SlideShare a Scribd company logo
Practical BI
                Strategies that IT can use to
                maximize its productivity and
                    value to the business


                                Tom Spetnagel
                   Director of Business Intelligence, Valpak




Tom Spetnagel
2




        Summary of Strategies
      • Use agile practices for BI development
      • Determine actual requirements and
        design to them
      • Utilize appropriate requirements-
        gathering techniques
      • Implement and wield a BI charter


Tom Spetnagel
3

My Background:
Good News for BI:
      It‟s Taking Off!
                                                  Web Search
                             Semantic Search
                                                               Mobile BI
                     BI Applications
                                                  Mobile                   CPU Optimization

            Data Mining
                                                                                Inline BI

     Enterprise Search
                                                                                   Social Analytics

     Self-Service
                           Data
                                               Technology             Social                Sentiment Monitoring
                          Access
      Real-Time BI
                                                                                       Big Data

         Web Analytics
                                                                               In-Memory BI
               Public Data
                                                  Cloud               Master-Data-Management
              In-Database Analytics
                                                               Unstructured Data
                               Data Replication
                                                       Web Services
Tom Spetnagel
5

       The BI Explosion Is Scary, Too
 • BI is getting bigger and more
   complex, but BI budgets aren‟t
   keeping pace!
 • Access to information is the
   root of recent evolution:
   Google, Facebook, mobile
 • Self-Service BI is continuously
   on-the-rise
 • IT is therefore becoming less
   central in BI!


Tom Spetnagel
6

                Users Won‟t Wait on IT
                                   http://xkcd.com/




BI users can’t wait on IT;
they create their own
solutions, and they aren’t
always good ones!




Tom Spetnagel
BI‟s Biggest Challenge:
                                          7




                      Prioritization!
• Since BI supply can‟t keep
  up with demand,
  continuously producing
  „something good at the
  right time‟ is critical




Tom Spetnagel
8



                BI Stakeholders:
                             Managing BI stakeholders
                             is a lot like trying to keep
                             chickens under a blanket!


                              -They’re not aligned
                              -They want it all
                              -They want it now
                              -They always want
                              something different




Tom Spetnagel
9



                What‟s A Solution?


                  (Practical BI, Strategy #1)




Tom Spetnagel
10

                    What is „Agile‟?
      • The application of common sense to
        software development*
      • A set of concepts developed by
        people frustrated with the
        application of „traditional‟ project
        management to software


          * I wish I could trademark this!


Tom Spetnagel
11


                Agile Evolution
      • Agile Manifesto conceived at an
        informal drink-and-ski weekend in 2001
      • Reaction to fundamental differences
        of building software and building
        physical items (like aircraft carriers)




Tom Spetnagel
12



       Unlike with physical construction, since it’s only
       ‘zeros-and-ones’, software can be changed quickly!




Tom Spetnagel
13



                4 Main Agile Principles
    More Important                Less Important
    • Individuals and             • Processes and tools
      interactions                • Comprehensive
    • Working software              documentation
    • Customer collaboration      • Contract negotiation
    • Responding to change        • Following a plan


                    http://agilemanifesto.org/



Tom Spetnagel
14



         Primary Intentions of Agile
      • Deliver the most valuable thing at
        the right time
      • Deliver working software quickly!
      • Embrace but manage change
      • Establish short-term predictability
      • Eliminate surprises from both the IT
        and business sides


Tom Spetnagel
15



                                Some Agile
                              „Methodologies‟

                Scrum
                                    Extreme Programming (XP)
       Unified Process (UP)

                Feature Driven Development (FDD)

                              Lean Software Development
         Crystal Clear


Tom Spetnagel
16


                            Agile at Valpak:
                                “Scrum”
      • Multiple scrum teams, each team having:
           – 1 Scrum Master, 1 Product Owner, 5 to 7 Team
             Members
      • 2 week iterations, executing several „stories‟
        per team, bounded by:
           – Sprint planning (1st Monday)
           – Sprint demo and review (2nd Friday)
      • Daily stand-up status meetings


