SlideShare a Scribd company logo
INVERSE TRIGONOMETRIC FUNCTION
INVERSE TRIGONOMETRIC
FUNCTION
INVERSE TRIGONOMETRIC FUNCTION
OBJECTIVE
PREVIOUS COMPETITIVE
QUESTIONS
INVERSE TRIGONOMETRIC FUNCTION
1. If , z > 0, xy + yz + zx < 1 and if then x + y + z =
[E – 2014]
xyz 3xyz 3) 0
Solution:
𝒕𝒂𝒏−𝟏
( 𝒙+ 𝒚 +𝒛 − 𝒙𝒚𝒛
𝟏− 𝒙𝒚 − 𝒚𝒛 − 𝒛𝒙 )=𝝅
x+y+z – xyz = 0
x + y + z = xyz
INVERSE TRIGONOMETRIC FUNCTION
2. [E– 2013]
𝟏¿
3
65
𝟐¿
−36
65
3) 𝟒¿−𝟏
INVERSE TRIGONOMETRIC FUNCTION
Solution:
𝒄𝒐𝒔
− 𝟏5
13
= 𝜶 =
𝒙=
𝟓
𝟏𝟑
×
𝟑
𝟓
−
𝟏𝟐
𝟏𝟑
×
𝟒
𝟓
𝒙=
−𝟑𝟑
𝟔𝟓
3
x =
cos(+)
INVERSE TRIGONOMETRIC FUNCTION
3. If then =
[E – 2012]
𝟏 ¿
π
2
𝟐 ¿
π
3
3) 0
Solution:
𝟏
𝟐
≤ 𝒙 ≤ 𝟏
Put x =1
𝒄𝒐𝒔
− 𝟏
𝒙 +𝒄𝒐𝒔
− 𝟏
(𝒙
𝟐
+
𝟏
𝟐
√𝟑− 𝟑 𝒙
𝟐
)=
𝝅
𝟑
INVERSE TRIGONOMETRIC FUNCTION
4. = [E – 2012]
𝟏¿−𝟏 𝟐¿𝟏 3) 𝟒¿𝛑
√𝟓
𝟖
Solution: By verification put x = -1
then
=
(x = -1 Satisfied)
L. H. S =
INVERSE TRIGONOMETRIC FUNCTION
5. + =
[E – 2010]
𝟏¿𝟏 𝟐¿𝟎 3) 𝟒¿𝟐
Solution:
A + B + C = then
Tan A tan B + tan B tan C +Tan C tan A =
Let
INVERSE TRIGONOMETRIC FUNCTION
6. 4 =
[E – 2009]
𝟏¿
19 π
12
𝟐¿
35 π
12
3) 𝟒¿
43π
12
Solution:
=
INVERSE TRIGONOMETRIC FUNCTION
7. If then x = [E – 2008]
𝟏¿𝟑 𝟐¿𝟓 3) 𝟒¿𝟏𝟏
Solution:
= 9 =
⇒ x =
= =
x =
INVERSE TRIGONOMETRIC FUNCTION
8. If then x= [E – 2007]
𝟏¿√𝟓 /3 3) 𝟒¿𝟐/𝟑
Solution:
=
⇒ 5 − 5 x𝟐
=𝟒 x𝟐
⇒ 9x𝟐
=𝟓
/3
INVERSE TRIGONOMETRIC FUNCTION
9. [E– 2005]
𝟏 ¿
π
3
𝟐 ¿
π
4
3) 𝟒¿𝟎
Solution:
=
INVERSE TRIGONOMETRIC FUNCTION
10. [E– 2003]
𝟏¿−𝟏/𝟑 𝟐¿𝟎 3) 1/3 𝟒¿𝟒/𝟗
Solution:
