2. Эксперимент определяется в науке как
специально организованное
воспроизведение и изменение явлений в
условиях, благоприятных для выявления
влияющих на результаты факторов и условий.
3. Признаки эксперимента:
• Точное фиксирование исходного уровня и
условий протекания процесса;
• Внесение запланированных изменений
(независимых переменных);
• Воспроизводимость процесса и условий;
• Точное фиксирование результатов;
• Интерпретация результатов.
4. Отличие педагогического эксперимента от
естественнонаучного:
• Результат воздействия на учащегося всегда носит вероятностный
характер, из этого следует, что любые закономерности носят
статистический характер и их выявление требует проведения
измерений на больших группах учащихся;
• Отсутствует возможность обучить одного и того же человека
сначала по одной, затем по другой методике и сравнить
результаты; поэтому требуется обоснование возможности
сопоставления показателей разных групп учащихся;
• в педагогических экспериментах отсутствует возможность
проведения прямого измерения – в связи с этим возникает
задача обоснования тех или иных параметров, а также
критериев результативности новой методики;
• в педагогических экспериментах недопустим отрицательный
результат.
5. На этапе планирования педагогического эксперимента требуют решения следующие
вопросы:
• какая гипотеза проверяется в исследовании?
• Что может служить критерием
результативности применения
экспериментальной методики?
• Какие параметры отражают результативность
и как организовать их измерение?
• Какой метод статистической обработки
результатов измерений является
оптимальным?
6. Выбор показателя определяется той задачей,
которую ставит перед собой исследователь,
однако ко всем им предъявляется общее
требование – они должны быть измеримыми.
Измерение – соотнесение показателя с
некоторой шкалой допустимых значений по
установленному правилу.
7. Условия проведения измерения:
• Показатель должен обладать мерой, т.е.
характеризоваться некоторой количественной
или качественной величиной;
• Должна быть установлена шкала измерений,
указывающая набор возможных значений
показателя;
• Должна быть обоснованно установлена
процедура измерения, т.е. порядок
соотнесения показателя со шкалой.
8. Все множество объектов или субъектов,
подлежащих обследованию, называется
генеральной совокупностью. Выборочная
совокупность (выборка) – часть генеральной
совокупности обследуемых объектов, обладающая
теми же статистическими характеристиками, что и
вся совокупность.
В подавляющем большинстве исследований
объемы групп испытуемых (генеральная
совокупность) составляют от 30 до 100 человек. В
таких случаях нет смысла строить выборки –
изучается вся генеральная совокупность.
9. Номинативная шкала (шкала наименований)
– шкала, при использовании которой
признаки различаются по названию,
наименованию.
10. Шкала порядка обеспечивает расположение
значений признака в монотонной
последовательности, но без указания степени
различия показателей, приписанных к
различным классам.
От качественных или количественных
градаций признака часто бывает необходимо
перейти к числам, характеризующим порядок
следования градаций – они называются
рангами.
11. Присвоение градациям рангов производится
по следующим правилам:
• Наименьшее значение ранга равно 1,
наибольшее – количеству ранжируемых
значений N;
• Если количество ранжируемых значений
совпадает с числом градаций, то низшему
уровню приписывается ранг 1, следующему
– 2 и т.д., самый высокий уровень получит
ранг N;
12. Присвоение градациям рангов производится
по следующим правилам:
• Если среди ранжируемых значений
насколько попадают в одну градацию, то
всем им приписывается одинаковый ранг,
который вычисляется по формуле:
где i – номер градации, – ранг каждого
значения признака, попавшего в градацию, –
количество значений, попавшего в градацию (
считается равным 0).
14. Пример: в результате проведения контрольной
работы учащиеся получили отметки, которым
требуется установить ранги:
N=8, контрольное значение 8(8+1)/2=36.
17. Пример: в результате проведения контрольной
работы учащиеся получили отметки, которым
требуется установить ранги:
18. Интервальная шкала – шкала, на которой
установлено одинаковой количественное различие
между соседними градациями признака.
