate Plan 
Plan 
Execute Plan 
e.g. CREATE TABLE, COPY 
SELECT, INSERT, UPDATE, DELETE 
Rewrite Query 
Utility 
Command 
Explaining the Postgres Query Optimizer 4 / 56
The Optimizer Is the Brain 
http://www.wsmanaging.com/ 
Explaining the Postgres Query Optimizer 5 / 56
What Decisions Does the Optimizer Have to Make? 
I Scan Method 
I Join Method 
I Join Order 
Explaining the Postgres Query Optimizer 6 / 56
Which Scan Method? 
I Sequential Scan 
I Bitmap Index Scan 
I Index Scan 
Explaining the Postgres Query Optimizer 7 / 56
A Simple Example Using pg_class.relname 
SELECT relname 
FROM pg_class 
ORDER BY 1 
LIMIT 8; 
relname 
----------------------------------- 
_pg_foreign_data_wrappers 
_pg_foreign_servers 
_pg_user_mappings 
administrable_role_authorizations 
applicable_roles 
attributes 
check_constraint_routine_usage 
check_constraints 
(8 rows) 
Explaining the Postgres Query Optimizer 8 / 56
Let’s Use Just the First Letter of pg_class.relname 
SELECT substring(relname, 1, 1) 
FROM pg_class 
ORDER BY 1 
LIMIT 8; 
substring 
----------- 
_ 
_ 
_ 
a 
a 
a 
c 
c 
(8 rows) 
Explaining the Postgres Query Optimizer 9 / 56
Create a Temporary Table with an Index 
CREATE TEMPORARY TABLE sample (letter, junk) AS 
SELECT substring(relname, 1, 1), repeat(’x’, 250) 
FROM pg_class 
ORDER BY random(); -- add rows in random order 
SELECT 253 
CREATE INDEX i_sample on sample (letter); 
CREATE INDEX 
All the queries used in this presentation are available at 
http://momjian.us/main/writings/pgsql/optimizer.sql. 
Explaining the Postgres Query Optimizer 10 / 56
Create an EXPLAIN Function 
CREATE OR REPLACE FUNCTION lookup_letter(text) RETURNS SETOF text AS $$ 
BEGIN 
RETURN QUERY EXECUTE ’ 
EXPLAIN SELECT letter 
FROM sample 
WHERE letter = ’’’ || $1 || ’’’’; 
END 
$$ LANGUAGE plpgsql; 
CREATE FUNCTION 
Explaining the Postgres Query Optimizer 11 / 56
What is the Distribution of the sample Table? 
WITH letters (letter, count) AS ( 
SELECT letter, COUNT(*) 
FROM sample 
GROUP BY 1 
) 
SELECT letter, count, (count * 100.0 / (SUM(count) OVER ()))::numeric(4,1) AS "%" 
FROM letters 
ORDER BY 2 DESC; 
Explaining the Postgres Query Optimizer 12 / 56
What is the Distribution of the sample Table? 
letter | count | % 
--------+-------+------ 
p | 199 | 78.7 
s | 9 | 3.6 
c | 8 | 3.2 
r | 7 | 2.8 
t | 5 | 2.0 
v | 4 | 1.6 
f | 4 | 1.6 
d | 4 | 1.6 
u | 3 | 1.2 
a | 3 | 1.2 
_ | 3 | 1.2 
e | 2 | 0.8 
i | 1 | 0.4 
k | 1 | 0.4 
(14 rows) 
Explaining the Postgres Query Optimizer 13 / 56
Is the Distribution Important? 
EXPLAIN SELECT letter 
FROM sample 
WHERE letter = ’p’; 
QUERY PLAN 
------------------------------------------------------------------------ 
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) 
Index Cond: (letter = ’p’::text) 
(2 rows) 
Explaining the Postgres Query Optimizer 14 / 56
Is the Distribution Important? 
EXPLAIN SELECT letter 
FROM sample 
WHERE letter = ’d’; 
QUERY PLAN 
------------------------------------------------------------------------ 
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) 
Index Cond: (letter = ’d’::text) 
(2 rows) 
Explaining the Postgres Query Optimizer 15 / 56
Is the Distribution Important? 
EXPLAIN SELECT letter 
FROM sample 
WHERE letter = ’k’; 
QUERY PLAN 
------------------------------------------------------------------------ 
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) 
Index Cond: (letter = ’k’::text) 
(2 rows) 
Explaining the Postgres Query Optimizer 16 / 56
Running ANALYZE Causes 
a Sequential Scan for a Common Value 
ANALYZE sample; 
ANALYZE 
EXPLAIN SELECT letter 
FROM sample 
WHERE letter = ’p’; 
QUERY PLAN 
--------------------------------------------------------- 
Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) 
Filter: (letter = ’p’::text) 
(2 rows) 
Autovacuum cannot ANALYZE (or VACUUM) temporary tables because 
these tables are only visible to the creating session. 
Explaining the Postgres Query Optimizer 17 / 56
Sequential Scan 
D 
T 
A 
D 
A 
T 
A 
D 
A 
T 
A 
D 
A 
T 
A 
D 
A 
T 
A 
D 
A 
T 
A 
D 
A 
T 
A 
D 
A 
T 
A 
D 
A 
T 
A 
D 
T 
8K 
Heap 
A 
A 
D 
A 
T 
A 
D 
A 
T 
A 
A 
Explaining the Postgres Query Optimizer 18 / 56
A Less Common Value Causes a Bitmap Heap Scan 
EXPLAIN SELECT letter 
FROM sample 
WHERE letter = ’d’; 
QUERY PLAN 
----------------------------------------------------------------------- 
Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) 
Recheck Cond: (letter = ’d’::text) 
-> Bitmap Index Scan on i_sample (cost=0.00..4.28 rows=4 width=0) 
Index Cond: (letter = ’d’::text) 
(4 rows) 
Explaining the Postgres Query Optimizer 19 / 56
Bitmap Index Scan 
Combined 
Index 1 Table 
col1 = ’A’ 
col2 = ’NS’ 
0 
& = 
’A’ AND ’NS’ 
0 
1 
0 
1 
Index 2 
1 
Index 
0 
1 0 
0 
1 
0 
Explaining the Postgres Query Optimizer 20 / 56
An Even Rarer Value Causes an Index Scan 
EXPLAIN SELECT letter 
FROM sample 
WHERE letter = ’k’; 
QUERY PLAN 
----------------------------------------------------------------------- 
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) 
Index Cond: (letter = ’k’::text) 
(2 rows) 
Explaining the Postgres Query Optimizer 21 / 56
Index Scan 
D 
A 
D 
A 
T 
A 
D 
A 
T 
A 
D 
A 
T 
A 
D 
A 
T 
A 
D 
A 
T 
A 
D 
A 
T 
A 
< Key = > 
< Key = > 
Index 
Heap 
< Key = > 
D 
A 
T 
A 
D 
A 
T 
A 
D 
A 
T 
A 
D 
A 
T 
A 
D 
A 
T 
A 
A 
T 
Explaining the Postgres Query Optimizer 22 / 56
Let’s Look at All Values and their Effects 
WITH letter (letter, count) AS ( 
SELECT letter, COUNT(*) 
FROM sample 
GROUP BY 1 
) 
SELECT letter AS l, count, lookup_letter(letter) 
FROM letter 
ORDER BY 2 DESC; 
l | count | lookup_letter 
---+-------+----------------------------------------------------------------------- 
p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) 
p | 199 | Filter: (letter = ’p’::text) 
s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) 
s | 9 | Filter: (letter = ’s’::text) 
c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) 
c | 8 | Filter: (letter = ’c’::text) 
r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) 
r | 7 | Filter: (letter = ’r’::text) 
… 
Explaining the Postgres Query Optimizer 23 / 56
OK, Just the First Lines 
WITH letter (letter, count) AS ( 
SELECT letter, COUNT(*) 
FROM sample 
GROUP BY 1 
) 
SELECT letter AS l, count, 
(SELECT * 
FROM lookup_letter(letter) AS l2 
LIMIT 1) AS lookup_letter 
FROM letter 
ORDER BY 2 DESC; 
Explaining the Postgres Query Optimizer 24 / 56
Just the First EXPLAIN Lines 
l | count | lookup_letter 
---+-------+----------------------------------------------------------------------- 
p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) 
s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) 
c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) 
r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) 
t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2) 
f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) 
v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) 
d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) 
a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) 
_ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) 