Cos( = 0
INVERSE TRIGONOMETRIC FUNCTION
11. [E– 2004]
𝟏¿{𝟏,𝟎} 𝟐¿{−𝟏,𝟏} 3) {0, } 𝟒¿{𝟐,𝟎}
Solution:
𝒙=𝟎( 𝒐𝒓 )𝟐 𝒙 − 𝒙𝟐
=𝟏− 𝒙𝟐
INVERSE TRIGONOMETRIC FUNCTION
12. A value of x for which sin is
[JEE MAINS– 2013]
𝟏¿ −
1
2 𝟐¿𝟎 3) 1 𝟒¿
𝟏
𝟐
Solution:
𝟏
√𝟏+(𝟏+𝒙 )
𝟐
=
𝟏
√𝟏+ 𝒙𝟐
𝟏+𝒙𝟐
=𝟐+ 𝒙𝟐
+𝟐 𝒙
x =
INVERSE TRIGONOMETRIC FUNCTION
13. Let x(0,1). The set of all x such that is the interval
[JEE MAINS– 2013]
𝟏¿
(𝟏
𝟐
,
𝟏
√𝟐) 𝟐¿
( 𝟏
√𝟐
,𝟏
) 3) (0,1) 𝟒¿(𝟎, √𝟑
𝟐 )
Solution: 𝑮𝒊𝒗𝒆𝒏𝒔𝒊𝒏−𝟏
𝒙>𝒄𝒐𝒔−𝟏
𝒙
𝟐𝒔𝒊𝒏
−𝟏
𝒙>
𝝅
𝟐
𝒔𝒊𝒏
−𝟏
𝒙 >
𝝅
𝟒
-
INVERSE TRIGONOMETRIC FUNCTION
x >
 x 
KEY :
2
INVERSE TRIGONOMETRIC FUNCTION
14. The number of solutions of the equations (in principal
values ) is [JEE MAINS– 2013]
3 1 3) 2
Solution:
𝒔𝒊 𝒏− 𝟏
𝒙=𝒔𝒊𝒏−𝟏
( 𝟐 𝒙
𝟏+𝒙
𝟐 )
𝒙 =
𝟐 𝒙
𝟏+ 𝒙
𝟐
𝒙 (𝟏+𝒙𝟐
)− 𝟐𝒙=𝟎
𝒙 ( 𝒙𝟐
−𝟏)=𝟎  x = {0, 1}
INVERSE TRIGONOMETRIC FUNCTION
15. If s =
[JEE MAINS– 2013]
𝟏¿
𝟐𝟎
𝟒𝟎𝟏+𝟐𝟎𝒏
𝟐¿
𝒏
𝒏
𝟐
+𝟐𝟎𝒏+𝟏
𝟑¿
𝟐𝟎
𝒏
𝟐
+𝟐𝟎𝒏+𝟏
𝟒¿
𝒏
𝟒𝟎𝟏+𝟐𝟎𝒏
INVERSE TRIGONOMETRIC FUNCTION
Solution:
¿𝒕𝒂𝒏−𝟏
(𝒏+𝟐𝟎)− 𝒕𝒂𝒏−𝟏
𝒏
𝒔=𝒕𝒂𝒏
−𝟏
( 𝟐𝟎
𝒏
𝟐
+𝟐𝟎𝒏+𝟏 )
INVERSE TRIGONOMETRIC FUNCTION
𝒕𝒂𝒏𝒔=
𝟐𝟎
𝒏
𝟐
+𝟐𝟎𝒏+𝟏
KEY :
3
INVERSE TRIGONOMETRIC FUNCTION
16. The value of cot [A – 2008]
𝟏¿𝟓/𝟏𝟕 𝟐¿𝟔/𝟏𝟕 3) 𝟒¿𝟒/𝟏𝟕
Solution:
Cot
Cot = 6/17
INVERSE TRIGONOMETRIC FUNCTION
17. If = then the value of x is
[A – 2007]
𝟏¿𝟏 𝟐¿𝟑 3) 𝟒¿𝟓
Solution:
=
⇒ x = 3
INVERSE TRIGONOMETRIC FUNCTION
18. If = then 4is equal to
[A– 2005]
𝟏¿𝟐𝒔𝒊𝒏𝟐𝜶 𝟐¿𝟒 3) 𝟒¿−𝟒𝒔𝒊𝒏𝟐
𝜶
Solution:
⇒ 4
⇒ 2x = y cos
⇒ 4
⇒ x = cos
⇒ x = cos .cos + s. s
= cos . + s.
