SlideShare a Scribd company logo
Getting Started
What & Why?
What is Power BI?
“A business analytics solution that lets you visualize your data
and share insights across your organization. Connect to hundreds of data sources and
bring your data to life with live dashboards and reports.”
Three Core Areas
Data Preparation & Analysis
Visualization
Collaboration & Sharing
Dashboards
Collaboration
Share Results
Datasets
Visuals
Reports
Mobile App
Website Login
Understanding the Core Power BI Toolset
Power BI Desktop Power BI Service (Pro) Power BI Mobile
Access Anywhere
Windows Only
Datasets
Visuals
Reports
Course Outline
Getting Started
Prerequisites
The Query Editor
Analyzing Data
Visualizing Data
Power BI Service
Power BI Mobile
Additional Data
Sources
How to Stay
Updated?
Roundup & Next
Steps
Work locally in Power BI Desktop Collaborate Dive Deeper Master Power BI
Bonus:
Advanced
Features
How to Get The Most Out Of This Course
Watch the Videos
Work Along & Do the
Exercises
At your Speed!
Pause & Rewind!
Use the Course Resources
Attached Project Files
& Links
Ask in Q&A
Help others in Q&A
Great Learnings
Guaranteed!
Power BI Desktop
Exploring the Desktop Application
Module Overview
How to Use the Attached Project Files
Power BI Desktop Workflow
Exploring the Data Model
The Query Editor Interface
Recommended Settings
Understanding the Workflow
Data Preparation
Query Editor
Data Modeling
Data View Relationship View
Data Visualization
Report View
Data Model
Diving Into The Query Editor
Preparing our Dataset
Module Overview
Connecting Power BI Desktop to Files
Editing Rows & Columns
Appending & Merging Queries
Creating a Data Schema (Star Schema)
Conditional Columns & Mathematical
Operations
Understanding the Workflow
Data Preparation
Query Editor
Data Modeling
Data View Relationship View
Data Visualization
Report View
Data Model
Understanding Append
Germany 100 -20 2014
Query 1
New
Query
Query 2
Column amount and names must be equal in initial queries!
Country Revenue Cost Year
Country Revenue Cost Year
Germany 100
8 -20
2 2014
5
Germany 108
5 -22
5 2015
6
Germany 105 -25 2016
C
Go
er
u
m
nt
a
rn
yy Reve1
n1
u0
e C
-
o
2
s
4
t 2
Y
0
e
1
a
7
r
Germany 110
6 -25 2018
Germany 126
2 -27 2019
Germany 122 -27 2019
Pivoting & Unpivoting
Attribute
Value
Unpivot
Pivot
Product 2018 2019 2020
Product Attribute Value
Apple 2018 10
Apple 2019 12
Apple 2020 13
Banana 2018 23
Banana 2019 25
Banana 2020 21
Product 2018 2019 2020
1
0
1
0 1
2
1
2 1
3
1
3
2
3
2
3 2
5
2
5 2
1
2
1
Product 2018 2019 2020
Apple 10 12 13
Banana 23 25 21
What we Achieved so Far & How to Continue
Source File Connection
Row & Column Operations
Filters, Formatting, Error Handling
Appending Queries
Pivoting & Unpivoting
Splitting Columns
Basic Cleaning & Shaping
Develop & Implement our
own Data Model
The Star Schema
• Customer-ID
• FirstName
• SecondName
• Age
• Gender
• Product-ID
• Date-ID
• Customer-ID
• Region-ID
• UnitsSold
• TotalSales
• TotalCost
• Date-ID
• Year
• Quarter
• Month
• Week
• Day
• Region-ID
• Continent
• Country
• City
• Product-ID
• ProductType
• PricePerUnit
• CostPerUnit
DIM TABLE FACT TABLE
VS
SalesPoint
Customers
Products
Time
Sales
Current Project Structure & Star Schema
Population-
Combined
• Country-ID
• Country
• Year
• Age-Group
• Gender
• Population
DIM Region
• Country-ID
• Country
• Region
FACT Population
• Country-ID