u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) 
e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) 
i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) 
k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) 
(14 rows) 
Explaining the Postgres Query Optimizer 25 / 56
We Can Force an Index Scan 
SET enable_seqscan = false; 
SET enable_bitmapscan = false; 
WITH letter (letter, count) AS ( 
SELECT letter, COUNT(*) 
FROM sample 
GROUP BY 1 
) 
SELECT letter AS l, count, 
(SELECT * 
FROM lookup_letter(letter) AS l2 
LIMIT 1) AS lookup_letter 
FROM letter 
ORDER BY 2 DESC; 
Explaining the Postgres Query Optimizer 26 / 56
Notice the High Cost for Common Values 
l | count | lookup_letter 
---+-------+------------------------------------------------------------------------- 
p | 199 | Index Scan using i_sample on sample (cost=0.00..39.33 rows=199 width=2) 
s | 9 | Index Scan using i_sample on sample (cost=0.00..22.14 rows=9 width=2) 
c | 8 | Index Scan using i_sample on sample (cost=0.00..19.84 rows=8 width=2) 
r | 7 | Index Scan using i_sample on sample (cost=0.00..19.82 rows=7 width=2) 
t | 5 | Index Scan using i_sample on sample (cost=0.00..15.21 rows=5 width=2) 
d | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) 
v | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) 
f | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) 
_ | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) 
a | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) 
u | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) 
e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) 
i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) 
k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) 
(14 rows) 
RESET ALL; 
RESET 
Explaining the Postgres Query Optimizer 27 / 56
This Was the Optimizer’s Preference 
l | count | lookup_letter 
---+-------+----------------------------------------------------------------------- 
p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) 
s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) 
c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) 
r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) 
t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2) 
f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) 
v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) 
d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) 
a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) 
_ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) 
u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) 
e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) 
i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) 
k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) 
(14 rows) 
Explaining the Postgres Query Optimizer 28 / 56
Which Join Method? 
I Nested Loop 
I With Inner Sequential Scan 
I With Inner Index Scan 
I Hash Join 
I Merge Join 
Explaining the Postgres Query Optimizer 29 / 56
What Is in pg_proc.oid? 
SELECT oid 
FROM pg_proc 
ORDER BY 1 
LIMIT 8; 
oid 
----- 
31 
33 
34 
35 
38 
39 
40 
41 
(8 rows) 
Explaining the Postgres Query Optimizer 30 / 56
Create Temporary Tables 
from pg_proc and pg_class 
CREATE TEMPORARY TABLE sample1 (id, junk) AS 
SELECT oid, repeat(’x’, 250) 
FROM pg_proc 
ORDER BY random(); -- add rows in random order 
SELECT 2256 
CREATE TEMPORARY TABLE sample2 (id, junk) AS 
SELECT oid, repeat(’x’, 250) 
FROM pg_class 
ORDER BY random(); -- add rows in random order 
SELECT 260 
These tables have no indexes and no optimizer statistics. 
Explaining the Postgres Query Optimizer 31 / 56
Join the Two Tables 
with a Tight Restriction 
EXPLAIN SELECT sample2.junk 
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) 
WHERE sample1.id = 33; 
QUERY PLAN 
--------------------------------------------------------------------- 
Nested Loop (cost=0.00..234.68 rows=300 width=32) 
-> Seq Scan on sample1 (cost=0.00..205.54 rows=50 width=4) 
Filter: (id = 33::oid) 
-> Materialize (cost=0.00..25.41 rows=6 width=36) 
-> Seq Scan on sample2 (cost=0.00..25.38 rows=6 width=36) 
Filter: (id = 33::oid) 
(6 rows) 
Explaining the Postgres Query Optimizer 32 / 56
Nested Loop Join 
with Inner Sequential Scan 
Outer Inner 
aag 
aai 
aay aag 
aar 
aas 
aar 
aay 
aaa 
aag 
No Setup Required 
aai 
Used For Small Tables 
Explaining the Postgres Query Optimizer 33 / 56
Pseudocode for Nested Loop Join 
with Inner Sequential Scan 
for (i = 0; i < length(outer); i++) 
for (j = 0; j < length(inner); j++) 
if (outer[i] == inner[j]) 
output(outer[i], inner[j]); 
Explaining the Postgres Query Optimizer 34 / 56
Join the Two Tables with a Looser Restriction 
EXPLAIN SELECT sample1.junk 
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) 
WHERE sample2.id > 33; 
QUERY PLAN 
---------------------------------------------------------------------- 
Hash Join (cost=30.50..950.88 rows=20424 width=32) 
Hash Cond: (sample1.id = sample2.id) 
-> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36) 
-> Hash (cost=25.38..25.38 rows=410 width=4) 
-> Seq Scan on sample2 (cost=0.00..25.38 rows=410 width=4) 
Filter: (id > 33::oid) 
(6 rows) 
Explaining the Postgres Query Optimizer 35 / 56
Hash Join 
Hashed 
Must fit in Main Memory 
aak 
aar 
aak 
aam aay aar 
aao aaw 
aay 
aag 
aas 
Outer Inner 
Explaining the Postgres Query Optimizer 36 / 56
Pseudocode for Hash Join 
for (j = 0; j < length(inner); j++) 
hash_key = hash(inner[j]); 
append(hash_store[hash_key], inner[j]); 
for (i = 0; i < length(outer); i++) 
hash_key = hash(outer[i]); 
for (j = 0; j < length(hash_store[hash_key]); j++) 
if (outer[i] == hash_store[hash_key][j]) 
output(outer[i], inner[j]); 
Explaining the Postgres Query Optimizer 37 / 56
Join the Two Tables with No Restriction 
EXPLAIN SELECT sample1.junk 
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); 
QUERY PLAN 
------------------------------------------------------------------------- 
Merge Join (cost=927.72..1852.95 rows=61272 width=32) 
Merge Cond: (sample2.id = sample1.id) 
-> Sort (cost=85.43..88.50 rows=1230 width=4) 
Sort Key: sample2.id 
-> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=4) 
-> Sort (cost=842.29..867.20 rows=9963 width=36) 
Sort Key: sample1.id 
-> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36) 
(8 rows) 
Explaining the Postgres Query Optimizer 38 / 56
Merge Join 
Sorted 
Sorted 
Outer Inner 
aaa 
aab 
aac 
aad 
aaa 
aab 
aab 
aac 
aae 
aaf 
aaf 
Ideal for Large Tables 
An Index Can Be Used to Eliminate the Sort 
Explaining the Postgres Query Optimizer 39 / 56
Pseudocode for Merge Join 
sort(outer); 
sort(inner); 
i = 0; 
j = 0; 
save_j = 0; 
while (i < length(outer)) 
if (outer[i] == inner[j]) 
output(outer[i], inner[j]); 
if (outer[i] <= inner[j] && j < length(inner)) 
j++; 
if (outer[i] < inner[j]) 
save_j = j; 
else 
i++; 
j = save_j; 
Explaining the Postgres Query Optimizer 40 / 56
Order of Joined Relations Is Insignificant 
EXPLAIN SELECT sample2.junk 
FROM sample2 JOIN sample1 ON (sample2.id = sample1.id); 
QUERY PLAN 
------------------------------------------------------------------------ 
Merge Join (cost=927.72..1852.95 rows=61272 width=32) 
Merge Cond: (sample2.id = sample1.id) 