Например, за фиксированное время испытуемый Х
выполнил 5 заданий, Y – 3, а Z – 6, это означает,
показатель Х на 1 хуже, чем у Z и на 2 единицы лучше,
чем у Y. Однако у интервальной шкалы не определен
нуль отсчета – это не дает возможности определить
отношение показателей: нельзя утверждать, что Y
знает предмет в 2 раза хуже, чем Z. При полностью
невыполненных заданиях нельзя делать вывод, что у
учащегося вообще нет знаний по предмету.
19. Шкала равных отношений – шкала,
позволяющая установить пропорции между
измеряемыми величинами. Ее обязательным
атрибутом является существование нулевой
точки отсчета (абсолютного нуля). В
педагогике практически не используется. Если
IQ одного человека оказывается 100, а
другого 150, это не значит, что второй в
полтора раза умнее первого.
20. Экспериментальное педагогическое
исследование всегда связано с проверкой
некоторой исходной гипотезы относительно
того, как предлагаемое автором
педагогическое воздействие может привести
к желаемым изменениям параметров
педагогической системы или ее частей.
21. Доказательство значимости различий начинается с
выдвижения статистических гипотез. Сначала
формулируется нулевая гипотеза – предположение об
отсутствии значимых изменений измеряемого параметра
(Х1=Х2) или эти различия не превышают случайного
разброса измеряемой величины в выборке. Обычно
нулевую гипотезу Н0 исследователь хочет опровергнуть.
Далее формулируется альтернативная гипотеза –
предположение о значимости различий измеряемого
параметра. Альтернативную гипотезу Н1, которую
исследователь хочет доказать в эксперименте, называют
экспериментальной. Принятие Н1 означает отклонение Н0 и
наоборот.
22. Гипотезы подразделяют на ненаправленные и
направленные:
Направленные: Н0 показатель Х1 не
превышает Х2, Н1 показатель Х1 превышает Х2.
Ненаправленные: Н0 показатель Х1 не
отличается от Х2, Н1 показатель Х1 отличается
от Х2.
23. Принята следующая классификация ошибок
выбора статистической гипотезы: ошибка 1-го
рода – отклонена Н0, хотя она верна; ошибка
2-го рода – принята Н0, хотя она неверна.
24. Надежность гипотезы характеризуется
величиной, которая называется уровнем
статистической значимости – это вероятность
того, что допущена ошибка 1-го рода. В
педагогических исследованиях используют
два уровня значимости p≤0,05 или p≤0,01, это
означает, что надежность принятия гипотезы
Н1 составляет не менее 95% и 99%
соответственно.
25. Для принятия и отклонения гипотез используются
статистические критерии – правила,
обеспечивающие надежное принятие истинной и
отклонение ложной гипотезы.
Статистические критерии разделяются на
параметрические и непараметрические. К первой
группе относят критерии, условием применения
которых является нормальный характер функции
распределения измеряемых признаков в изучаемой
выборке.
27. U-критерий Манна-Уитни
Значениям признака приписываются ранги, причем
ранжирование осуществляется сразу по обеим
выборкам. Затем по рангам вычисляется
экспериментальное значение U-критерия. Для
проверки гипотезы Uэксп сопоставляется с табличным
критическим значением, выбираемым в зависимости
от объемов выборок и статистической значимости;
при Uэксп > Uкр принимается Н0, в противном случае Н1.
Ограничения применимости U-критерия: объем
выборок должен быть не менее трех и не более 60.
28. Пример: в двух группах испытуемых с n1=8,
n2=10 проводилось тестирование по
математике с максимально возможным
баллом 100. Можно ли утверждать, что
уровни усвоения в этих группах различаются?
Н0: различие в уровне усвоения отсутствует.
Н1: учащиеся группы 1 имеют более высокий
уровень усвоения.
31. Uэксп=
– наибольшая из сумм рангов и
Uэксп=44,5.