Tom Spetnagel
17




       Types of BI „Stories‟ Include:
    • ETLs               •   Performance
    • Metadata Mapping   •   Data Quality
    • Formal Reports /   •   Security
      Dashboards         •   Upgrade/patch
    • Alerts
    • Automated Report
      Distribution



Tom Spetnagel
18



          Why Is Agile Great for BI?
      • Creates a practical method for
        handling crucial BI challenges which
        drive scope and affect success
      • Gives ownership and flexibility to the
        business, not IT




Tom Spetnagel
Crucial Scope-Drivers in BI (1)
• “Data Quality”
    – A catch-all term for numerous different problems:
        •   Unclear definitions
        •   Missing data / duplicated data
        •   Unexpected data
        •   Unreconciling data



• Performance/Speed
    – People expect reports to run as fast as business
      „transactions‟ (create 1 order, save 1 order, etc.)
        • And it‟s even worse with mobile devices!




Tom Spetnagel
20



                Data Quality vs. Effort

                               Data quality is a function
                               of effort; increasing effort
                               has diminishing returns
                               and it is never possible to
                               reach 100% data quality




Tom Spetnagel
Crucial Scope-Drivers in BI (2)
• “Terminology”/Definitions
       The cultural hurdles that
       come with defining or
       redefining terms for BI take
       much time to overcome!

• Historical Data
        Stakeholders often want
        ‘history’, not just information
        from this point forward!



Tom Spetnagel
22

   Agile Handling of BI Scope-Drivers
      • Data Quality
           – Iterate to provide additional quality checks where
             desired
      • Performance
           – Iterate to achieve better performance where desired
      • Terminology
           – Iterate to update definitions where needed; within an
             iteration, make a decision and go!
      • History
           – Load the history in a separate iteration after new data
             collection has been activated



Tom Spetnagel
23




                Business Accountability
      • Let the business decide what they
        want most in the next iteration
        (based on what IT tells them it can
        get done in that timeframe)




Tom Spetnagel
24



     1 More Reason
    Agile Is Great for BI

      • It‟s tough for BI stakeholders to know
        what something is worth!
      • Example: What is it worth to you to
        have a timely, accurate bank
        balance?



Tom Spetnagel
1 Last Reason
                                                                       25




                Agile Is Great for BI
       “Walking on water and developing
       software from a specification are easy
       if both are frozen”
                     - Edward V. Berard, "Life-Cycle Approaches"




                                        BI Stakeholders can rarely
                                        know what they really need
                                        (or need next) until they’re
                                        using it!



Tom Spetnagel
26


                Challenges of Agile
      • High ratio of planning &
        communicating time to coding time
      • High amount of time discussing &
        refining the agile process; some
        danger of over-analysis
      • High % of time collaborating; IT folks
        need to be good communicators



Tom Spetnagel
27




        Agile „In Their Own Words‟:
      http://www.youtube.com/watch?v=A
      0As88akpXs




Tom Spetnagel
28
                Practical BI Strategy #2:

        Determine, and Deliver to,
        the Actual BI Requirements
• Don‟t deliver just what is (initially)
  requested; scientifically deconstruct it
  into what is actually needed
• „Requirements‟ and „design‟ are
  different in BI, just as in application
  development


Tom Spetnagel
29

        BI Requirements vs. Design:
               Example #1
  Analyst Questions              Designer Questions
  1. Do users expect the       1. What should the data
     new data to reconcile        sources be? Should the
     with anything existing?      output have any built-in
  2. How many people will         validations, reconciliations,
     need access to the           or subtotals?
     same info at the same     2. What mechanism is best for
     time? How often?             providing shared data
                                  (web page? email or text
                                  alert? printed poster?)?



