SlideShare a Scribd company logo
Predicting Pre-click Quality for Native Advertisements
Facebook	
  Suggested	
  Post	
  	
   Twi3er	
  Promoted	
  Tweet	
   Yahoo	
  Sponsored	
  Content	
  
Na#ve	
  adver#sing	
  
Offensive	
  ads	
  disengage	
  the	
  users!	
  
D.	
  G.	
  Goldstein,	
  R.	
  P.	
  McAfee,	
  and	
  S.	
  Suri.	
  The	
  cost	
  of	
  annoying	
  ads.	
  WWW	
  2013.	
  
	
  
A.	
  Goldfarb	
  and	
  C.	
  Tucker.	
  Online	
  display	
  adver#sing:	
  Targe#ng	
  and	
  obtrusiveness.	
  MarkeIng	
  Science	
  2011.	
  	
  
 
•  How	
  to	
  measure?	
  
•  What	
  makes	
  an	
  ad	
  
preferred	
  by	
  users?	
  
•  How	
  to	
  model?	
  
	
  
Pre-­‐click	
  ad	
  quality	
  
 
•  How	
  to	
  measure?	
  
•  What	
  makes	
  an	
  ad	
  
preferred	
  by	
  users?	
  
•  How	
  to	
  model?	
  
	
  
Pre-­‐click	
  ad	
  quality	
  
 	
  	
  	
  How	
  to	
  measure	
  the	
  pre-­‐click	
  quality?	
  
•  Is	
  CTR	
  (click-­‐through	
  rate)	
  a	
  good	
  pre-­‐click	
  
metric?	
  
–  A	
  compounding	
  metric:	
  
•  Relevance:	
  how	
  ads	
  match	
  user	
  
interests.	
  
•  Quality:	
  	
  nature	
  of	
  the	
  ad	
  product	
  and	
  
ad	
  creaIve	
  design	
  decision.	
  
	
  
•  Pre-­‐click	
  metrics	
  solely	
  measure	
  on	
  ad	
  quality?	
  
–  Let	
  us	
  elicit	
  from	
  the	
  users	
  (crowdsourcing)	
  
	
  
 	
  	
  	
  Using	
  ad	
  feedbacks	
  as	
  a	
  signal	
  of	
  bad	
  ad	
  quality	
  
 	
  	
  	
  Proxy	
  of	
  pre-­‐click	
  ad	
  quality	
  
Offensive	
  Feedback	
  Rate	
  (OFR)	
  
	
  offensive	
  feedback	
  /	
  	
  
	
  ad	
  impression 	
  	
  
 	
  	
  	
  	
  CTR	
  vs.	
  Offensiveness	
  (OFR)	
  
Bad	
  ads	
  a&rac)ng	
  clicks	
  (clickbaits?)	
  
•  Correlation between CTR and
OFR (very weak)
–  Spearman: 0.155
–  Pearson: -0.043
•  Quantile analysis
–  High OFR distribute across
ads with various CTR
–  Higher CTR more ads with
higher OFR
	
  	
  
 
•  How	
  to	
  measure?	
  
•  What	
  makes	
  an	
  ad	
  
preferred	
  by	
  users?	
  
•  How	
  to	
  model?	
  
	
  
Pre-­‐click	
  ad	
  quality	
  
What	
  makes	
  an	
  ad	
  preferred	
  by	
  users?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
●  Methodology	
  
○  Pair-­‐wise	
  ad	
  preference	
  +	
  reasons	
  
○  Sample	
  ads	
  with	
  various	
  CTR	
  (whole	
  
quality	
  spectrum)	
  
○  Quality	
  based	
  comparison	
  
within	
  category	
  (verIcal)	
  
	
  
	
  
●  Underlying	
  preference	
  reasons	
  
○  Aesthe#c	
  appeal	
  >	
  Product,	
  Brand,	
  
Trustworthiness	
  >	
  Clarity	
  >	
  Layout	
  
○  VerIcal	
  Differences	
  
personal	
  finance	
  (clarity)	
  
beauty	
  and	
  educaIon	
  (product)	
  
	
  
	
  
within	
  verIcal	
  comparison	
  
 	
  	
  	
  Can	
  we	
  engineer	
  ad	
  quality	
  features?	
  
brand	
  
readability,	
  senIment	
  
aestheIc,	
  visual	
  
User	
  Reasons	
   Engineerable	
  Ad	
  Crea#ve	
  Features	
  
Brand	
   Brand	
  (domain	
  pagerank,	
  search	
  term	
  popularity)	
  
Product/Service	
   Content	
  (YCT,	
  adult	
  detector,	
  image	
  objects)	
  
Trustworthiness	
  
Psychology	
  (senIment,	
  psychological	
  incenIves)	
  
Content	
  Coherence	
  (similarity	
  between	
  Itle	
  and	
  desc)	
  
Language	
  Style	
  (formality,	
  punctuaIon,	
  superlaIve)	
  
Language	
  Usage	
  (spam,	
  hatespeech,	
  click	
  bait)	
  
Clarity	
   Readability	
  (Flesch	
  reading	
  ease,	
  num	
  of	
  complex	
  words)	
  
Layout	
  
Readability	
  (num	
  of	
  sentences,	
  words)	
  
