SlideShare a Scribd company logo
10.2 Ellipses
•Ellipse – a set of points P in a plane such that
the sum of the distances from P to 2 fixed
points (F1 and F2) is a given constant K.
•Fixed points - foci
•Major axis – the segment that contains the
foci and has its endpoints on the ellipse.
•Endpoints of major axis are vertices
•Midpoint of major axis is the center of the
ellipse.
•Minor axis – perpendicular to major axis at
the center
•Endpoints of minor axis are co-vertices
Vertices:
Co-Vertices:
2 2 2 2
2 2 2 2
x
1 1
x major y
2a length 2a
y minor x
2b length
x y y
a b b a
   
2b
( a, 0) vertices (0, a)
(0, b) co-vertices ( b, 0)
( ,0) foci (0, c)
c
 
 
 
a > b
Length from center to foci = c
c2
= a2
– b2
Foci are always on major axis
Write on
your note
card!
Write an equation if a vertex is (0, -4) and a
co-vertex is (3, 0) and the center is (0, 0)
4
a 
3
b 
2
2
1
9
1
6
x y
 
•Write an equation if centered at the origin
and is 20 units wide and 10 units high.
10
a 
5
b 
2
2
2
100
1
5
y
x
 
Remember…
•Equation of a circle:
•Center (h,k)
2 2 2
( ) ( )
x h y k r
   
2 2 2 2
2 2 2 2
( ) ( ) ( ) ( )
1 1
(0 a, 0) vertices (0, a)
(0, 0 b) co-vertices (0 b, 0)
(0 ,0) foci
x y x y
a b b a
c
   
 
 
 (0, 0 c)

2 2 2 2
2 2 2 2
( ) ( ) ( ) ( )
1 1
(h a, k) vertices (h, k a)
(h, k b) co-vertices (h b, k)
(h , )
x h y k x h y k
a b b a
c k
   
   
 
 
 foci (h, k c)

Write this down on your note
card.
Remember, a > b
Eccentricity of an Ellipse
•Measures how ‘circular’ the ellipse is (describes
the shape of the ellipse.)
•If e is close to 0 then foci are near center and
more round.
•If e is close to 1 then foci are far from center
and ellipse is elongated.
, so must be between 0 and 1 (0<e<1)
c
e e
a

Write on your note card!
Find center, foci, length of major and
minor, vertices and co-vertices and
graph.
2 2
( 1) ( 2)
1
20 4
x y
 
 
:(1, 2)
Center 
2 2 2
:
F c b
o a
ci   4
c 
( , )
h c k
  
1 4, 2
 
: 2
major a 4 5

: 2
minor b 4

:( , )
v h
ertice a
s k

 
1 2 5, 2
 
:( , )
co vertice h
s k b


 
1, 2 2
 
   
1,0 & 1, 4

 
 
5, 2
& 3, 2

 
Find center, foci, length of major and minor,
vertices and co-vertices and graph.
x2
+ 4y2
– 6x – 16y – 11 = 0
2
2
1
6 1
4( 4 )
y
x x y

 

2
2
4( 4 4) 1
6 9 9
11 6
x y
x y   
  
 
2 2
4(
( 3 36
2)
)
x y  
 
2 2
(
( 3)
36
2
9
1
)
y
x 
 

Find center, foci, length of major and minor,
vertices and co-vertices.
25x2
+ 4y2
- 150x + 40y + 225 = 0
2 2
2
4( 10 )
) 5
6 2
25( y
x y
x 
 

2
2
4( 10 25
25( 6 9) 225
2 1
2 00
5
)
x x y y
 
 
 

 
2 2
4(
2 1
)
5 0
( 3) 0
5
y
x  
 
2 2
( 3)
4
( )
25
1
5
y
x 



Write an equation of the ellipse
with the given characteristics:
•Center at (-4, 1), vertical major axis 18 units
long, minor axis 12 units long
9
a 
6
b 
2 2
(
( 1)
8
6 1
)
1
4
3
y
x 
 

Write an equation of the ellipse with the given
characteristics:
•Foci at (-1, 0) and (1, 0) and a = 4
Foci c