INVERSE TRIGONOMETRIC FUNCTION
19. The equation has a solution [A– 2003]
in all values of  𝟐¿|𝜶|≤
1
√2
3)
𝟒¿
−1
√2
<|𝜶|<
1
√2
Solution:
𝒔𝒊𝒏−𝟏
𝒙=𝒔𝒊𝒏−𝟏
𝟐𝜶√𝟏−𝜶𝟐
Put  = sin
 = sin2 
= 2 
INVERSE TRIGONOMETRIC FUNCTION
If
− π
4
≤ 𝜽 ≤
π
4
− 1
√2
≤ 𝜶 ≤
1
√2
KEY:2
INVERSE TRIGONOMETRIC FUNCTION
20. then sinx =
[A– 2002]
𝟏 ¿ 𝒕𝒂𝒏
𝟐 𝜶
𝟐
𝟐¿𝒄𝒐𝒕𝟐
(𝜶
𝟐 ) 3) tan  𝟒¿ 𝒄𝒐𝒕
𝛂
𝟐
Solution:
𝒄𝒐𝒕−𝟏
√𝒄𝒐𝒔 𝜶 −𝒕𝒂𝒏−𝟏
√𝒄𝒐𝒔 𝜶=𝐱
𝒕𝒂𝒏
− 𝟏
( 𝟏
√cos α )−𝒕𝒂𝒏
−𝟏
√cosα=𝒙
 sinx =
1
𝟐√cos α
x
1
INVERSE TRIGONOMETRIC FUNCTION
21. [A– 2002]
𝟏¿
𝟏
𝟐
𝒄𝒐𝒔
− 𝟏
(𝟑
𝟓 ) 𝟐¿
𝟏
𝟐
𝒔𝒊𝒏
−𝟏
(𝟑
𝟓)
3) 𝟒 ¿ 𝒕𝒂𝒏−𝟏
(𝟏
𝟐 )
Solution:
Apply
INVERSE TRIGONOMETRIC FUNCTION
22. If for 0<then x = [AP EAM– 2015]
𝟏 ¿
𝟏
𝟐
𝟐¿𝟏 3) 𝟒¿− 𝟏
Solution: 𝒙
𝟏+
𝒙
𝟐
=
𝒙 𝟐
𝟏 +
𝒙
𝟐
𝟐
𝒙 +
𝒙𝟑
𝟐
=𝒙
𝟐
+
𝒙𝟑
𝟐
INVERSE TRIGONOMETRIC FUNCTION
x - = 0
x(1-x) = 0
x = 0,1
 x=1 ,
x≠0
KEY:2
INVERSE TRIGONOMETRIC FUNCTION
23. If then a value of x is
[TS EAM– 2015]
𝟏¿
𝟏
√𝟔
𝟐¿
−𝟏
√𝟏𝟐
𝟑¿
𝟐
√𝟔
𝟒¿
−𝟐
√𝟔
Solution: 𝟏
√𝟓
=
𝒙
√𝟏− 𝒙𝟐
𝟏 − 𝒙𝟐
=𝟓 𝒙𝟐
𝟏=𝟔 𝒙𝟐 
INVERSE TRIGONOMETRIC FUNCTION
24. If the value of y is
[JEE MAINS– 2015]
𝟏¿
𝟑𝒙 −𝒙𝟑
𝟏−𝟑 𝒙
𝟐
𝟐¿
𝟑 𝒙+𝒙𝟑
𝟏− 𝟑𝒙
𝟐 𝟑¿
𝟑𝒙 −𝒙𝟑
𝟏+𝟑 𝒙
𝟐
𝟒¿
𝟑𝒙+𝒙𝟑
𝟏+𝟑𝒙
𝟐
Solution:
𝒕𝒂𝒏−𝟏
𝒚 =𝒕𝒂𝒏−𝟏
𝒙 +𝟐𝒕𝒂𝒏− 𝟏
𝒙
𝒕𝒂𝒏−𝟏
𝒚 =𝟑𝒕𝒂𝒏−𝟏
𝒙
𝒕𝒂𝒏
−𝟏
𝒚 =𝒕𝒂𝒏
−𝟏
(𝟑𝒙 − 𝒙
𝟑
𝟏−𝟑 𝒙
𝟐 ) 
INVERSE TRIGONOMETRIC FUNCTION
25. If f (x) = 2
[J.M.O.L– 2015]
𝟏 ¿
𝝅
𝟐 𝟐¿𝛑 𝟑¿𝒕𝒂𝒏
−𝟏
( 𝟔𝟓
𝟏𝟓𝟔) 𝟒¿𝟒 𝒕𝒂𝒏−𝟏
(𝟓)
Solution:
𝒇 (𝒙)=𝟐𝒕𝒂𝒏−𝟏
𝒙+ 𝝅−𝟐𝒕𝒂𝒏−𝟏
𝒙
𝒇 ( 𝒙)=𝝅
𝒇 (𝟓 )=𝝅
INVERSE TRIGONOMETRIC FUNCTION
𝟐𝟔.𝐓𝐡𝐞 𝐯𝐚𝐥𝐮𝐞𝐨𝐟 𝐜𝐨𝐭
(∑
𝐧=𝟏
𝟏𝟗
𝐜𝐨𝐭
−𝟏
(𝟏+∑
𝐩=𝟏
𝐧
𝟐𝐩))𝐢𝐬𝐜𝐨𝐭
(∑
𝐧=𝟏
𝟏𝟗
𝐜𝐨𝐭
−𝟏
(𝟏+∑
𝐩=𝟏
𝐧
𝟐𝐩))
𝟏¿
𝟏𝟗
𝟐𝟎
𝟐¿
𝟐𝟎
𝟏𝟗
𝟑 ¿
𝟏𝟗
𝟐𝟏
𝟒 ¿
𝟐𝟏
𝟏𝟗
Solution:
𝒄𝒐𝒕(∑
𝒏=𝟏
𝟏𝟗
𝒄𝒐𝒕
−𝟏
(𝟏+𝟐
𝒏(𝒏+𝟏)
𝟐 ))
[B. Arch
2016]
INVERSE TRIGONOMETRIC FUNCTION
𝒄𝒐𝒕
(∑
𝒏=𝟏