• Age-Group-ID
• Year
• Gender
• Population
DIM Age
• Age-Group-ID
• Age-Group
• Category
Reference vs Duplicate
Query Query Query
1 2 3
Combined Query
Applied Steps
Source
Removed Columns
…
Reference 1
Reference 2
Query Query Query
1 2 3
Combined Query
Applied Steps
Source
Removed Columns
…
Duplicate 1
Combined Query
Applied Steps
Source
Removed Columns
…
Duplicate 2
Reference Duplicate
Merging Queries Theory
Query 1
Customer ID Product Price
1 TV 599
7 Notebook 1.699
1 Phone 999
Query 2
Customer ID Name
1 Max
7 Manuel
Customer ID Product Price Name
1 TV 599 Max
7 Notebook 1.699 Manuel
1 Phone 999 Max
Query 1 +Query 2
Merg
e
Understanding “Join Kind“
ID Sales
A 10
B 50
C 20
LEFT
QUERY
RIGHT
QUERY
LEFT
ID Sales Region
A 10 USA
B 50 n/a
C 20 Asia
RIGHT
ID Region Sales
A USA 10
BB Europe n/a
C Asia 20
FULL
ID Sales Region
A 10 USA
B 50 n/a
C 20 Asia
BB n/a Europe
ID Region
A USA
BB Europe
C Asia
INNER
ID Sales Region
A 10 USA
C 20 Asia
LEFT
ID Sales Region
B 50 n/a
RIGHT
ID Region Sales
BB Europe n/a
OUTER
ANTI
Completing our Star Schema
DIM Region
• Country-ID
• Country
• Region
FACT Population
• Country-ID
• Age-Group-ID
• Year
• Gender
• Population
DIM Age
• Age-Group-ID
• Age-Group
• Category
Understanding “Enable Load“
Query 1
Query 2
Combined
Query
Enable Load
Query Editor
Data Model
Query 1
Query 2
Combined
Query
Enable Load
Query 1 Query 2
Combined
Query
Combined
Query
Module Summary
File Connections
Row & Column Operations
Filters, Formatting, Error Handling
Appending & Merging Queries
Pivoting & Unpivoting
Splitting Columns & Extracting Values
Project Organization (Groups) &
Performance Optimization
Data Schemas (Star Schema)
Duplicates vs References
Entering Data Manually
Working with Indexes
Conditional Columns & Mathematical
Operations
Data View & Relationships
Diving Deeper Into Data Analysis
Module Overview
Understanding Relationships
M Language vs DAX
DAX Introduction
Calculated Columns vs Measures
Categorizing Data
Another Look at the Workflow
Data Preparation
Query Editor
Data Modeling
Data View Relationship View
Data Visualization
Report View
Data Model
Query Editor vs. Data Model
File Connection
Clean Data
Shape Data
Prepare & Structure Data
Query Editor
Relationships
Calculated Columns
Measures
Analyse Data
Data Model
Diving Into Relationships
Cardinality
Cross Filter Direction
Active Properties
Relationship Type
One to many (1:*) & Many to one (*:1)
Customers
ID-Customer FirstName SecondName
1 Maximilian Schwarzmueller
2 John Meyer
3 Linda Belle
4 Manuel Lorenz
ID-Order OrderDate ID-Customer
A 01 Jan 2020 1
B 08 Jan 2020 2
C 15 Jan 2020 1
D 25 Jan 2020 1
E 05 Feb 2020 3
F 15 Feb 2020 4
Orders
Each Customer is Unique Each Customer can have Multiple Orders
One to one (1:1)
ID-Passport Valid Issued FirstName SecondName Country
1 2025 2005 Maximilian Schwarzmueller Germany
2 2021 1999 John Meyer USA
3 2027 1997 Linda Belle Japan
ID-Passport FirstName Second Name Country
1 Maximilian Schwarzmueller Germany
2 John Meyer USA
3 Linda Belle Japan
ID-Passport Valid Issued
1 2025 2005
2 2021 1999
3 2027 1997
Passport Person
Diving Into Relationships
Cardinality
Cross Filter Direction
Active Properties
Relationship Type
Diving Into Relationships
Cardinality
Cross Filter Direction
Active Properties
Relationship Type
One Tool - Two Languages
Description Where to Apply
Power Query Formula Language
Data Transformation