2 2 2
c a b
 
2 2 2
1 4 b
 
15
b 
:(0,0)
Center
2
2
1
16
1
5
y
x
 
Write an equation of the ellipse with the given
characteristics:
•Foci at (3, 5) and (1, 5) and eccentricity 1/4
:(2,5)
Center
c
e
a

1
4

Foci c

2 2 2
c a b
 
2 2 2
1 4 b
 
15
b 
2 2
(
( 5)
1
6 5
)
1
2
1
y
x 
 

Write an equation of the ellipse with the given
characteristics:
•Tangent to the x and y-axes and has center at
(4, -7)
7
a 
4
b 
2 2
(
( 7)
4
6 9
)
1
4
1
y
x 
 

What happens if the denominators are
equal????
IT’S A CIRCLE!!!!!!
IT’S A CIRCLE!!!!!!
Pg 781
#1-4,15,16,19,23,24

More Related Content

PDF
4.-Ellipse-and-its-Equation.pdf math econic equation
PPTX
Ellipses
PPT
Ellipse - Basic Concepts, Forms of the Equation
PPT
Ellipses
PDF
Precalculus11 q1 mod3_ellipses_v2
PPT
3 ellipses
PPT
3.4 ellipses
PPTX
Ellipse
4.-Ellipse-and-its-Equation.pdf math econic equation
Ellipses
Ellipse - Basic Concepts, Forms of the Equation
Ellipses
Precalculus11 q1 mod3_ellipses_v2
3 ellipses
3.4 ellipses
Ellipse

Similar to PreCalc_Notes_10.2_Ellipses123456890.ppt (20)

PPTX
Ellipse.pptx
PPT
Ellipses - Formulas and Graphs
PPT
Math1.3
PPTX
Circles and ellipses
PPTX
LESSON-1.4-Ellipse-in-Standard-Form.pptx
PPTX
Ellipse - Standard and General Form, and Graphs
PPTX
18Ellipses-x.pptx
PDF
10.2 Ellipses
PDF
(5) Ellipse (Theory). Module-3pdf
PPTX
Unit 8.2
PDF
Ellipse as A Conic Section for Pre-Calculus
PPTX
Ellipse
PPT
Lesson 9 conic sections - ellipse
PPT
PPTX
lesson4.-ellipse f.pptx
PPTX
Precal 3-4.pptx
PDF
10.2 Ellipses
PPT
2.6ellipses x
PPTX
MODULE 6 PRE CALCULUS STEM 11 THE ELLIPSE
PDF
Pre-Cal - Ellipse lessons for the senior
Ellipse.pptx
Ellipses - Formulas and Graphs
Math1.3
Circles and ellipses
LESSON-1.4-Ellipse-in-Standard-Form.pptx
Ellipse - Standard and General Form, and Graphs
18Ellipses-x.pptx
10.2 Ellipses
(5) Ellipse (Theory). Module-3pdf
Unit 8.2
Ellipse as A Conic Section for Pre-Calculus
Ellipse
Lesson 9 conic sections - ellipse
lesson4.-ellipse f.pptx
Precal 3-4.pptx
10.2 Ellipses
2.6ellipses x
MODULE 6 PRE CALCULUS STEM 11 THE ELLIPSE
Pre-Cal - Ellipse lessons for the senior
Ad

More from DebbieRoseToledano (20)