𝟏𝟗
𝒕𝒂𝒏−𝟏
( 𝟏
𝟏+(𝒏+𝟏)(𝒏)))
𝒄𝒐𝒕
(∑
𝒏=𝟏
𝟏𝟗
𝒕𝒂𝒏
−𝟏
(𝒏+𝟏)−𝒕𝒂𝒏
−𝟏
𝒏
)
𝒄𝒐𝒕
(𝒕𝒂𝒏
−𝟏
(𝟏𝟗
𝟐𝟏 ))=
𝟐𝟏
𝟏𝟗
KEY :
4
INVERSE TRIGONOMETRIC FUNCTION
27. The value of x which satisfies
[J.M.O.L– 2015]
𝟏 ¿ −
𝟏
𝟐
𝟐¿
𝟏
𝟐 𝟑¿−𝟏 𝟒 ¿ 𝟏
Solution:
𝒔𝒊𝒏(𝒄𝒐𝒕−𝟏
) 𝒙=𝒄𝒐𝒔 (𝒕𝒂𝒏−𝟏
(𝟏+𝒙))
𝒄𝒐𝒕−𝟏
𝒙=𝜶,𝒕𝒂𝒏− 𝟏
(𝟏+ 𝒙)=𝜷
𝒙=𝒄𝒐𝒕 𝜶 𝒕𝒂𝒏 𝜷=𝟏+𝒙
INVERSE TRIGONOMETRIC FUNCTION
𝒔𝒊𝒏 𝜶=
𝟏
√𝟏+𝒙
𝟐
𝒄𝒐𝒔 𝜷=
𝟏
√𝟐 +𝟐 𝒙+𝒙
𝟐
𝟐+𝟐 𝒙 +𝒙𝟐
=𝟏+𝒙𝟐
𝟐 𝒙 =− 𝟏
𝒙 =−
𝟏
𝟐
KEY :
1
INVERSE TRIGONOMETRIC FUNCTION
28. If x = sin(2) and y = sin , then
[AP EAM – 2016]
𝟏¿ 𝒙>𝒚 𝟐¿ 𝒙=𝒚 𝟑¿ 𝒙=𝟎=𝒚 𝟒 ¿ 𝒙 < 𝒚
Solution:
𝒙=𝒔𝒊𝒏(𝟐𝒕𝒂𝒏−𝟏
(𝟐))
¿ 𝒕𝒂𝒏−𝟏
(𝟐 )=𝜶
𝒚 =𝒔𝒊𝒏(𝟏
𝟐
𝒕𝒂𝒏
− 𝟏 𝟒
𝟑)
¿ 𝒕𝒂𝒏
−𝟏 𝟒
𝟑
=𝜷
𝒕𝒂𝒏 𝜶=𝟐
¿ 𝒕𝒂𝒏 𝜷=
𝟒
𝟑
5
3
4

INVERSE TRIGONOMETRIC FUNCTION
𝝅
𝟒
<𝜶 <
𝝅
𝟐
𝒙=𝒔𝒊𝒏𝟐𝜶
¿
𝟐 (𝟐 )
𝟏+𝟒
=
𝟒
𝟓
𝝅
𝟒
< 𝜷<
𝝅
𝟐
𝒚 =𝒔𝒊𝒏
𝜷
𝟐
𝒚 =
√𝟏−𝒄𝒐𝒔 𝜷
𝟐
𝒚 =
√𝟏 −
𝟑
𝟓
𝟐
⇒
𝟏
√𝟓
𝒙 >𝒚
KEY :
1
INVERSE TRIGONOMETRIC FUNCTION
Thank you…

More Related Content

PDF
Storytelling For The Web: Integrate Storytelling in your Design Process
PDF
Artificial Intelligence, Data and Competition – SCHREPEL – June 2024 OECD dis...
PDF
How to Leverage AI to Boost Employee Wellness - Lydia Di Francesco - SocialHR...
PDF
2024 Trend Updates: What Really Works In SEO & Content Marketing
PPT
PPT_CLASS_12_MATHS_CH_2_Maths_XI_Inverse_trignometric_functions (1).ppt
PDF
2024 State of Marketing Report – by Hubspot
PDF
Everything You Need To Know About ChatGPT
PDF
Product Design Trends in 2024 | Teenage Engineerings
Storytelling For The Web: Integrate Storytelling in your Design Process
Artificial Intelligence, Data and Competition – SCHREPEL – June 2024 OECD dis...
How to Leverage AI to Boost Employee Wellness - Lydia Di Francesco - SocialHR...