Data Analysis Expression Language
Analytical Data Calculations
Comparable to Excel Functions
M
DAX
Data Preparation
Create Insights
Before Data Model
In Data Model
DAX Basics
DAX Reference (Official Docs) https://docs.microsoft.com/en-us/dax/
Syntax
Operators
DAX Queries
DAX Statements
Functions
Formula = …
DEFINE EVALUATE ORDER BY VAR
+ -
CONCATENATE()
Basics
Advanced
Data Types String Number
DAX Syntax – Core Rules
Total Population =
Formula Name
• Capital Letters
• Space
DAX Function
Table Reference
• Capital Letters
• No Space
Column Reference
• Square Brackets
• Capital Letters
• No Space
With space in table names, single
quotes are required
Square brackets
always required
SUM ( FactPopulation [ PopulationCount ] )
DAX Data Types
Whole & Decimal Numbers
Boolean
String (Text)
Date/Time
Currency
Blank (NA)
“The DAX Basics“
564 949.59
TRUE FALSE
January 1st 2020
DAX Operators
Arithmetic Comparison Logical
+
-
*
/
^
=
=
=
>
>
=
<
>
&&
|
|
IN
Text concat.
&
DAX Core Functions
Text
Logical
Information
Math
Statistical
Date & Time
Filter
CONCATENATE(“I Love Power”,”BI”) ILove PowerBI
ISNUMBER(2020) TRUE
IF([Population]>100000,“Big“,“Small“) Big Small
ROUND(352.867,2) 352.87
AVERAGE(Dim-Fact[Population])
FILTER(Dim-Fact[Year]=2020)
CALENDAR(DATE(2000,01,01),DATE(2020,12,31))
Calculated Columns vs Measures
Calculated Column Measure
“Perform an operation that generates
results for each row of your table“
“Return a single result of a calculation
or an aggregated value (e.g. Averages)“
FILTER & CALCULATE
FILTER = <filter>
CALCULATE = <filter1> )
( <expression> ,
)
( <table>
<filter2>
,
,
Module Summary
Query Editor vs Data Model
Relationships
Cardinality, Cross-Filter-Direction &
Active Properties
M vs DAX
DAX Basics - Theory
DAX Basics - Calculated Columns
Calculated Columns vs Measures
Categorizing Data
Combining Measures
DAX Basics - Measures
Report View
Diving Into Charts, Tables & More
Module Overview
Creating Visuals & Understanding Reports
Filters, Hierarchies & Interactions
Chart Formatting
Another Look at the Workflow
Data Preparation
Query Editor
Data Modeling
Data View Relationship View
Data Visualization
Report View
Data Model
Basic Visual Concepts
Legend
2000 2010
Axis
2020
Value
Tooltip
Total
GER
USA
Senior 32%
Module Summary
Basic Visual Concepts
Line, Bar & Column Charts
Tooltips & Interactions
Hierarchies & Drill Mode
Formatting of Visuals
Report & Visual Themes
The Slicer
Custom Visuals
Combined Visuals
Filter Types
Power BI Pro & Power BI Mobile
Going from Local Projects to the Cloud
Module Overview
Publishing Projects from Power BI Desktop to
Power BI Pro (Service)
Collaborating in Workspaces
Sharing Data with Power BI Pro & Power BI Mobile
How to Continue
IT
Marketing
Organization
Single User
Power BI Desktop
STOP Power BI Pro (Service)
Power BI Mobile
Publish
Access
Power BI Desktop
Power BI Pro
Power BI Mobile
Publish
Share
Power BI Pro
Publishing to Power BI Pro
Power BI Desktop
Our Computer
Publish/Connect
Power BI Pro
Report +Dataset
Server
Personal Gateway Standard Gateway
Power BI Pro
Sharing
Workspaces, Apps & Content Packs
Power BI Pro
Datasets
Reports
Dashboard
Dataset
Report
Dashboard
Dataset
Report
Dashboard
My (“Your“) Workspace
“Your personal cloud workspace“
“Other“ Workspaces
“Company-wide collaboration workspace“
App
Sharing
Content Pack
Sharing Data: Workspace or App?