-> Sort (cost=85.43..88.50 rows=1230 width=36) 
Sort Key: sample2.id 
-> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=36) 
-> Sort (cost=842.29..867.20 rows=9963 width=4) 
Sort Key: sample1.id 
-> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=4) 
(8 rows) 
The most restrictive relation, e.g. sample2, is always on the outer side of 
merge joins. All previous merge joins also had sample2 in outer position. 
Explaining the Postgres Query Optimizer 41 / 56
Add Optimizer Statistics 
ANALYZE sample1; 
ANALYZE sample2; 
Explaining the Postgres Query Optimizer 42 / 56
This Was a Merge Join without Optimizer Statistics 
EXPLAIN SELECT sample2.junk 
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); 
QUERY PLAN 
------------------------------------------------------------------------ 
Hash Join (cost=15.85..130.47 rows=260 width=254) 
Hash Cond: (sample1.id = sample2.id) 
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) 
-> Hash (cost=12.60..12.60 rows=260 width=258) 
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) 
(5 rows) 
Explaining the Postgres Query Optimizer 43 / 56
Outer Joins Can Affect Optimizer Join Usage 
EXPLAIN SELECT sample1.junk 
FROM sample1 RIGHT OUTER JOIN sample2 ON (sample1.id = sample2.id); 
QUERY PLAN 
-------------------------------------------------------------------------- 
Hash Left Join (cost=131.76..148.26 rows=260 width=254) 
Hash Cond: (sample2.id = sample1.id) 
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=4) 
-> Hash (cost=103.56..103.56 rows=2256 width=258) 
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=258) 
(5 rows) 
Use of hashes for outer joins was added in Postgres 9.1. 
Explaining the Postgres Query Optimizer 44 / 56
Cross Joins Are Nested Loop Joins 
without Join Restriction 
EXPLAIN SELECT sample1.junk 
FROM sample1 CROSS JOIN sample2; 
QUERY PLAN 
---------------------------------------------------------------------- 
Nested Loop (cost=0.00..7448.81 rows=586560 width=254) 
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=254) 
-> Materialize (cost=0.00..13.90 rows=260 width=0) 
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=0) 
(4 rows) 
Explaining the Postgres Query Optimizer 45 / 56
Create Indexes 
CREATE INDEX i_sample1 on sample1 (id); 
CREATE INDEX i_sample2 on sample2 (id); 
Explaining the Postgres Query Optimizer 46 / 56
Nested Loop with Inner Index Scan Now Possible 
EXPLAIN SELECT sample2.junk 
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) 
WHERE sample1.id = 33; 
QUERY PLAN 
--------------------------------------------------------------------------------- 
Nested Loop (cost=0.00..16.55 rows=1 width=254) 
-> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4) 
Index Cond: (id = 33::oid) 
-> Index Scan using i_sample2 on sample2 (cost=0.00..8.27 rows=1 width=258) 
Index Cond: (sample2.id = 33::oid) 
(5 rows) 
Explaining the Postgres Query Optimizer 47 / 56
Nested Loop Join with Inner Index Scan 
Outer Inner 
aag 
aai 
aay aag 
aar 
aai 
aas 
aar 
aay 
aaa 
aag 
Index Lookup 
No Setup Required 
Index Must Already Exist 
Explaining the Postgres Query Optimizer 48 / 56
Pseudocode for Nested Loop Join 
with Inner Index Scan 
for (i = 0; i < length(outer); i++) 
index_entry = get_first_match(outer[j]) 
while (index_entry) 
output(outer[i], inner[index_entry]); 
index_entry = get_next_match(index_entry); 
Explaining the Postgres Query Optimizer 49 / 56
Query Restrictions Affect Join Usage 
EXPLAIN SELECT sample2.junk 
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) 
WHERE sample2.junk ˜ ’^aaa’; 
QUERY PLAN 
------------------------------------------------------------------------------- 
Nested Loop (cost=0.00..21.53 rows=1 width=254) 
-> Seq Scan on sample2 (cost=0.00..13.25 rows=1 width=258) 
Filter: (junk ˜ ’^aaa’::text) 
-> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4) 
Index Cond: (sample1.id = sample2.id) 
(5 rows) 
No junk rows begin with ’aaa’. 
Explaining the Postgres Query Optimizer 50 / 56
All ’junk’ Columns Begin with ’xxx’ 
EXPLAIN SELECT sample2.junk 
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) 
WHERE sample2.junk ˜ ’^xxx’; 
QUERY PLAN 
------------------------------------------------------------------------ 
Hash Join (cost=16.50..131.12 rows=260 width=254) 
Hash Cond: (sample1.id = sample2.id) 
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) 
-> Hash (cost=13.25..13.25 rows=260 width=258) 
-> Seq Scan on sample2 (cost=0.00..13.25 rows=260 width=258) 
Filter: (junk ˜ ’^xxx’::text) 
(6 rows) 
Hash join was chosen because many more rows are expected. The 
smaller table, e.g. sample2, is always hashed. 
Explaining the Postgres Query Optimizer 51 / 56
Without LIMIT, Hash Is Used 
for this Unrestricted Join 
EXPLAIN SELECT sample2.junk 
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); 
QUERY PLAN 
------------------------------------------------------------------------ 
Hash Join (cost=15.85..130.47 rows=260 width=254) 
Hash Cond: (sample1.id = sample2.id) 
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) 
-> Hash (cost=12.60..12.60 rows=260 width=258) 
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) 
(5 rows) 
Explaining the Postgres Query Optimizer 52 / 56
LIMIT Can Affect Join Usage 
EXPLAIN SELECT sample2.id, sample2.junk 
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) 
ORDER BY 1 
LIMIT 1; 
QUERY PLAN 
------------------------------------------------------------------------------------------ 
Limit (cost=0.00..1.83 rows=1 width=258) 
-> Nested Loop (cost=0.00..477.02 rows=260 width=258) 
-> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258) 
-> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4) 
Index Cond: (sample1.id = sample2.id) 
(5 rows) 
Explaining the Postgres Query Optimizer 53 / 56
LIMIT 10 
EXPLAIN SELECT sample2.id, sample2.junk 
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) 
ORDER BY 1 
LIMIT 10; 
QUERY PLAN 
------------------------------------------------------------------------------------------ 
Limit (cost=0.00..18.35 rows=10 width=258) 
-> Nested Loop (cost=0.00..477.02 rows=260 width=258) 
-> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258) 
-> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4) 
Index Cond: (sample1.id = sample2.id) 
(5 rows) 
Explaining the Postgres Query Optimizer 54 / 56
LIMIT 100 Switches to Hash Join 
EXPLAIN SELECT sample2.id, sample2.junk 
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) 
ORDER BY 1 
LIMIT 100; 
QUERY PLAN 
------------------------------------------------------------------------------------ 
Limit (cost=140.41..140.66 rows=100 width=258) 
-> Sort (cost=140.41..141.06 rows=260 width=258) 
Sort Key: sample2.id 
-> Hash Join (cost=15.85..130.47 rows=260 width=258) 
Hash Cond: (sample1.id = sample2.id) 
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) 
-> Hash (cost=12.60..12.60 rows=260 width=258) 
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) 
(8 rows) 
Explaining the Postgres Query Optimizer 55 / 56
Conclusion 
http://momjian.us/presentations http://www.vivapixel.com/photo/14252 
Explaining the Postgres Query Optimizer 56 / 56