2024 Trend Updates: What Really Works In SEO & Content Marketing
PPT_CLASS_12_MATHS_CH_2_Maths_XI_Inverse_trignometric_functions (1).ppt
2024 State of Marketing Report – by Hubspot
Everything You Need To Know About ChatGPT
Product Design Trends in 2024 | Teenage Engineerings

Recently uploaded (9)

PPTX
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
PDF
فورمولر عمومی مضمون فزیک برای همه انجنیران
PPTX
Tahfidz Qur’an TIMING tampa musik bagian 2.pptx
PDF
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
PDF
5.PDFsxcc c fvfvfv fvfvwCCDSDcvvcrdcfrwcwecwdcfwe
PDF
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
PDF
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
PPTX
Presentation on chemistry class 11 and class 12
PDF
levelling full chapter with examples and questions
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
فورمولر عمومی مضمون فزیک برای همه انجنیران
Tahfidz Qur’an TIMING tampa musik bagian 2.pptx
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
5.PDFsxcc c fvfvfv fvfvwCCDSDcvvcrdcfrwcwecwdcfwe
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
Presentation on chemistry class 11 and class 12
levelling full chapter with examples and questions
Ad
Ad

PPT_CLASS_12_MATHS_CH_2_Maths_XI_Inverse_trignometric_functions.ppt

  • 1. INVERSE TRIGONOMETRIC FUNCTION INVERSE TRIGONOMETRIC FUNCTION
  • 3. INVERSE TRIGONOMETRIC FUNCTION 1. If , z > 0, xy + yz + zx < 1 and if then x + y + z = [E – 2014] xyz 3xyz 3) 0 Solution: 𝒕𝒂𝒏−𝟏 ( 𝒙+ 𝒚 +𝒛 − 𝒙𝒚𝒛 𝟏− 𝒙𝒚 − 𝒚𝒛 − 𝒛𝒙 )=𝝅 x+y+z – xyz = 0 x + y + z = xyz
  • 4. INVERSE TRIGONOMETRIC FUNCTION 2. [E– 2013] 𝟏¿ 3 65 𝟐¿ −36 65 3) 𝟒¿−𝟏
  • 5. INVERSE TRIGONOMETRIC FUNCTION Solution: 𝒄𝒐𝒔 − 𝟏5 13 = 𝜶 = 𝒙= 𝟓 𝟏𝟑 × 𝟑 𝟓 − 𝟏𝟐 𝟏𝟑 × 𝟒 𝟓 𝒙= −𝟑𝟑 𝟔𝟓 3 x = cos(+)
  • 6. INVERSE TRIGONOMETRIC FUNCTION 3. If then = [E – 2012] 𝟏 ¿ π 2 𝟐 ¿ π 3 3) 0 Solution: 𝟏 𝟐 ≤ 𝒙 ≤ 𝟏 Put x =1 𝒄𝒐𝒔 − 𝟏 𝒙 +𝒄𝒐𝒔 − 𝟏 (𝒙 𝟐 + 𝟏 𝟐 √𝟑− 𝟑 𝒙 𝟐 )= 𝝅 𝟑
  • 7. INVERSE TRIGONOMETRIC FUNCTION 4. = [E – 2012] 𝟏¿−𝟏 𝟐¿𝟏 3) 𝟒¿𝛑 √𝟓 𝟖 Solution: By verification put x = -1 then = (x = -1 Satisfied) L. H. S =