Workspace
App
Multiple Developers
End-User
My Workspace Single Developer
Module Summary
Free vs Pro vs Premium
Power BI Pro Interface
My Workspace
Power BI Pro & Desktop Connection
Datasets, Reports & Dashboards
Data Refresh with Gateways
Collaboration Workspaces & Apps
Power BI Mobile
Course Roundup
CONGRATULATIONS!
What you Learned…
Power BI Desktop Power BI Pro & Mobile Advanced
Data Preparation Publish Data to Pro SQL, JSON, REST APIs
Data Models My Workspace Creating Custom Visuals
Relationships Workspaces (Collaborate) Column from Examples
M & DAX Apps DAX Studio
Visuals & Reports Access Anywhere …
… and How to Continue
Repeat unclear Concepts
Redo the Project on your own
Create own Projects –the Web is full
of Amazing Data to Discover
Dive into the Official Docs
Stay up-to-date

More Related Content

PDF
Using MS Power BI to create full, interactive reports using Brightspace Data ...
PPTX
Analyzing and Visualizing Data with Power BI (SF)_Student.pptx
PPTX
Self-Service Business Intelligence with Power BI
PPTX
Microsoft Power BI: AI Powered Analytics
PDF
Groupby -Power bi dashboard in hour by vishal pawar-Presentation
PPTX
A presentation that explain the Power BI Licensing
PPTX
Power BI for Business Intelligencee.pptx
PPTX
Calculated Columns and Measures in Power BI.pptx
Using MS Power BI to create full, interactive reports using Brightspace Data ...
Analyzing and Visualizing Data with Power BI (SF)_Student.pptx
Self-Service Business Intelligence with Power BI
Microsoft Power BI: AI Powered Analytics
Groupby -Power bi dashboard in hour by vishal pawar-Presentation
A presentation that explain the Power BI Licensing
Power BI for Business Intelligencee.pptx
Calculated Columns and Measures in Power BI.pptx

Similar to PowerBI importance of power bi in data analytics field (20)

PDF
slides.pdf
PDF
power-bi-complete-guide-slides.pdf
PPTX
Shape Your Data into a Data Model with M
 
PDF
2014 AIR "Power" Tools for IR Reporting
PPTX
Dax en
ODP
Oracle SQL Advanced
PDF
data science hot.pdf
PDF
From 0 to DAX…………………………………………………………..pdf
PPTX
DAX (Data Analysis eXpressions) from Zero to Hero
PPTX
Welcome to PowerBI and Tableau
PPTX
MS Access Ch 2 PPT
PDF
Day 1 DAMC.pdfaqwerfdggghbbjmjm jolk lṇn
PPTX
Getting Started with MS Access and Pivot Tables
PPTX
Short term intern ship report on Data Visualizartion
PDF
Power BI Tutorial for analysis optimasi network
PDF
Microsoft Power BI Online Training.pdf
PDF
DAY 02 .pdfcetryuj binolkjmoljollkl;klll
PDF
knowledgeforumpowerbitrainingnew-230816140827-5eb14be7.pdf
PDF
PowerBI Training
PDF
Access 03
slides.pdf
power-bi-complete-guide-slides.pdf
Shape Your Data into a Data Model with M
 
2014 AIR "Power" Tools for IR Reporting
Dax en
Oracle SQL Advanced
data science hot.pdf
From 0 to DAX…………………………………………………………..pdf
DAX (Data Analysis eXpressions) from Zero to Hero
Welcome to PowerBI and Tableau
MS Access Ch 2 PPT
Day 1 DAMC.pdfaqwerfdggghbbjmjm jolk lṇn
Getting Started with MS Access and Pivot Tables
Short term intern ship report on Data Visualizartion
Power BI Tutorial for analysis optimasi network
Microsoft Power BI Online Training.pdf
DAY 02 .pdfcetryuj binolkjmoljollkl;klll
knowledgeforumpowerbitrainingnew-230816140827-5eb14be7.pdf
PowerBI Training
Access 03