More Related Content

PDF
Rich domain model
PDF
[Pgday.Seoul 2017] 3. PostgreSQL WAL Buffers, Clog Buffers Deep Dive - 이근오
PDF
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
PDF
Rundeck: The missing tool
ODP
The PostgreSQL Query Planner
PDF
[수정본] 우아한 객체지향
PDF
[OKKYCON] 정진욱 - 테스트하기 쉬운 코드로 개발하기
PDF
[Pgday.Seoul 2021] 1. 예제로 살펴보는 포스트그레스큐엘의 독특한 SQL
Rich domain model
[Pgday.Seoul 2017] 3. PostgreSQL WAL Buffers, Clog Buffers Deep Dive - 이근오
Naver속도의, 속도에 의한, 속도를 위한 몽고DB (네이버 컨텐츠검색과 몽고DB) [Naver]
Rundeck: The missing tool
The PostgreSQL Query Planner
[수정본] 우아한 객체지향
[OKKYCON] 정진욱 - 테스트하기 쉬운 코드로 개발하기
[Pgday.Seoul 2021] 1. 예제로 살펴보는 포스트그레스큐엘의 독특한 SQL

What's hot (20)

PDF
KSUG 스프링캠프 2019 발표자료 - "무엇을 테스트할 것인가, 어떻게 테스트할 것인가"
PDF
Working with JSON Data in PostgreSQL vs. MongoDB
PDF
[pgday.Seoul 2022] PostgreSQL구조 - 윤성재
PDF
애플리케이션 아키텍처와 객체지향
PPTX
Solr 디렉토리 구조와 관리 콘솔
PDF
[Pgday.Seoul 2017] 6. GIN vs GiST 인덱스 이야기 - 박진우
PPTX
웹 크롤링 (Web scraping) 의 이해
PDF
Funnel Analysis with Apache Spark and Druid
PDF
Spark + S3 + R3를 이용한 데이터 분석 시스템 만들기
PDF
明日から使えるPostgre sql運用管理テクニック(監視編)
PDF
인공지능추천시스템 airs개발기_모델링과시스템
PDF
[Pgday.Seoul 2020] SQL Tuning
PPTX
SharePoint 2013 Client-Side Rendering (CSR) & JSLink Templates
PDF
모델 서빙 파이프라인 구축하기
PDF
Azure Cosmos DB で始める Java + NoSQL 開発
PPTX
로그 기깔나게 잘 디자인하는 법
PDF
이벤트 기반 분산 시스템을 향한 여정
PPTX
Criando uma arquitetura escalável para processamento de arquivos com micro s...
PDF
Advanced pg_stat_statements: Filtering, Regression Testing & more
PDF
RPC에서 REST까지 간단한 개념소개
KSUG 스프링캠프 2019 발표자료 - "무엇을 테스트할 것인가, 어떻게 테스트할 것인가"
Working with JSON Data in PostgreSQL vs. MongoDB
[pgday.Seoul 2022] PostgreSQL구조 - 윤성재
애플리케이션 아키텍처와 객체지향
Solr 디렉토리 구조와 관리 콘솔
[Pgday.Seoul 2017] 6. GIN vs GiST 인덱스 이야기 - 박진우
웹 크롤링 (Web scraping) 의 이해
Funnel Analysis with Apache Spark and Druid
Spark + S3 + R3를 이용한 데이터 분석 시스템 만들기
明日から使えるPostgre sql運用管理テクニック(監視編)
인공지능추천시스템 airs개발기_모델링과시스템
[Pgday.Seoul 2020] SQL Tuning
SharePoint 2013 Client-Side Rendering (CSR) & JSLink Templates
모델 서빙 파이프라인 구축하기
Azure Cosmos DB で始める Java + NoSQL 開発
로그 기깔나게 잘 디자인하는 법
이벤트 기반 분산 시스템을 향한 여정
Criando uma arquitetura escalável para processamento de arquivos com micro s...
Advanced pg_stat_statements: Filtering, Regression Testing & more
RPC에서 REST까지 간단한 개념소개
Ad