Tom Spetnagel
30

        BI Requirements vs. Design:
               Example #2
  Analyst Questions            Designer Questions
  1. How recent/up-to-date 1. Does the solution require
     does information need      access to real-time
     to be?                     transaction data? Or can it
  2. What is the acceptable     be data warehouse data,
     timeframe for accessing    updated/frozen on a
     information? What are      schedule?
     the response-time       2. Should data be stored in-
     requirements?              database or in-memory?
                                What summarization or
                                indexing is needed?

Tom Spetnagel
31


                  Mockups
      • A report or dashboard mockup is nice
        but does not constitute either
        comprehensive requirements or design
      • Mockups are a great starting point for
        a requirements conversation, though!




Tom Spetnagel
32
                Practical BI Strategy #3:

        Use the Best Requirements-
         Gathering Technique for
             the BI Assignment
      • There are a number of
        different and effective ways to
        gather requirements
      • Review, implement, and
        combine these however
        necessary

Tom Spetnagel
33



           Requirements-Gathering
                 Techniques
                1. Interview      6. Reverse-
                2. Survey            Engineering
                3. Focus Group    7. Document Analysis
                4. Requirements   8. Prototyping
                   Workshop       9. Brainstorming
                5. Observations   10.Interface Analysis



Tom Spetnagel
34

                   Practical BI Strategy #4:

                Implement and Wield
                    a BI Charter
  • Gather a set of goals,
    principles, and strategies that IT
    and the business can agree on
  • Use this to focus discussions
    and overcome objections to IT
    proposals and decisions


Tom Spetnagel
35



                           BI Charter:
                          Example #1
      • Goals
           – Limit confusion around „what numbers are right/best‟
      • Principles
           – Data in the data warehouse are the „official‟ figures
             unless specifically documented otherwise
      • Strategies
           – Get „official‟ figures into the data warehouse
           – Avoid storing both official and unofficial figures for the
             same metric in the data warehouse
           – Restrict access to unofficial data in 3rd party tools



Tom Spetnagel
36



                           BI Charter:
                          Example #2
      • Goals
           – Minimize the amount of BI tool-training required
      • Principles
           – IT will not support unofficial tools which users have self-
             provided
           – Access to 3rd-party BI platforms will be supported on an
             exception basis when unique value is provided
      • Strategies
           – Minimize the number of tools users must know how to use
           – Use a BI platform which scores highly on ease-of-use and
             which has multi-purpose tools


Tom Spetnagel
37




        The End – Of The Beginning




Tom Spetnagel

More Related Content

PDF
Integrating User Experience Design into the Product Lifecycle
 
KEY
What Is UX?
PDF
Made By Many design research guide
PPS
Time Photos 2011 Oct-Nov
PDF
F.U.E.N.T.S Media Kit - Music licensing
PPS
ALL About Money
PPT
Get Digital. Get A Job. (Chris Hall)
PPT
Panic At the Disco GIF Files
Integrating User Experience Design into the Product Lifecycle
 
What Is UX?
Made By Many design research guide
Time Photos 2011 Oct-Nov
F.U.E.N.T.S Media Kit - Music licensing
ALL About Money
Get Digital. Get A Job. (Chris Hall)
Panic At the Disco GIF Files

Similar to Practical BI (20)