Ad

Recently uploaded (20)

PPTX
modul_python (1).pptx for professional and student
PPTX
Leprosy and NLEP programme community medicine
PDF
Global Data and Analytics Market Outlook Report
PPTX
Managing Community Partner Relationships
PPTX
Database Infoormation System (DBIS).pptx
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PPT
Predictive modeling basics in data cleaning process
PPTX
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
PDF
Data Engineering Interview Questions & Answers Batch Processing (Spark, Hadoo...
PPTX
QUANTUM_COMPUTING_AND_ITS_POTENTIAL_APPLICATIONS[2].pptx
PDF
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PPTX
Introduction to Inferential Statistics.pptx
PDF
Jean-Georges Perrin - Spark in Action, Second Edition (2020, Manning Publicat...
PPT
ISS -ESG Data flows What is ESG and HowHow
PDF
Introduction to the R Programming Language
PPTX
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
PPTX
New ISO 27001_2022 standard and the changes
PPTX
retention in jsjsksksksnbsndjddjdnFPD.pptx
PDF
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
modul_python (1).pptx for professional and student
Leprosy and NLEP programme community medicine
Global Data and Analytics Market Outlook Report
Managing Community Partner Relationships
Database Infoormation System (DBIS).pptx
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
Predictive modeling basics in data cleaning process
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
Data Engineering Interview Questions & Answers Batch Processing (Spark, Hadoo...
QUANTUM_COMPUTING_AND_ITS_POTENTIAL_APPLICATIONS[2].pptx
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
Introduction to Inferential Statistics.pptx
Jean-Georges Perrin - Spark in Action, Second Edition (2020, Manning Publicat...
ISS -ESG Data flows What is ESG and HowHow
Introduction to the R Programming Language
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
New ISO 27001_2022 standard and the changes
retention in jsjsksksksnbsndjddjdnFPD.pptx
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
Ad

PowerBI importance of power bi in data analytics field

  • 2. What is Power BI? “A business analytics solution that lets you visualize your data and share insights across your organization. Connect to hundreds of data sources and bring your data to life with live dashboards and reports.”
  • 3. Three Core Areas Data Preparation & Analysis Visualization Collaboration & Sharing
  • 4. Dashboards Collaboration Share Results Datasets Visuals Reports Mobile App Website Login Understanding the Core Power BI Toolset Power BI Desktop Power BI Service (Pro) Power BI Mobile Access Anywhere Windows Only Datasets Visuals Reports
  • 5. Course Outline Getting Started Prerequisites The Query Editor Analyzing Data Visualizing Data Power BI Service Power BI Mobile Additional Data Sources How to Stay Updated? Roundup & Next Steps Work locally in Power BI Desktop Collaborate Dive Deeper Master Power BI Bonus: Advanced Features
  • 6. How to Get The Most Out Of This Course Watch the Videos Work Along & Do the Exercises At your Speed! Pause & Rewind! Use the Course Resources Attached Project Files & Links Ask in Q&A Help others in Q&A Great Learnings Guaranteed!