Similar to Explaining the Postgres Query Optimizer (20)

PDF
Explaining the Postgres Query Optimizer - PGCon 2014
 
PDF
How the Postgres Query Optimizer Works
 
PDF
Explaining the Postgres Query Optimizer (Bruce Momjian)
PDF
PostgreSQL: Advanced indexing
PDF
query-optimization-techniques_talk.pdf
PPTX
PGDay India 2016
PDF
Flexible Indexing with Postgres
 
PDF
Postgres can do THAT?
PDF
query_tuning.pdf
PDF
Does PostgreSQL respond to the challenge of analytical queries?
PDF
PostgreSQL High_Performance_Cheatsheet
PDF
Steam Learn: Introduction to RDBMS indexes
PDF
Flexible Indexing with Postgres
 
PDF
Indexes don't mean slow inserts.
PPTX
PostGreSQL Performance Tuning
PDF
Postgres performance for humans
PDF
MySQL Query Optimisation 101
PDF
Teaching PostgreSQL to new people
PDF
Deep dive to PostgreSQL Indexes
PDF
Postgres Performance for Humans
Explaining the Postgres Query Optimizer - PGCon 2014
 
How the Postgres Query Optimizer Works
 
Explaining the Postgres Query Optimizer (Bruce Momjian)
PostgreSQL: Advanced indexing
query-optimization-techniques_talk.pdf
PGDay India 2016
Flexible Indexing with Postgres
 
Postgres can do THAT?
query_tuning.pdf
Does PostgreSQL respond to the challenge of analytical queries?
PostgreSQL High_Performance_Cheatsheet
Steam Learn: Introduction to RDBMS indexes
Flexible Indexing with Postgres
 
Indexes don't mean slow inserts.
PostGreSQL Performance Tuning
Postgres performance for humans
MySQL Query Optimisation 101
Teaching PostgreSQL to new people
Deep dive to PostgreSQL Indexes
Postgres Performance for Humans
Ad

More from EDB (20)

PDF
Cloud Migration Paths: Kubernetes, IaaS, or DBaaS
 
PDF
Die 10 besten PostgreSQL-Replikationsstrategien für Ihr Unternehmen
 
PDF
Migre sus bases de datos Oracle a la nube
 
PDF
EFM Office Hours - APJ - July 29, 2021
 
PDF
Benchmarking Cloud Native PostgreSQL
 
PDF
Las Variaciones de la Replicación de PostgreSQL
 
PDF
NoSQL and Spatial Database Capabilities using PostgreSQL
 
PDF
Is There Anything PgBouncer Can’t Do?
 
PDF
Data Analysis with TensorFlow in PostgreSQL
 
PDF
Practical Partitioning in Production with Postgres
 
PDF
A Deeper Dive into EXPLAIN
 
PDF
IOT with PostgreSQL
 
PDF
A Journey from Oracle to PostgreSQL
 
PDF
Psql is awesome!
 
PDF
EDB 13 - New Enhancements for Security and Usability - APJ
 
PPTX
Comment sauvegarder correctement vos données
 
PDF
Cloud Native PostgreSQL - Italiano
 
PDF
New enhancements for security and usability in EDB 13
 
PPTX
Best Practices in Security with PostgreSQL
 
PDF
Cloud Native PostgreSQL - APJ
 
Cloud Migration Paths: Kubernetes, IaaS, or DBaaS
 
Die 10 besten PostgreSQL-Replikationsstrategien für Ihr Unternehmen
 
Migre sus bases de datos Oracle a la nube
 
EFM Office Hours - APJ - July 29, 2021
 
Benchmarking Cloud Native PostgreSQL
 
Las Variaciones de la Replicación de PostgreSQL
 
NoSQL and Spatial Database Capabilities using PostgreSQL
 
Is There Anything PgBouncer Can’t Do?
 
Data Analysis with TensorFlow in PostgreSQL
 
Practical Partitioning in Production with Postgres
 
A Deeper Dive into EXPLAIN
 
IOT with PostgreSQL
 
A Journey from Oracle to PostgreSQL
 
Psql is awesome!
 
EDB 13 - New Enhancements for Security and Usability - APJ
 
Comment sauvegarder correctement vos données
 
Cloud Native PostgreSQL - Italiano
 
New enhancements for security and usability in EDB 13
 
Best Practices in Security with PostgreSQL
 
Cloud Native PostgreSQL - APJ
 

Recently uploaded (20)

PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PDF
Mushroom cultivation and it's methods.pdf
PPTX
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
PDF
August Patch Tuesday
PDF
WOOl fibre morphology and structure.pdf for textiles
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
Unlocking AI with Model Context Protocol (MCP)
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PPTX
Chapter 5: Probability Theory and Statistics
PPTX
TLE Review Electricity (Electricity).pptx
PDF
Encapsulation theory and applications.pdf
PPTX
1. Introduction to Computer Programming.pptx
A comparative analysis of optical character recognition models for extracting...
Building Integrated photovoltaic BIPV_UPV.pdf
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
Mushroom cultivation and it's methods.pdf
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
August Patch Tuesday
WOOl fibre morphology and structure.pdf for textiles
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
Hindi spoken digit analysis for native and non-native speakers
NewMind AI Weekly Chronicles - August'25-Week II
SOPHOS-XG Firewall Administrator PPT.pptx
Unlocking AI with Model Context Protocol (MCP)
Group 1 Presentation -Planning and Decision Making .pptx
Chapter 5: Probability Theory and Statistics
TLE Review Electricity (Electricity).pptx
Encapsulation theory and applications.pdf
1. Introduction to Computer Programming.pptx