Для выбранной значимости p≤0,05 и
n1=8, n2=10
Uкр=20.
Uэксп > Uкр принимается Н0 – различие в уровнях усвоения
отсутствует.
33. Изучаются изменения, происходящие с течением
времени в одной группе испытуемых в результате
целенаправленных или случайных воздействий.
Сначала для каждого испытуемого определяется его
индивидуальный сдвиг, он может отсутствовать, быть
положительным или отрицательным. Далее путем
сравнения индивидуальных сдвигов по большинству
выявляется, какое из направлений встречается чаще
– это направление объявляется типичным. После
этого подсчитывается число нетипичных сдвигов.
35. Пример. В исследовании обоснована
возможность и определена процедура
отнесения уровня алгоритмического мышления
учащегося к трем уровням: низкому, среднему
и высокому. Были произведены измерения до
и после экспериментального воздействия.
Можно ли утверждать, что в целом в группе
зафиксирован достоверный рост уровня
алгоритмического мышления?
37. Число ненулевых сдвигов 11, значит,
пользоваться критерием можно. Типичным
является повышение. Gэксп=2 (число
нетипичных сдвигов). Для n=11 и p≤0,05
Gкр=2, оно не превышает Gэксп – принимается
Н1 – повышение уровня достоверно.
39. Сопоставляются не абсолютные значения
измеренных показателей или их рангов, а
частоты, с которыми то или иное значение
появляется в выборке. Далее по
сопоставлению частот определяется
экспериментальное значение критерия,
которое сравнивается с критическим и на
основании этого осуществляется выбор
гипотезы.
40. Критерий Пирсона
Используется для сравнения двух
экспериментальных распределений:
Н0: распределение признака в
экспериментальной выборке 1 не отличается
от распределения в выборке 2.
Н1: распределение признака в
экспериментальной выборке 1 достоверно
отличается от распределения в выборке 2.
41. Ограничения применимости критерия Пирсона:
• Объем выборки n≥30;
• Если количество градаций признака g, то
объем выборки должен удовлетворять
условию n≥5g;
• Сумма частот в обеих выборках должна
равняться 1;
• Градаций должно быть больше 2.
42. Объемы выборок n1 и n2, число градаций
признака g, количество измерений в каждой
выборке, попадающих в градацию i, обозначим
ni1 и ni2
(i меняется от 1 до g).
Значение находится по формуле:
Частоты в скобках можно заменить .
Критическое значение определяется по числу
степеней свободы v=g – 1 по таблице. При
условии принимается экспериментальная
гипотеза.
43. Пример. Имеются результаты контрольного
среза знаний по математике в контрольной и
экспериментальной группах по школьной
оценочной шкале (2-3-4-5), отдельно
отслеживалось усвоение теории и решение
задач. Можно ли утверждать, что значимо
отличаются уровни усвоения в контрольной и
экспериментальной группах?
47. Для v=3 и p≤0,05 .
Теория Принимается Н0.
Практика Принимается Н1.
49. -критерий (угловое преобразование) Фишера
-критерий называется угловым преобразованием Фишера,
поскольку в нем исходная доля, нормированная на единицу
(Р), переводится в величину угла, нормированного на
величину π, по формуле
=2 arcsin ().
По экспериментальным данным для сопоставляемых
выборок определяются Р1 и Р2, а по ним вычисляются углы
1 и2, а затем находится экспериментальное значение -
критерия:
, где и – объемы выборок.
Далее нужно найти для требуемого уровня значимости и
сравнить с ним . Если , принимается экспериментальная
гипотеза.
50. Пример. Пример: в двух группах учащихся
проводилось тестирование по математике с
максимально возможным баллом 100. Уровень
повышенной оценки установлен в 60 баллов. В
первой группе из 27 человек более 60 баллов
набрали 15 человек, во второй группе 8 из 25.
Можно ли утверждать, что в первой группе
доля повышенных оценок достоверно
превышает долю во второй группе?