  • 7. Power BI Desktop Exploring the Desktop Application
  • 8. Module Overview How to Use the Attached Project Files Power BI Desktop Workflow Exploring the Data Model The Query Editor Interface Recommended Settings
  • 9. Understanding the Workflow Data Preparation Query Editor Data Modeling Data View Relationship View Data Visualization Report View Data Model
  • 10. Diving Into The Query Editor Preparing our Dataset
  • 11. Module Overview Connecting Power BI Desktop to Files Editing Rows & Columns Appending & Merging Queries Creating a Data Schema (Star Schema) Conditional Columns & Mathematical Operations
  • 12. Understanding the Workflow Data Preparation Query Editor Data Modeling Data View Relationship View Data Visualization Report View Data Model
  • 13. Understanding Append Germany 100 -20 2014 Query 1 New Query Query 2 Column amount and names must be equal in initial queries! Country Revenue Cost Year Country Revenue Cost Year Germany 100 8 -20 2 2014 5 Germany 108 5 -22 5 2015 6 Germany 105 -25 2016 C Go er u m nt a rn yy Reve1 n1 u0 e C - o 2 s 4 t 2 Y 0 e 1 a 7 r Germany 110 6 -25 2018 Germany 126 2 -27 2019 Germany 122 -27 2019
  • 14. Pivoting & Unpivoting Attribute Value Unpivot Pivot Product 2018 2019 2020 Product Attribute Value Apple 2018 10 Apple 2019 12 Apple 2020 13 Banana 2018 23 Banana 2019 25 Banana 2020 21 Product 2018 2019 2020 1 0 1 0 1 2 1 2 1 3 1 3 2 3 2 3 2 5 2 5 2 1 2 1 Product 2018 2019 2020 Apple 10 12 13 Banana 23 25 21
  • 15. What we Achieved so Far & How to Continue Source File Connection Row & Column Operations Filters, Formatting, Error Handling Appending Queries Pivoting & Unpivoting Splitting Columns Basic Cleaning & Shaping Develop & Implement our own Data Model
  • 16. The Star Schema • Customer-ID • FirstName • SecondName • Age • Gender • Product-ID • Date-ID • Customer-ID • Region-ID • UnitsSold • TotalSales • TotalCost • Date-ID • Year • Quarter • Month • Week • Day • Region-ID • Continent • Country • City • Product-ID • ProductType • PricePerUnit • CostPerUnit DIM TABLE FACT TABLE VS SalesPoint Customers Products Time Sales
  • 17. Current Project Structure & Star Schema Population- Combined • Country-ID • Country • Year • Age-Group • Gender • Population DIM Region • Country-ID • Country • Region FACT Population • Country-ID • Age-Group-ID • Year • Gender • Population DIM Age • Age-Group-ID • Age-Group • Category
  • 18. Reference vs Duplicate Query Query Query 1 2 3 Combined Query Applied Steps Source Removed Columns … Reference 1 Reference 2 Query Query Query 1 2 3 Combined Query Applied Steps Source Removed Columns … Duplicate 1 Combined Query Applied Steps Source Removed Columns … Duplicate 2 Reference Duplicate
  • 19. Merging Queries Theory Query 1 Customer ID Product Price 1 TV 599 7 Notebook 1.699 1 Phone 999 Query 2 Customer ID Name 1 Max 7 Manuel Customer ID Product Price Name 1 TV 599 Max 7 Notebook 1.699 Manuel 1 Phone 999 Max Query 1 +Query 2 Merg e
  • 20. Understanding “Join Kind“ ID Sales A 10 B 50 C 20 LEFT QUERY RIGHT QUERY LEFT ID Sales Region A 10 USA B 50 n/a C 20 Asia RIGHT ID Region Sales A USA 10 BB Europe n/a C Asia 20 FULL ID Sales Region A 10 USA B 50 n/a C 20 Asia BB n/a Europe ID Region A USA BB Europe C Asia INNER ID Sales Region A 10 USA C 20 Asia LEFT ID Sales Region B 50 n/a RIGHT ID Region Sales BB Europe n/a OUTER ANTI