Explaining the Postgres Query Optimizer

  • 1. Explaining the Postgres Query Optimizer BRUCE MOMJIAN January, 2012 The optimizer is the "brain" of the database, interpreting SQL queries and determining the fastest method of execution. This talk uses the EXPLAIN command to show how the optimizer interprets queries and determines optimal execution. Creative Commons Attribution License http://momjian.us/presentations 1 / 56
  • 2. Postgres Query Execution User Terminal Code Database Server Application Queries Results PostgreSQL Libpq Explaining the Postgres Query Optimizer 2 / 56
  • 3. Postgres Query Execution Postgres Postgres utility Postmaster Parse Statement Traffic Cop Query Generate Paths Optimal Path Plan Libpq Main Generate Plan Execute Plan e.g. CREATE TABLE, COPY SELECT, INSERT, UPDATE, DELETE Rewrite Query Utility Command Utilities Catalog Storage Managers Access Methods Nodes / Lists Explaining the Postgres Query Optimizer 3 / 56
  • 4. Postgres Query Execution utility Parse Statement Traffic Cop Query Generate Paths Optimal Path Generate Plan Plan Execute Plan e.g. CREATE TABLE, COPY SELECT, INSERT, UPDATE, DELETE Rewrite Query Utility Command Explaining the Postgres Query Optimizer 4 / 56
  • 5. The Optimizer Is the Brain http://www.wsmanaging.com/ Explaining the Postgres Query Optimizer 5 / 56
  • 6. What Decisions Does the Optimizer Have to Make? I Scan Method I Join Method I Join Order Explaining the Postgres Query Optimizer 6 / 56
  • 7. Which Scan Method? I Sequential Scan I Bitmap Index Scan I Index Scan Explaining the Postgres Query Optimizer 7 / 56
  • 8. A Simple Example Using pg_class.relname SELECT relname FROM pg_class ORDER BY 1 LIMIT 8; relname ----------------------------------- _pg_foreign_data_wrappers _pg_foreign_servers _pg_user_mappings administrable_role_authorizations applicable_roles attributes check_constraint_routine_usage check_constraints (8 rows) Explaining the Postgres Query Optimizer 8 / 56
  • 9. Let’s Use Just the First Letter of pg_class.relname SELECT substring(relname, 1, 1) FROM pg_class ORDER BY 1 LIMIT 8; substring ----------- _ _ _ a a a c c (8 rows) Explaining the Postgres Query Optimizer 9 / 56
  • 10. Create a Temporary Table with an Index CREATE TEMPORARY TABLE sample (letter, junk) AS SELECT substring(relname, 1, 1), repeat(’x’, 250) FROM pg_class ORDER BY random(); -- add rows in random order SELECT 253 CREATE INDEX i_sample on sample (letter); CREATE INDEX All the queries used in this presentation are available at http://momjian.us/main/writings/pgsql/optimizer.sql. Explaining the Postgres Query Optimizer 10 / 56
  • 11. Create an EXPLAIN Function CREATE OR REPLACE FUNCTION lookup_letter(text) RETURNS SETOF text AS $$ BEGIN RETURN QUERY EXECUTE ’ EXPLAIN SELECT letter FROM sample WHERE letter = ’’’ || $1 || ’’’’; END $$ LANGUAGE plpgsql; CREATE FUNCTION Explaining the Postgres Query Optimizer 11 / 56
  • 12. What is the Distribution of the sample Table? WITH letters (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter, count, (count * 100.0 / (SUM(count) OVER ()))::numeric(4,1) AS "%" FROM letters ORDER BY 2 DESC; Explaining the Postgres Query Optimizer 12 / 56
  • 13. What is the Distribution of the sample Table? letter | count | % --------+-------+------ p | 199 | 78.7 s | 9 | 3.6 c | 8 | 3.2 r | 7 | 2.8 t | 5 | 2.0 v | 4 | 1.6 f | 4 | 1.6 d | 4 | 1.6 u | 3 | 1.2 a | 3 | 1.2 _ | 3 | 1.2 e | 2 | 0.8 i | 1 | 0.4 k | 1 | 0.4 (14 rows) Explaining the Postgres Query Optimizer 13 / 56
  • 14. Is the Distribution Important? EXPLAIN SELECT letter FROM sample WHERE letter = ’p’; QUERY PLAN ------------------------------------------------------------------------ Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) Index Cond: (letter = ’p’::text) (2 rows) Explaining the Postgres Query Optimizer 14 / 56
  • 15. Is the Distribution Important? EXPLAIN SELECT letter FROM sample WHERE letter = ’d’; QUERY PLAN ------------------------------------------------------------------------ Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) Index Cond: (letter = ’d’::text) (2 rows) Explaining the Postgres Query Optimizer 15 / 56
  • 16. Is the Distribution Important? EXPLAIN SELECT letter FROM sample WHERE letter = ’k’; QUERY PLAN ------------------------------------------------------------------------ Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) Index Cond: (letter = ’k’::text) (2 rows) Explaining the Postgres Query Optimizer 16 / 56
  • 17. Running ANALYZE Causes a Sequential Scan for a Common Value ANALYZE sample; ANALYZE EXPLAIN SELECT letter FROM sample WHERE letter = ’p’; QUERY PLAN --------------------------------------------------------- Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) Filter: (letter = ’p’::text) (2 rows) Autovacuum cannot ANALYZE (or VACUUM) temporary tables because these tables are only visible to the creating session. Explaining the Postgres Query Optimizer 17 / 56
  • 18. Sequential Scan D T A D A T A D A T A D A T A D A T A D A T A D A T A D A T A D A T A D T 8K Heap A A D A T A D A T A A Explaining the Postgres Query Optimizer 18 / 56
  • 19. A Less Common Value Causes a Bitmap Heap Scan EXPLAIN SELECT letter FROM sample WHERE letter = ’d’; QUERY PLAN ----------------------------------------------------------------------- Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) Recheck Cond: (letter = ’d’::text) -> Bitmap Index Scan on i_sample (cost=0.00..4.28 rows=4 width=0) Index Cond: (letter = ’d’::text) (4 rows) Explaining the Postgres Query Optimizer 19 / 56
  • 20. Bitmap Index Scan Combined Index 1 Table col1 = ’A’ col2 = ’NS’ 0 & = ’A’ AND ’NS’ 0 1 0 1 Index 2 1 Index 0 1 0 0 1 0 Explaining the Postgres Query Optimizer 20 / 56
  • 21. An Even Rarer Value Causes an Index Scan EXPLAIN SELECT letter FROM sample WHERE letter = ’k’; QUERY PLAN ----------------------------------------------------------------------- Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) Index Cond: (letter = ’k’::text) (2 rows) Explaining the Postgres Query Optimizer 21 / 56
  • 22. Index Scan D A D A T A D A T A D A T A D A T A D A T A D A T A < Key = > < Key = > Index Heap < Key = > D A T A D A T A D A T A D A T A D A T A A T Explaining the Postgres Query Optimizer 22 / 56