  • 8. INVERSE TRIGONOMETRIC FUNCTION 5. + = [E – 2010] 𝟏¿𝟏 𝟐¿𝟎 3) 𝟒¿𝟐 Solution: A + B + C = then Tan A tan B + tan B tan C +Tan C tan A = Let
  • 9. INVERSE TRIGONOMETRIC FUNCTION 6. 4 = [E – 2009] 𝟏¿ 19 π 12 𝟐¿ 35 π 12 3) 𝟒¿ 43π 12 Solution: =
  • 10. INVERSE TRIGONOMETRIC FUNCTION 7. If then x = [E – 2008] 𝟏¿𝟑 𝟐¿𝟓 3) 𝟒¿𝟏𝟏 Solution: = 9 = ⇒ x = = = x =
  • 11. INVERSE TRIGONOMETRIC FUNCTION 8. If then x= [E – 2007] 𝟏¿√𝟓 /3 3) 𝟒¿𝟐/𝟑 Solution: = ⇒ 5 − 5 x𝟐 =𝟒 x𝟐 ⇒ 9x𝟐 =𝟓 /3
  • 12. INVERSE TRIGONOMETRIC FUNCTION 9. [E– 2005] 𝟏 ¿ π 3 𝟐 ¿ π 4 3) 𝟒¿𝟎 Solution: =
  • 13. INVERSE TRIGONOMETRIC FUNCTION 10. [E– 2003] 𝟏¿−𝟏/𝟑 𝟐¿𝟎 3) 1/3 𝟒¿𝟒/𝟗 Solution: Cos( = 0
  • 14. INVERSE TRIGONOMETRIC FUNCTION 11. [E– 2004] 𝟏¿{𝟏,𝟎} 𝟐¿{−𝟏,𝟏} 3) {0, } 𝟒¿{𝟐,𝟎} Solution: 𝒙=𝟎( 𝒐𝒓 )𝟐 𝒙 − 𝒙𝟐 =𝟏− 𝒙𝟐
  • 15. INVERSE TRIGONOMETRIC FUNCTION 12. A value of x for which sin is [JEE MAINS– 2013] 𝟏¿ − 1 2 𝟐¿𝟎 3) 1 𝟒¿ 𝟏 𝟐 Solution: 𝟏 √𝟏+(𝟏+𝒙 ) 𝟐 = 𝟏 √𝟏+ 𝒙𝟐 𝟏+𝒙𝟐 =𝟐+ 𝒙𝟐 +𝟐 𝒙 x =
  • 16. INVERSE TRIGONOMETRIC FUNCTION 13. Let x(0,1). The set of all x such that is the interval [JEE MAINS– 2013] 𝟏¿ (𝟏 𝟐 , 𝟏 √𝟐) 𝟐¿ ( 𝟏 √𝟐 ,𝟏 ) 3) (0,1) 𝟒¿(𝟎, √𝟑 𝟐 ) Solution: 𝑮𝒊𝒗𝒆𝒏𝒔𝒊𝒏−𝟏 𝒙>𝒄𝒐𝒔−𝟏 𝒙 𝟐𝒔𝒊𝒏 −𝟏 𝒙> 𝝅 𝟐 𝒔𝒊𝒏 −𝟏 𝒙 > 𝝅 𝟒 -
  • 17. INVERSE TRIGONOMETRIC FUNCTION x >  x  KEY : 2
  • 18. INVERSE TRIGONOMETRIC FUNCTION 14. The number of solutions of the equations (in principal values ) is [JEE MAINS– 2013] 3 1 3) 2 Solution: 𝒔𝒊 𝒏− 𝟏 𝒙=𝒔𝒊𝒏−𝟏 ( 𝟐 𝒙 𝟏+𝒙 𝟐 ) 𝒙 = 𝟐 𝒙 𝟏+ 𝒙 𝟐 𝒙 (𝟏+𝒙𝟐 )− 𝟐𝒙=𝟎 𝒙 ( 𝒙𝟐 −𝟏)=𝟎  x = {0, 1}
  • 19. INVERSE TRIGONOMETRIC FUNCTION 15. If s = [JEE MAINS– 2013] 𝟏¿ 𝟐𝟎 𝟒𝟎𝟏+𝟐𝟎𝒏 𝟐¿ 𝒏 𝒏 𝟐 +𝟐𝟎𝒏+𝟏 𝟑¿ 𝟐𝟎 𝒏 𝟐 +𝟐𝟎𝒏+𝟏 𝟒¿ 𝒏 𝟒𝟎𝟏+𝟐𝟎𝒏
  • 20. INVERSE TRIGONOMETRIC FUNCTION Solution: ¿𝒕𝒂𝒏−𝟏 (𝒏+𝟐𝟎)− 𝒕𝒂𝒏−𝟏 𝒏 𝒔=𝒕𝒂𝒏 −𝟏 ( 𝟐𝟎 𝒏 𝟐 +𝟐𝟎𝒏+𝟏 )
  • 22. INVERSE TRIGONOMETRIC FUNCTION 16. The value of cot [A – 2008] 𝟏¿𝟓/𝟏𝟕 𝟐¿𝟔/𝟏𝟕 3) 𝟒¿𝟒/𝟏𝟕 Solution: Cot Cot = 6/17
  • 23. INVERSE TRIGONOMETRIC FUNCTION 17. If = then the value of x is [A – 2007] 𝟏¿𝟏 𝟐¿𝟑 3) 𝟒¿𝟓 Solution: = ⇒ x = 3
  • 24. INVERSE TRIGONOMETRIC FUNCTION 18. If = then 4is equal to [A– 2005] 𝟏¿𝟐𝒔𝒊𝒏𝟐𝜶 𝟐¿𝟒 3) 𝟒¿−𝟒𝒔𝒊𝒏𝟐 𝜶 Solution: ⇒ 4 ⇒ 2x = y cos ⇒ 4 ⇒ x = cos ⇒ x = cos .cos + s. s = cos . + s.