  • 21. Completing our Star Schema DIM Region • Country-ID • Country • Region FACT Population • Country-ID • Age-Group-ID • Year • Gender • Population DIM Age • Age-Group-ID • Age-Group • Category
  • 22. Understanding “Enable Load“ Query 1 Query 2 Combined Query Enable Load Query Editor Data Model Query 1 Query 2 Combined Query Enable Load Query 1 Query 2 Combined Query Combined Query
  • 23. Module Summary File Connections Row & Column Operations Filters, Formatting, Error Handling Appending & Merging Queries Pivoting & Unpivoting Splitting Columns & Extracting Values Project Organization (Groups) & Performance Optimization Data Schemas (Star Schema) Duplicates vs References Entering Data Manually Working with Indexes Conditional Columns & Mathematical Operations
  • 24. Data View & Relationships Diving Deeper Into Data Analysis
  • 25. Module Overview Understanding Relationships M Language vs DAX DAX Introduction Calculated Columns vs Measures Categorizing Data
  • 26. Another Look at the Workflow Data Preparation Query Editor Data Modeling Data View Relationship View Data Visualization Report View Data Model
  • 27. Query Editor vs. Data Model File Connection Clean Data Shape Data Prepare & Structure Data Query Editor Relationships Calculated Columns Measures Analyse Data Data Model
  • 28. Diving Into Relationships Cardinality Cross Filter Direction Active Properties Relationship Type
  • 29. One to many (1:*) & Many to one (*:1) Customers ID-Customer FirstName SecondName 1 Maximilian Schwarzmueller 2 John Meyer 3 Linda Belle 4 Manuel Lorenz ID-Order OrderDate ID-Customer A 01 Jan 2020 1 B 08 Jan 2020 2 C 15 Jan 2020 1 D 25 Jan 2020 1 E 05 Feb 2020 3 F 15 Feb 2020 4 Orders Each Customer is Unique Each Customer can have Multiple Orders
  • 30. One to one (1:1) ID-Passport Valid Issued FirstName SecondName Country 1 2025 2005 Maximilian Schwarzmueller Germany 2 2021 1999 John Meyer USA 3 2027 1997 Linda Belle Japan ID-Passport FirstName Second Name Country 1 Maximilian Schwarzmueller Germany 2 John Meyer USA 3 Linda Belle Japan ID-Passport Valid Issued 1 2025 2005 2 2021 1999 3 2027 1997 Passport Person
  • 31. Diving Into Relationships Cardinality Cross Filter Direction Active Properties Relationship Type
  • 32. Diving Into Relationships Cardinality Cross Filter Direction Active Properties Relationship Type
  • 33. One Tool - Two Languages Description Where to Apply Power Query Formula Language Data Transformation Data Analysis Expression Language Analytical Data Calculations Comparable to Excel Functions M DAX Data Preparation Create Insights Before Data Model In Data Model
  • 34. DAX Basics DAX Reference (Official Docs) https://docs.microsoft.com/en-us/dax/ Syntax Operators DAX Queries DAX Statements Functions Formula = … DEFINE EVALUATE ORDER BY VAR + - CONCATENATE() Basics Advanced Data Types String Number
  • 35. DAX Syntax – Core Rules Total Population = Formula Name • Capital Letters • Space DAX Function Table Reference • Capital Letters • No Space Column Reference • Square Brackets • Capital Letters • No Space With space in table names, single quotes are required Square brackets always required SUM ( FactPopulation [ PopulationCount ] )
  • 36. DAX Data Types Whole & Decimal Numbers Boolean String (Text) Date/Time Currency Blank (NA) “The DAX Basics“ 564 949.59 TRUE FALSE January 1st 2020