  • 23. Let’s Look at All Values and their Effects WITH letter (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter AS l, count, lookup_letter(letter) FROM letter ORDER BY 2 DESC; l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) p | 199 | Filter: (letter = ’p’::text) s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) s | 9 | Filter: (letter = ’s’::text) c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) c | 8 | Filter: (letter = ’c’::text) r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) r | 7 | Filter: (letter = ’r’::text) … Explaining the Postgres Query Optimizer 23 / 56
  • 24. OK, Just the First Lines WITH letter (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter AS l, count, (SELECT * FROM lookup_letter(letter) AS l2 LIMIT 1) AS lookup_letter FROM letter ORDER BY 2 DESC; Explaining the Postgres Query Optimizer 24 / 56
  • 25. Just the First EXPLAIN Lines l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2) f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) _ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) (14 rows) Explaining the Postgres Query Optimizer 25 / 56
  • 26. We Can Force an Index Scan SET enable_seqscan = false; SET enable_bitmapscan = false; WITH letter (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter AS l, count, (SELECT * FROM lookup_letter(letter) AS l2 LIMIT 1) AS lookup_letter FROM letter ORDER BY 2 DESC; Explaining the Postgres Query Optimizer 26 / 56
  • 27. Notice the High Cost for Common Values l | count | lookup_letter ---+-------+------------------------------------------------------------------------- p | 199 | Index Scan using i_sample on sample (cost=0.00..39.33 rows=199 width=2) s | 9 | Index Scan using i_sample on sample (cost=0.00..22.14 rows=9 width=2) c | 8 | Index Scan using i_sample on sample (cost=0.00..19.84 rows=8 width=2) r | 7 | Index Scan using i_sample on sample (cost=0.00..19.82 rows=7 width=2) t | 5 | Index Scan using i_sample on sample (cost=0.00..15.21 rows=5 width=2) d | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) v | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) f | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) _ | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) a | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) u | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) (14 rows) RESET ALL; RESET Explaining the Postgres Query Optimizer 27 / 56
  • 28. This Was the Optimizer’s Preference l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2) f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) _ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) (14 rows) Explaining the Postgres Query Optimizer 28 / 56
  • 29. Which Join Method? I Nested Loop I With Inner Sequential Scan I With Inner Index Scan I Hash Join I Merge Join Explaining the Postgres Query Optimizer 29 / 56
  • 30. What Is in pg_proc.oid? SELECT oid FROM pg_proc ORDER BY 1 LIMIT 8; oid ----- 31 33 34 35 38 39 40 41 (8 rows) Explaining the Postgres Query Optimizer 30 / 56
  • 31. Create Temporary Tables from pg_proc and pg_class CREATE TEMPORARY TABLE sample1 (id, junk) AS SELECT oid, repeat(’x’, 250) FROM pg_proc ORDER BY random(); -- add rows in random order SELECT 2256 CREATE TEMPORARY TABLE sample2 (id, junk) AS SELECT oid, repeat(’x’, 250) FROM pg_class ORDER BY random(); -- add rows in random order SELECT 260 These tables have no indexes and no optimizer statistics. Explaining the Postgres Query Optimizer 31 / 56
  • 32. Join the Two Tables with a Tight Restriction EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample1.id = 33; QUERY PLAN --------------------------------------------------------------------- Nested Loop (cost=0.00..234.68 rows=300 width=32) -> Seq Scan on sample1 (cost=0.00..205.54 rows=50 width=4) Filter: (id = 33::oid) -> Materialize (cost=0.00..25.41 rows=6 width=36) -> Seq Scan on sample2 (cost=0.00..25.38 rows=6 width=36) Filter: (id = 33::oid) (6 rows) Explaining the Postgres Query Optimizer 32 / 56
  • 33. Nested Loop Join with Inner Sequential Scan Outer Inner aag aai aay aag aar aas aar aay aaa aag No Setup Required aai Used For Small Tables Explaining the Postgres Query Optimizer 33 / 56
  • 34. Pseudocode for Nested Loop Join with Inner Sequential Scan for (i = 0; i < length(outer); i++) for (j = 0; j < length(inner); j++) if (outer[i] == inner[j]) output(outer[i], inner[j]); Explaining the Postgres Query Optimizer 34 / 56
  • 35. Join the Two Tables with a Looser Restriction EXPLAIN SELECT sample1.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample2.id > 33; QUERY PLAN ---------------------------------------------------------------------- Hash Join (cost=30.50..950.88 rows=20424 width=32) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36) -> Hash (cost=25.38..25.38 rows=410 width=4) -> Seq Scan on sample2 (cost=0.00..25.38 rows=410 width=4) Filter: (id > 33::oid) (6 rows) Explaining the Postgres Query Optimizer 35 / 56
  • 36. Hash Join Hashed Must fit in Main Memory aak aar aak aam aay aar aao aaw aay aag aas Outer Inner Explaining the Postgres Query Optimizer 36 / 56
  • 37. Pseudocode for Hash Join for (j = 0; j < length(inner); j++) hash_key = hash(inner[j]); append(hash_store[hash_key], inner[j]); for (i = 0; i < length(outer); i++) hash_key = hash(outer[i]); for (j = 0; j < length(hash_store[hash_key]); j++) if (outer[i] == hash_store[hash_key][j]) output(outer[i], inner[j]); Explaining the Postgres Query Optimizer 37 / 56
  • 38. Join the Two Tables with No Restriction EXPLAIN SELECT sample1.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN ------------------------------------------------------------------------- Merge Join (cost=927.72..1852.95 rows=61272 width=32) Merge Cond: (sample2.id = sample1.id) -> Sort (cost=85.43..88.50 rows=1230 width=4) Sort Key: sample2.id -> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=4) -> Sort (cost=842.29..867.20 rows=9963 width=36) Sort Key: sample1.id -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36) (8 rows) Explaining the Postgres Query Optimizer 38 / 56
  • 39. Merge Join Sorted Sorted Outer Inner aaa aab aac aad aaa aab aab aac aae aaf aaf Ideal for Large Tables An Index Can Be Used to Eliminate the Sort Explaining the Postgres Query Optimizer 39 / 56
  • 40. Pseudocode for Merge Join sort(outer); sort(inner); i = 0; j = 0; save_j = 0; while (i < length(outer)) if (outer[i] == inner[j]) output(outer[i], inner[j]); if (outer[i] <= inner[j] && j < length(inner)) j++; if (outer[i] < inner[j]) save_j = j; else i++; j = save_j; Explaining the Postgres Query Optimizer 40 / 56