  • 25. INVERSE TRIGONOMETRIC FUNCTION 19. The equation has a solution [A– 2003] in all values of  𝟐¿|𝜶|≤ 1 √2 3) 𝟒¿ −1 √2 <|𝜶|< 1 √2 Solution: 𝒔𝒊𝒏−𝟏 𝒙=𝒔𝒊𝒏−𝟏 𝟐𝜶√𝟏−𝜶𝟐 Put  = sin  = sin2  = 2 
  • 26. INVERSE TRIGONOMETRIC FUNCTION If − π 4 ≤ 𝜽 ≤ π 4 − 1 √2 ≤ 𝜶 ≤ 1 √2 KEY:2
  • 27. INVERSE TRIGONOMETRIC FUNCTION 20. then sinx = [A– 2002] 𝟏 ¿ 𝒕𝒂𝒏 𝟐 𝜶 𝟐 𝟐¿𝒄𝒐𝒕𝟐 (𝜶 𝟐 ) 3) tan  𝟒¿ 𝒄𝒐𝒕 𝛂 𝟐 Solution: 𝒄𝒐𝒕−𝟏 √𝒄𝒐𝒔 𝜶 −𝒕𝒂𝒏−𝟏 √𝒄𝒐𝒔 𝜶=𝐱 𝒕𝒂𝒏 − 𝟏 ( 𝟏 √cos α )−𝒕𝒂𝒏 −𝟏 √cosα=𝒙  sinx = 1 𝟐√cos α x 1
  • 28. INVERSE TRIGONOMETRIC FUNCTION 21. [A– 2002] 𝟏¿ 𝟏 𝟐 𝒄𝒐𝒔 − 𝟏 (𝟑 𝟓 ) 𝟐¿ 𝟏 𝟐 𝒔𝒊𝒏 −𝟏 (𝟑 𝟓) 3) 𝟒 ¿ 𝒕𝒂𝒏−𝟏 (𝟏 𝟐 ) Solution: Apply
  • 29. INVERSE TRIGONOMETRIC FUNCTION 22. If for 0<then x = [AP EAM– 2015] 𝟏 ¿ 𝟏 𝟐 𝟐¿𝟏 3) 𝟒¿− 𝟏 Solution: 𝒙 𝟏+ 𝒙 𝟐 = 𝒙 𝟐 𝟏 + 𝒙 𝟐 𝟐 𝒙 + 𝒙𝟑 𝟐 =𝒙 𝟐 + 𝒙𝟑 𝟐
  • 30. INVERSE TRIGONOMETRIC FUNCTION x - = 0 x(1-x) = 0 x = 0,1  x=1 , x≠0 KEY:2
  • 31. INVERSE TRIGONOMETRIC FUNCTION 23. If then a value of x is [TS EAM– 2015] 𝟏¿ 𝟏 √𝟔 𝟐¿ −𝟏 √𝟏𝟐 𝟑¿ 𝟐 √𝟔 𝟒¿ −𝟐 √𝟔 Solution: 𝟏 √𝟓 = 𝒙 √𝟏− 𝒙𝟐 𝟏 − 𝒙𝟐 =𝟓 𝒙𝟐 𝟏=𝟔 𝒙𝟐 
  • 32. INVERSE TRIGONOMETRIC FUNCTION 24. If the value of y is [JEE MAINS– 2015] 𝟏¿ 𝟑𝒙 −𝒙𝟑 𝟏−𝟑 𝒙 𝟐 𝟐¿ 𝟑 𝒙+𝒙𝟑 𝟏− 𝟑𝒙 𝟐 𝟑¿ 𝟑𝒙 −𝒙𝟑 𝟏+𝟑 𝒙 𝟐 𝟒¿ 𝟑𝒙+𝒙𝟑 𝟏+𝟑𝒙 𝟐 Solution: 𝒕𝒂𝒏−𝟏 𝒚 =𝒕𝒂𝒏−𝟏 𝒙 +𝟐𝒕𝒂𝒏− 𝟏 𝒙 𝒕𝒂𝒏−𝟏 𝒚 =𝟑𝒕𝒂𝒏−𝟏 𝒙 𝒕𝒂𝒏 −𝟏 𝒚 =𝒕𝒂𝒏 −𝟏 (𝟑𝒙 − 𝒙 𝟑 𝟏−𝟑 𝒙 𝟐 ) 