PPT
BiLogica - BI services
PDF
Ibm
PDF
A Strategic View of Enterprise Reporting and Analytics: The Data Funnel
PDF
Building a business intelligence architecture fit for the 21st century by Jon...
PDF
Product Management 101 for Data and Analytics
PDF
Predictive Analytics with IBM Cognos 10
PDF
Managing Global, Multi-Lingual Content on a Large Scale
PPTX
Mind Blowing Business Intelligence Dashboards
PPT
AMI Presentation
PDF
The Business Analysts Role in Agile Software Development
PDF
The BA role in Agile software development
PDF
Research About Integration of PLM & BI
PPSX
Query at Speed of Thought
PDF
Collaborate 2011 Majestic Presentation V2
PDF
Your MicroStrategy - only BETTER (Retail Case Study)
PDF
Inspiring Analytics: Tips and Examples for Achieving Better Business, Not Jus...
PDF
The New Normal: Predictive Power on the Front Lines
PDF
Lean Product Development by Ron Mascitelli
PDF
Agile BI : meeting the best of both worlds from departmental and enterprise BI
PDF
Harness the Power of Unstructured Data to Enhance Customer Experience
BiLogica - BI services
Ibm
A Strategic View of Enterprise Reporting and Analytics: The Data Funnel
Building a business intelligence architecture fit for the 21st century by Jon...
Product Management 101 for Data and Analytics
Predictive Analytics with IBM Cognos 10
Managing Global, Multi-Lingual Content on a Large Scale
Mind Blowing Business Intelligence Dashboards
AMI Presentation
The Business Analysts Role in Agile Software Development
The BA role in Agile software development
Research About Integration of PLM & BI
Query at Speed of Thought
Collaborate 2011 Majestic Presentation V2
Your MicroStrategy - only BETTER (Retail Case Study)
Inspiring Analytics: Tips and Examples for Achieving Better Business, Not Jus...
The New Normal: Predictive Power on the Front Lines
Lean Product Development by Ron Mascitelli
Agile BI : meeting the best of both worlds from departmental and enterprise BI
Harness the Power of Unstructured Data to Enhance Customer Experience
Ad

Recently uploaded (20)

PPTX
Cloud computing and distributed systems.
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PPTX
Big Data Technologies - Introduction.pptx
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Encapsulation theory and applications.pdf
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
Machine Learning_overview_presentation.pptx
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Empathic Computing: Creating Shared Understanding
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
cuic standard and advanced reporting.pdf
PDF
A comparative analysis of optical character recognition models for extracting...
Cloud computing and distributed systems.
Mobile App Security Testing_ A Comprehensive Guide.pdf
Per capita expenditure prediction using model stacking based on satellite ima...
The Rise and Fall of 3GPP – Time for a Sabbatical?
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Network Security Unit 5.pdf for BCA BBA.
Dropbox Q2 2025 Financial Results & Investor Presentation
Big Data Technologies - Introduction.pptx
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Encapsulation theory and applications.pdf
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Machine Learning_overview_presentation.pptx
MIND Revenue Release Quarter 2 2025 Press Release
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Empathic Computing: Creating Shared Understanding
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Review of recent advances in non-invasive hemoglobin estimation
Diabetes mellitus diagnosis method based random forest with bat algorithm
cuic standard and advanced reporting.pdf
A comparative analysis of optical character recognition models for extracting...
Ad