  • 41. Order of Joined Relations Is Insignificant EXPLAIN SELECT sample2.junk FROM sample2 JOIN sample1 ON (sample2.id = sample1.id); QUERY PLAN ------------------------------------------------------------------------ Merge Join (cost=927.72..1852.95 rows=61272 width=32) Merge Cond: (sample2.id = sample1.id) -> Sort (cost=85.43..88.50 rows=1230 width=36) Sort Key: sample2.id -> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=36) -> Sort (cost=842.29..867.20 rows=9963 width=4) Sort Key: sample1.id -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=4) (8 rows) The most restrictive relation, e.g. sample2, is always on the outer side of merge joins. All previous merge joins also had sample2 in outer position. Explaining the Postgres Query Optimizer 41 / 56
  • 42. Add Optimizer Statistics ANALYZE sample1; ANALYZE sample2; Explaining the Postgres Query Optimizer 42 / 56
  • 43. This Was a Merge Join without Optimizer Statistics EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN ------------------------------------------------------------------------ Hash Join (cost=15.85..130.47 rows=260 width=254) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=12.60..12.60 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) (5 rows) Explaining the Postgres Query Optimizer 43 / 56
  • 44. Outer Joins Can Affect Optimizer Join Usage EXPLAIN SELECT sample1.junk FROM sample1 RIGHT OUTER JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN -------------------------------------------------------------------------- Hash Left Join (cost=131.76..148.26 rows=260 width=254) Hash Cond: (sample2.id = sample1.id) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=4) -> Hash (cost=103.56..103.56 rows=2256 width=258) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=258) (5 rows) Use of hashes for outer joins was added in Postgres 9.1. Explaining the Postgres Query Optimizer 44 / 56
  • 45. Cross Joins Are Nested Loop Joins without Join Restriction EXPLAIN SELECT sample1.junk FROM sample1 CROSS JOIN sample2; QUERY PLAN ---------------------------------------------------------------------- Nested Loop (cost=0.00..7448.81 rows=586560 width=254) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=254) -> Materialize (cost=0.00..13.90 rows=260 width=0) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=0) (4 rows) Explaining the Postgres Query Optimizer 45 / 56
  • 46. Create Indexes CREATE INDEX i_sample1 on sample1 (id); CREATE INDEX i_sample2 on sample2 (id); Explaining the Postgres Query Optimizer 46 / 56
  • 47. Nested Loop with Inner Index Scan Now Possible EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample1.id = 33; QUERY PLAN --------------------------------------------------------------------------------- Nested Loop (cost=0.00..16.55 rows=1 width=254) -> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4) Index Cond: (id = 33::oid) -> Index Scan using i_sample2 on sample2 (cost=0.00..8.27 rows=1 width=258) Index Cond: (sample2.id = 33::oid) (5 rows) Explaining the Postgres Query Optimizer 47 / 56
  • 48. Nested Loop Join with Inner Index Scan Outer Inner aag aai aay aag aar aai aas aar aay aaa aag Index Lookup No Setup Required Index Must Already Exist Explaining the Postgres Query Optimizer 48 / 56
  • 49. Pseudocode for Nested Loop Join with Inner Index Scan for (i = 0; i < length(outer); i++) index_entry = get_first_match(outer[j]) while (index_entry) output(outer[i], inner[index_entry]); index_entry = get_next_match(index_entry); Explaining the Postgres Query Optimizer 49 / 56
  • 50. Query Restrictions Affect Join Usage EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample2.junk ˜ ’^aaa’; QUERY PLAN ------------------------------------------------------------------------------- Nested Loop (cost=0.00..21.53 rows=1 width=254) -> Seq Scan on sample2 (cost=0.00..13.25 rows=1 width=258) Filter: (junk ˜ ’^aaa’::text) -> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4) Index Cond: (sample1.id = sample2.id) (5 rows) No junk rows begin with ’aaa’. Explaining the Postgres Query Optimizer 50 / 56
  • 51. All ’junk’ Columns Begin with ’xxx’ EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample2.junk ˜ ’^xxx’; QUERY PLAN ------------------------------------------------------------------------ Hash Join (cost=16.50..131.12 rows=260 width=254) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=13.25..13.25 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..13.25 rows=260 width=258) Filter: (junk ˜ ’^xxx’::text) (6 rows) Hash join was chosen because many more rows are expected. The smaller table, e.g. sample2, is always hashed. Explaining the Postgres Query Optimizer 51 / 56
  • 52. Without LIMIT, Hash Is Used for this Unrestricted Join EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN ------------------------------------------------------------------------ Hash Join (cost=15.85..130.47 rows=260 width=254) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=12.60..12.60 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) (5 rows) Explaining the Postgres Query Optimizer 52 / 56
  • 53. LIMIT Can Affect Join Usage EXPLAIN SELECT sample2.id, sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) ORDER BY 1 LIMIT 1; QUERY PLAN ------------------------------------------------------------------------------------------ Limit (cost=0.00..1.83 rows=1 width=258) -> Nested Loop (cost=0.00..477.02 rows=260 width=258) -> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258) -> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4) Index Cond: (sample1.id = sample2.id) (5 rows) Explaining the Postgres Query Optimizer 53 / 56
  • 54. LIMIT 10 EXPLAIN SELECT sample2.id, sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) ORDER BY 1 LIMIT 10; QUERY PLAN ------------------------------------------------------------------------------------------ Limit (cost=0.00..18.35 rows=10 width=258) -> Nested Loop (cost=0.00..477.02 rows=260 width=258) -> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258) -> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4) Index Cond: (sample1.id = sample2.id) (5 rows) Explaining the Postgres Query Optimizer 54 / 56
  • 55. LIMIT 100 Switches to Hash Join EXPLAIN SELECT sample2.id, sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) ORDER BY 1 LIMIT 100; QUERY PLAN ------------------------------------------------------------------------------------ Limit (cost=140.41..140.66 rows=100 width=258) -> Sort (cost=140.41..141.06 rows=260 width=258) Sort Key: sample2.id -> Hash Join (cost=15.85..130.47 rows=260 width=258) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=12.60..12.60 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) (8 rows) Explaining the Postgres Query Optimizer 55 / 56