PPTX
Teacher Self Introduction All About Me Teacher Slides.pptx
PPTX
PART-1-ORSEM-SY-2025-2026cgnhcbbcfjg.pptx
PPTX
INTRODUCTION-OF-THE-FACULTbshsjdjdY.pptx
PPTX
MRDA-FACULTY-STAFF-PRESENTATION_095750.pptx
PPTX
Lesson 1 - Fraction, Decimal, Percentages_013331.pptx
PPTX
Lesson 1 - Fraction, Decimal, Percentage.pptx
PPTX
Quiz in Functions -1kkopl,ojuhhhhiuhi.pptx
PPTX
FUNCTION_10092ncjjuffuinsaxbmogvlt2.pptx
PPTX
Lesson 1 _10111nvjhhjiudfjlpoyrrryv5.pptx
PPTX
Brain-Quest- MATHEMATICSdsgfhtgferer.pptx
PPTX
Parallel Line cut by a Transversalfed.pptx
PPTX
problem-solving-and-reasoning-mathematics-4th-grade.pptx
PPTX
Area of a Circleguin cdgkjklnm,cfzdfd;l,.pptx
PPTX
DELLOROjokpopnkionvhhb3568908654367.pptx
PPTX
3rd HRPTA MEETING-SY2024-2025bhihopo.pptx
PPTX
DELLORO_ANGEL AMORE_A_AUTO2D_LESSON-9.pptx
PPTX
TOLEDANO_VICENTE_JR_E_AUTO2D_LESSON_3.pptx
PPTX
Continuity of a Functionjgbygjbgjjgj.pptx
PPTX
Tangent Line to the Graph of a Function.pptx
PPTX
Proposal in Mathmdjdjwkdhdnejdjndnskk.pptx
Teacher Self Introduction All About Me Teacher Slides.pptx
PART-1-ORSEM-SY-2025-2026cgnhcbbcfjg.pptx
INTRODUCTION-OF-THE-FACULTbshsjdjdY.pptx
MRDA-FACULTY-STAFF-PRESENTATION_095750.pptx
Lesson 1 - Fraction, Decimal, Percentages_013331.pptx
Lesson 1 - Fraction, Decimal, Percentage.pptx
Quiz in Functions -1kkopl,ojuhhhhiuhi.pptx
FUNCTION_10092ncjjuffuinsaxbmogvlt2.pptx
Lesson 1 _10111nvjhhjiudfjlpoyrrryv5.pptx
Brain-Quest- MATHEMATICSdsgfhtgferer.pptx
Parallel Line cut by a Transversalfed.pptx
problem-solving-and-reasoning-mathematics-4th-grade.pptx
Area of a Circleguin cdgkjklnm,cfzdfd;l,.pptx
DELLOROjokpopnkionvhhb3568908654367.pptx
3rd HRPTA MEETING-SY2024-2025bhihopo.pptx
DELLORO_ANGEL AMORE_A_AUTO2D_LESSON-9.pptx
TOLEDANO_VICENTE_JR_E_AUTO2D_LESSON_3.pptx
Continuity of a Functionjgbygjbgjjgj.pptx
Tangent Line to the Graph of a Function.pptx
Proposal in Mathmdjdjwkdhdnejdjndnskk.pptx
Ad

Recently uploaded (20)

PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Updated Idioms and Phrasal Verbs in English subject
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
RMMM.pdf make it easy to upload and study
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Computing-Curriculum for Schools in Ghana
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PPTX
Cell Structure & Organelles in detailed.
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
Yogi Goddess Pres Conference Studio Updates
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Updated Idioms and Phrasal Verbs in English subject
History, Philosophy and sociology of education (1).pptx
RMMM.pdf make it easy to upload and study
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Microbial disease of the cardiovascular and lymphatic systems
Computing-Curriculum for Schools in Ghana
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
STATICS OF THE RIGID BODIES Hibbelers.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
Cell Structure & Organelles in detailed.
Final Presentation General Medicine 03-08-2024.pptx
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Weekly quiz Compilation Jan -July 25.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Yogi Goddess Pres Conference Studio Updates
202450812 BayCHI UCSC-SV 20250812 v17.pptx