Practical BI

  • 1. Practical BI Strategies that IT can use to maximize its productivity and value to the business Tom Spetnagel Director of Business Intelligence, Valpak Tom Spetnagel
  • 2. 2 Summary of Strategies • Use agile practices for BI development • Determine actual requirements and design to them • Utilize appropriate requirements- gathering techniques • Implement and wield a BI charter Tom Spetnagel
  • 4. Good News for BI: It‟s Taking Off! Web Search Semantic Search Mobile BI BI Applications Mobile CPU Optimization Data Mining Inline BI Enterprise Search Social Analytics Self-Service Data Technology Social Sentiment Monitoring Access Real-Time BI Big Data Web Analytics In-Memory BI Public Data Cloud Master-Data-Management In-Database Analytics Unstructured Data Data Replication Web Services Tom Spetnagel
  • 5. 5 The BI Explosion Is Scary, Too • BI is getting bigger and more complex, but BI budgets aren‟t keeping pace! • Access to information is the root of recent evolution: Google, Facebook, mobile • Self-Service BI is continuously on-the-rise • IT is therefore becoming less central in BI! Tom Spetnagel
  • 6. 6 Users Won‟t Wait on IT http://xkcd.com/ BI users can’t wait on IT; they create their own solutions, and they aren’t always good ones! Tom Spetnagel
  • 7. BI‟s Biggest Challenge: 7 Prioritization! • Since BI supply can‟t keep up with demand, continuously producing „something good at the right time‟ is critical Tom Spetnagel
  • 8. 8 BI Stakeholders: Managing BI stakeholders is a lot like trying to keep chickens under a blanket! -They’re not aligned -They want it all -They want it now -They always want something different Tom Spetnagel
  • 9. 9 What‟s A Solution? (Practical BI, Strategy #1) Tom Spetnagel
  • 10. 10 What is „Agile‟? • The application of common sense to software development* • A set of concepts developed by people frustrated with the application of „traditional‟ project management to software * I wish I could trademark this! Tom Spetnagel
  • 11. 11 Agile Evolution • Agile Manifesto conceived at an informal drink-and-ski weekend in 2001 • Reaction to fundamental differences of building software and building physical items (like aircraft carriers) Tom Spetnagel
  • 12. 12 Unlike with physical construction, since it’s only ‘zeros-and-ones’, software can be changed quickly! Tom Spetnagel
  • 13. 13 4 Main Agile Principles More Important Less Important • Individuals and • Processes and tools interactions • Comprehensive • Working software documentation • Customer collaboration • Contract negotiation • Responding to change • Following a plan http://agilemanifesto.org/ Tom Spetnagel
  • 14. 14 Primary Intentions of Agile • Deliver the most valuable thing at the right time • Deliver working software quickly! • Embrace but manage change • Establish short-term predictability • Eliminate surprises from both the IT and business sides Tom Spetnagel
  • 15. 15 Some Agile „Methodologies‟ Scrum Extreme Programming (XP) Unified Process (UP) Feature Driven Development (FDD) Lean Software Development Crystal Clear Tom Spetnagel
  • 16. 16 Agile at Valpak: “Scrum” • Multiple scrum teams, each team having: – 1 Scrum Master, 1 Product Owner, 5 to 7 Team Members • 2 week iterations, executing several „stories‟ per team, bounded by: – Sprint planning (1st Monday) – Sprint demo and review (2nd Friday) • Daily stand-up status meetings Tom Spetnagel
  • 17. 17 Types of BI „Stories‟ Include: • ETLs • Performance • Metadata Mapping • Data Quality • Formal Reports / • Security Dashboards • Upgrade/patch • Alerts • Automated Report Distribution Tom Spetnagel
  • 18. 18 Why Is Agile Great for BI? • Creates a practical method for handling crucial BI challenges which drive scope and affect success • Gives ownership and flexibility to the business, not IT Tom Spetnagel
  • 19. Crucial Scope-Drivers in BI (1) • “Data Quality” – A catch-all term for numerous different problems: • Unclear definitions • Missing data / duplicated data • Unexpected data • Unreconciling data • Performance/Speed – People expect reports to run as fast as business „transactions‟ (create 1 order, save 1 order, etc.) • And it‟s even worse with mobile devices! Tom Spetnagel
  • 20. 20 Data Quality vs. Effort Data quality is a function of effort; increasing effort has diminishing returns and it is never possible to reach 100% data quality Tom Spetnagel
  • 21. Crucial Scope-Drivers in BI (2) • “Terminology”/Definitions The cultural hurdles that come with defining or redefining terms for BI take much time to overcome! • Historical Data Stakeholders often want ‘history’, not just information from this point forward! Tom Spetnagel