  • 33. INVERSE TRIGONOMETRIC FUNCTION 25. If f (x) = 2 [J.M.O.L– 2015] 𝟏 ¿ 𝝅 𝟐 𝟐¿𝛑 𝟑¿𝒕𝒂𝒏 −𝟏 ( 𝟔𝟓 𝟏𝟓𝟔) 𝟒¿𝟒 𝒕𝒂𝒏−𝟏 (𝟓) Solution: 𝒇 (𝒙)=𝟐𝒕𝒂𝒏−𝟏 𝒙+ 𝝅−𝟐𝒕𝒂𝒏−𝟏 𝒙 𝒇 ( 𝒙)=𝝅 𝒇 (𝟓 )=𝝅
  • 34. INVERSE TRIGONOMETRIC FUNCTION 𝟐𝟔.𝐓𝐡𝐞 𝐯𝐚𝐥𝐮𝐞𝐨𝐟 𝐜𝐨𝐭 (∑ 𝐧=𝟏 𝟏𝟗 𝐜𝐨𝐭 −𝟏 (𝟏+∑ 𝐩=𝟏 𝐧 𝟐𝐩))𝐢𝐬𝐜𝐨𝐭 (∑ 𝐧=𝟏 𝟏𝟗 𝐜𝐨𝐭 −𝟏 (𝟏+∑ 𝐩=𝟏 𝐧 𝟐𝐩)) 𝟏¿ 𝟏𝟗 𝟐𝟎 𝟐¿ 𝟐𝟎 𝟏𝟗 𝟑 ¿ 𝟏𝟗 𝟐𝟏 𝟒 ¿ 𝟐𝟏 𝟏𝟗 Solution: 𝒄𝒐𝒕(∑ 𝒏=𝟏 𝟏𝟗 𝒄𝒐𝒕 −𝟏 (𝟏+𝟐 𝒏(𝒏+𝟏) 𝟐 )) [B. Arch 2016]
  • 35. INVERSE TRIGONOMETRIC FUNCTION 𝒄𝒐𝒕 (∑ 𝒏=𝟏 𝟏𝟗 𝒕𝒂𝒏−𝟏 ( 𝟏 𝟏+(𝒏+𝟏)(𝒏))) 𝒄𝒐𝒕 (∑ 𝒏=𝟏 𝟏𝟗 𝒕𝒂𝒏 −𝟏 (𝒏+𝟏)−𝒕𝒂𝒏 −𝟏 𝒏 ) 𝒄𝒐𝒕 (𝒕𝒂𝒏 −𝟏 (𝟏𝟗 𝟐𝟏 ))= 𝟐𝟏 𝟏𝟗 KEY : 4
  • 36. INVERSE TRIGONOMETRIC FUNCTION 27. The value of x which satisfies [J.M.O.L– 2015] 𝟏 ¿ − 𝟏 𝟐 𝟐¿ 𝟏 𝟐 𝟑¿−𝟏 𝟒 ¿ 𝟏 Solution: 𝒔𝒊𝒏(𝒄𝒐𝒕−𝟏 ) 𝒙=𝒄𝒐𝒔 (𝒕𝒂𝒏−𝟏 (𝟏+𝒙)) 𝒄𝒐𝒕−𝟏 𝒙=𝜶,𝒕𝒂𝒏− 𝟏 (𝟏+ 𝒙)=𝜷 𝒙=𝒄𝒐𝒕 𝜶 𝒕𝒂𝒏 𝜷=𝟏+𝒙
  • 37. INVERSE TRIGONOMETRIC FUNCTION 𝒔𝒊𝒏 𝜶= 𝟏 √𝟏+𝒙 𝟐 𝒄𝒐𝒔 𝜷= 𝟏 √𝟐 +𝟐 𝒙+𝒙 𝟐 𝟐+𝟐 𝒙 +𝒙𝟐 =𝟏+𝒙𝟐 𝟐 𝒙 =− 𝟏 𝒙 =− 𝟏 𝟐 KEY : 1
  • 38. INVERSE TRIGONOMETRIC FUNCTION 28. If x = sin(2) and y = sin , then [AP EAM – 2016] 𝟏¿ 𝒙>𝒚 𝟐¿ 𝒙=𝒚 𝟑¿ 𝒙=𝟎=𝒚 𝟒 ¿ 𝒙 < 𝒚 Solution: 𝒙=𝒔𝒊𝒏(𝟐𝒕𝒂𝒏−𝟏 (𝟐)) ¿ 𝒕𝒂𝒏−𝟏 (𝟐 )=𝜶 𝒚 =𝒔𝒊𝒏(𝟏 𝟐 𝒕𝒂𝒏 − 𝟏 𝟒 𝟑) ¿ 𝒕𝒂𝒏 −𝟏 𝟒 𝟑 =𝜷 𝒕𝒂𝒏 𝜶=𝟐 ¿ 𝒕𝒂𝒏 𝜷= 𝟒 𝟑 5 3 4 
  • 39. INVERSE TRIGONOMETRIC FUNCTION 𝝅 𝟒 <𝜶 < 𝝅 𝟐 𝒙=𝒔𝒊𝒏𝟐𝜶 ¿ 𝟐 (𝟐 ) 𝟏+𝟒 = 𝟒 𝟓 𝝅 𝟒 < 𝜷< 𝝅 𝟐 𝒚 =𝒔𝒊𝒏 𝜷 𝟐 𝒚 = √𝟏−𝒄𝒐𝒔 𝜷 𝟐 𝒚 = √𝟏 − 𝟑 𝟓 𝟐 ⇒ 𝟏 √𝟓 𝒙 >𝒚 KEY : 1