PreCalc_Notes_10.2_Ellipses123456890.ppt

  • 2. •Ellipse – a set of points P in a plane such that the sum of the distances from P to 2 fixed points (F1 and F2) is a given constant K. •Fixed points - foci
  • 3. •Major axis – the segment that contains the foci and has its endpoints on the ellipse. •Endpoints of major axis are vertices •Midpoint of major axis is the center of the ellipse. •Minor axis – perpendicular to major axis at the center •Endpoints of minor axis are co-vertices
  • 5. 2 2 2 2 2 2 2 2 x 1 1 x major y 2a length 2a y minor x 2b length x y y a b b a     2b ( a, 0) vertices (0, a) (0, b) co-vertices ( b, 0) ( ,0) foci (0, c) c      
  • 6. a > b Length from center to foci = c c2 = a2 – b2 Foci are always on major axis Write on your note card!
  • 7. Write an equation if a vertex is (0, -4) and a co-vertex is (3, 0) and the center is (0, 0) 4 a  3 b  2 2 1 9 1 6 x y  
  • 8. •Write an equation if centered at the origin and is 20 units wide and 10 units high. 10 a  5 b  2 2 2 100 1 5 y x  
  • 9. Remember… •Equation of a circle: •Center (h,k) 2 2 2 ( ) ( ) x h y k r     2 2 2 2 2 2 2 2 ( ) ( ) ( ) ( ) 1 1 (0 a, 0) vertices (0, a) (0, 0 b) co-vertices (0 b, 0) (0 ,0) foci x y x y a b b a c          (0, 0 c) 
  • 10. 2 2 2 2 2 2 2 2 ( ) ( ) ( ) ( ) 1 1 (h a, k) vertices (h, k a) (h, k b) co-vertices (h b, k) (h , ) x h y k x h y k a b b a c k              foci (h, k c)  Write this down on your note card. Remember, a > b
  • 11. Eccentricity of an Ellipse •Measures how ‘circular’ the ellipse is (describes the shape of the ellipse.) •If e is close to 0 then foci are near center and more round. •If e is close to 1 then foci are far from center and ellipse is elongated. , so must be between 0 and 1 (0<e<1) c e e a  Write on your note card!
  • 12. Find center, foci, length of major and minor, vertices and co-vertices and graph. 2 2 ( 1) ( 2) 1 20 4 x y     :(1, 2) Center  2 2 2 : F c b o a ci   4 c  ( , ) h c k    1 4, 2   : 2 major a 4 5  : 2 minor b 4  :( , ) v h ertice a s k    1 2 5, 2   :( , ) co vertice h s k b     1, 2 2       1,0 & 1, 4      5, 2 & 3, 2   
  • 13. Find center, foci, length of major and minor, vertices and co-vertices and graph. x2 + 4y2 – 6x – 16y – 11 = 0 2 2 1 6 1 4( 4 ) y x x y     2 2 4( 4 4) 1 6 9 9 11 6 x y x y         2 2 4( ( 3 36 2) ) x y     2 2 ( ( 3) 36 2 9 1 ) y x    
  • 14. Find center, foci, length of major and minor, vertices and co-vertices. 25x2 + 4y2 - 150x + 40y + 225 = 0 2 2 2 4( 10 ) ) 5 6 2 25( y x y x     2 2 4( 10 25 25( 6 9) 225 2 1 2 00 5 ) x x y y          2 2 4( 2 1 ) 5 0 ( 3) 0 5 y x     2 2 ( 3) 4 ( ) 25 1 5 y x    
  • 15. Write an equation of the ellipse with the given characteristics: •Center at (-4, 1), vertical major axis 18 units long, minor axis 12 units long 9 a  6 b  2 2 ( ( 1) 8 6 1 ) 1 4 3 y x    
  • 16. Write an equation of the ellipse with the given characteristics: •Foci at (-1, 0) and (1, 0) and a = 4 Foci c  2 2 2 c a b   2 2 2 1 4 b   15 b  :(0,0) Center 2 2 1 16 1 5 y x  
  • 17. Write an equation of the ellipse with the given characteristics: •Foci at (3, 5) and (1, 5) and eccentricity 1/4 :(2,5) Center c e a  1 4  Foci c  2 2 2 c a b   2 2 2 1 4 b   15 b  2 2 ( ( 5) 1 6 5 ) 1 2 1 y x    
  • 18. Write an equation of the ellipse with the given characteristics: •Tangent to the x and y-axes and has center at (4, -7) 7 a  4 b  2 2 ( ( 7) 4 6 9 ) 1 4 1 y x    
  • 19. What happens if the denominators are equal???? IT’S A CIRCLE!!!!!! IT’S A CIRCLE!!!!!!