  • 37. DAX Operators Arithmetic Comparison Logical + - * / ^ = = = > > = < > && | | IN Text concat. &
  • 38. DAX Core Functions Text Logical Information Math Statistical Date & Time Filter CONCATENATE(“I Love Power”,”BI”) ILove PowerBI ISNUMBER(2020) TRUE IF([Population]>100000,“Big“,“Small“) Big Small ROUND(352.867,2) 352.87 AVERAGE(Dim-Fact[Population]) FILTER(Dim-Fact[Year]=2020) CALENDAR(DATE(2000,01,01),DATE(2020,12,31))
  • 39. Calculated Columns vs Measures Calculated Column Measure “Perform an operation that generates results for each row of your table“ “Return a single result of a calculation or an aggregated value (e.g. Averages)“
  • 40. FILTER & CALCULATE FILTER = <filter> CALCULATE = <filter1> ) ( <expression> , ) ( <table> <filter2> , ,
  • 41. Module Summary Query Editor vs Data Model Relationships Cardinality, Cross-Filter-Direction & Active Properties M vs DAX DAX Basics - Theory DAX Basics - Calculated Columns Calculated Columns vs Measures Categorizing Data Combining Measures DAX Basics - Measures
  • 42. Report View Diving Into Charts, Tables & More
  • 43. Module Overview Creating Visuals & Understanding Reports Filters, Hierarchies & Interactions Chart Formatting
  • 44. Another Look at the Workflow Data Preparation Query Editor Data Modeling Data View Relationship View Data Visualization Report View Data Model
  • 45. Basic Visual Concepts Legend 2000 2010 Axis 2020 Value Tooltip Total GER USA Senior 32%
  • 46. Module Summary Basic Visual Concepts Line, Bar & Column Charts Tooltips & Interactions Hierarchies & Drill Mode Formatting of Visuals Report & Visual Themes The Slicer Custom Visuals Combined Visuals Filter Types
  • 47. Power BI Pro & Power BI Mobile Going from Local Projects to the Cloud
  • 48. Module Overview Publishing Projects from Power BI Desktop to Power BI Pro (Service) Collaborating in Workspaces Sharing Data with Power BI Pro & Power BI Mobile
  • 49. How to Continue IT Marketing Organization Single User Power BI Desktop STOP Power BI Pro (Service) Power BI Mobile Publish Access Power BI Desktop Power BI Pro Power BI Mobile Publish Share Power BI Pro
  • 50. Publishing to Power BI Pro Power BI Desktop Our Computer Publish/Connect Power BI Pro Report +Dataset Server Personal Gateway Standard Gateway Power BI Pro
  • 51. Sharing Workspaces, Apps & Content Packs Power BI Pro Datasets Reports Dashboard Dataset Report Dashboard Dataset Report Dashboard My (“Your“) Workspace “Your personal cloud workspace“ “Other“ Workspaces “Company-wide collaboration workspace“ App Sharing Content Pack
  • 52. Sharing Data: Workspace or App? Workspace App Multiple Developers End-User My Workspace Single Developer
  • 53. Module Summary Free vs Pro vs Premium Power BI Pro Interface My Workspace Power BI Pro & Desktop Connection Datasets, Reports & Dashboards Data Refresh with Gateways Collaboration Workspaces & Apps Power BI Mobile
  • 55. What you Learned… Power BI Desktop Power BI Pro & Mobile Advanced Data Preparation Publish Data to Pro SQL, JSON, REST APIs Data Models My Workspace Creating Custom Visuals Relationships Workspaces (Collaborate) Column from Examples M & DAX Apps DAX Studio Visuals & Reports Access Anywhere …
  • 56. … and How to Continue Repeat unclear Concepts Redo the Project on your own Create own Projects –the Web is full of Amazing Data to Discover Dive into the Official Docs Stay up-to-date