  • 22. 22 Agile Handling of BI Scope-Drivers • Data Quality – Iterate to provide additional quality checks where desired • Performance – Iterate to achieve better performance where desired • Terminology – Iterate to update definitions where needed; within an iteration, make a decision and go! • History – Load the history in a separate iteration after new data collection has been activated Tom Spetnagel
  • 23. 23 Business Accountability • Let the business decide what they want most in the next iteration (based on what IT tells them it can get done in that timeframe) Tom Spetnagel
  • 24. 24 1 More Reason Agile Is Great for BI • It‟s tough for BI stakeholders to know what something is worth! • Example: What is it worth to you to have a timely, accurate bank balance? Tom Spetnagel
  • 25. 1 Last Reason 25 Agile Is Great for BI “Walking on water and developing software from a specification are easy if both are frozen” - Edward V. Berard, "Life-Cycle Approaches" BI Stakeholders can rarely know what they really need (or need next) until they’re using it! Tom Spetnagel
  • 26. 26 Challenges of Agile • High ratio of planning & communicating time to coding time • High amount of time discussing & refining the agile process; some danger of over-analysis • High % of time collaborating; IT folks need to be good communicators Tom Spetnagel
  • 27. 27 Agile „In Their Own Words‟: http://www.youtube.com/watch?v=A 0As88akpXs Tom Spetnagel
  • 28. 28 Practical BI Strategy #2: Determine, and Deliver to, the Actual BI Requirements • Don‟t deliver just what is (initially) requested; scientifically deconstruct it into what is actually needed • „Requirements‟ and „design‟ are different in BI, just as in application development Tom Spetnagel
  • 29. 29 BI Requirements vs. Design: Example #1 Analyst Questions Designer Questions 1. Do users expect the 1. What should the data new data to reconcile sources be? Should the with anything existing? output have any built-in 2. How many people will validations, reconciliations, need access to the or subtotals? same info at the same 2. What mechanism is best for time? How often? providing shared data (web page? email or text alert? printed poster?)? Tom Spetnagel
  • 30. 30 BI Requirements vs. Design: Example #2 Analyst Questions Designer Questions 1. How recent/up-to-date 1. Does the solution require does information need access to real-time to be? transaction data? Or can it 2. What is the acceptable be data warehouse data, timeframe for accessing updated/frozen on a information? What are schedule? the response-time 2. Should data be stored in- requirements? database or in-memory? What summarization or indexing is needed? Tom Spetnagel
  • 31. 31 Mockups • A report or dashboard mockup is nice but does not constitute either comprehensive requirements or design • Mockups are a great starting point for a requirements conversation, though! Tom Spetnagel
  • 32. 32 Practical BI Strategy #3: Use the Best Requirements- Gathering Technique for the BI Assignment • There are a number of different and effective ways to gather requirements • Review, implement, and combine these however necessary Tom Spetnagel
  • 33. 33 Requirements-Gathering Techniques 1. Interview 6. Reverse- 2. Survey Engineering 3. Focus Group 7. Document Analysis 4. Requirements 8. Prototyping Workshop 9. Brainstorming 5. Observations 10.Interface Analysis Tom Spetnagel
  • 34. 34 Practical BI Strategy #4: Implement and Wield a BI Charter • Gather a set of goals, principles, and strategies that IT and the business can agree on • Use this to focus discussions and overcome objections to IT proposals and decisions Tom Spetnagel
  • 35. 35 BI Charter: Example #1 • Goals – Limit confusion around „what numbers are right/best‟ • Principles – Data in the data warehouse are the „official‟ figures unless specifically documented otherwise • Strategies – Get „official‟ figures into the data warehouse – Avoid storing both official and unofficial figures for the same metric in the data warehouse – Restrict access to unofficial data in 3rd party tools Tom Spetnagel
  • 36. 36 BI Charter: Example #2 • Goals – Minimize the amount of BI tool-training required • Principles – IT will not support unofficial tools which users have self- provided – Access to 3rd-party BI platforms will be supported on an exception basis when unique value is provided • Strategies – Minimize the number of tools users must know how to use – Use a BI platform which scores highly on ease-of-use and which has multi-purpose tools Tom Spetnagel
  • 37. 37 The End – Of The Beginning Tom Spetnagel

Editor's Notes

  • #16: These represent practical ways to implement agile