Image	
  ComposiIon	
  (Presence	
  of	
  objects,	
  symmetry)	
  
Aesthe;c	
  appeal	
  
Colors	
  (H.S.V,	
  Contrast,	
  Pleasure)	
  
Textures	
  (GLCM	
  properIes)	
  
Photographic	
  Quality	
  (JPEG	
  quality,	
  sharpness)	
  
○  By	
  mining	
  ad	
  copy	
  (Itle	
  and	
  descripIon),	
  image	
  and	
  adverIser	
  informaIon	
  
○  Cold-­‐start	
  features	
  
 	
  	
  We	
  also	
  use	
  historical	
  features	
  
User	
  Behavior	
   Engineerable	
  Features	
  
Click	
   CTR	
  (click-­‐through	
  rate)	
  
Post-­‐click	
  
Bounce	
  Rate	
  
Average	
  Dwell	
  Time	
  
We	
  mine	
  user	
  interacIons	
  with	
  the	
  ads	
  
 	
  	
  	
  Feature	
  correla#on	
  with	
  OFR	
  
	
  
The	
  offensive	
  ads	
  tend	
  to:	
  
start	
  with	
  number	
  
maintain	
  lower	
  image	
  JPEG	
  quality	
  
be	
  less	
  formal	
  
express	
  negaIve	
  senIment	
  in	
  the	
  ad	
  Itle	
  
 
•  How	
  to	
  measure?	
  
•  What	
  makes	
  an	
  ad	
  
preferred	
  by	
  users?	
  
•  How	
  to	
  model?	
  
	
  
Pre-­‐click	
  ad	
  quality	
  
 
	
  
	
  
Data	
  
NaIve	
  mobile	
  iOS	
  and	
  Android	
  app	
  28,664	
  ads	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (Sampled	
  from	
  March	
  01-­‐18,	
  2015)	
  
Ad	
  feedback	
  data	
  obtained	
  from	
  Yahoo	
  news	
  stream	
  
	
  
Classifier	
  
Logis;c	
  Regression	
  as	
  a	
  binary	
  classifier	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  posiIve	
  examples:	
  high	
  quanIle	
  of	
  OFR	
  ads	
  
negaIve	
  examples:	
  all	
  others	
  	
  
	
  
EvaluaIon	
  
5-­‐fold	
  Cross-­‐validaIon	
  	
  
Metric:	
  AUC	
  (Area	
  Under	
  the	
  ROC	
  Curve)	
  
	
  
Pre-­‐click	
  model:	
  Data	
  and	
  evalua#on	
  
	
  
brand
readability,
sentiment
aesthetic, visual
 	
  	
  Overview	
  of	
  model	
  performance	
  
	
  
Models	
  based	
  on	
  each	
  feature	
  
category:	
  
product	
  >	
  trustworthiness	
  
>	
  brand	
  >	
  aestheIc	
  appeal	
  
>	
  clarity	
  >	
  layout	
  
	
  
Model	
  summary:	
  
	
  
•  cold	
  start:	
  	
  
AUC	
  (0.77)	
  
•  User	
  behavior:	
  
	
  	
  	
  	
  	
  	
  	
  AUC	
  (0.70)	
  
•  cold	
  start	
  +	
  user	
  behavior:	
  	
  
	
  	
  AUC	
  (0.79)	
  
A/B	
  Tes#ng	
  online	
  evalua#on	
  
•  Baseline	
  System	
  
–  Score(ad)	
  =	
  bid	
  *	
  pCTR	
  
	
  
•  Pre-­‐click	
  Quality	
  System	
  
–  Eliminate	
  the	
  ad	
  from	
  ad	
  ranking	
  if	
  P(Offensive|ad)	
  >	
   𝛿	
  
–  𝛿	
  is	
  determined	
  by	
  other	
  constraints	
  (e.g.	
  eCPM)	
  
	
  
Mobile:	
   	
  OFR	
  (-­‐17.6%)	
  
Desktop: 	
  OFR	
  (-­‐8.7%)	
  
Take-­‐away	
  messages	
  
•  How	
  to	
  measure	
  pre-­‐click	
  ad	
  quality?	
  
– Offensive	
  feedback	
  rate	
  as	
  a	
  metric	
  	
  
– Capture	
  bad	
  quality	
  be3er	
  than	
  CTR	
  
•  What	
  makes	
  an	
  ad	
  preferred	
  by	
  users	
  (reasons)?	
  
– AestheIc	
  appeal	
  >	
  Product,	
  Brand,	
  Trustworthiness	
  >	
  Clarity	
  >	
  Layout	
  
•  How	
  to	
  model?	
  
– Mining	
  ad	
  copy	
  features	
  from	
  ad	
  text,	
  image	
  and	
  adverIser	
  
– EffecIve	
  in	
  the	
  predicIon	
  
Ques#ons?	
  
	
  	
  
Ad	
  feedback	
  
Offensive	
  
Feedback	
  Rate	
  
vs.	
  CTR	
  
brand	
  
readability,	
  senIment	
  
aestheIc,	
  visual	
  
PredicIve	
  model	
  
by	
  mining	
  ad	
  
features	
  

More Related Content

PDF
Advertising Quality Science
PDF
Friendly, Appealing or Both? Characterising User Experience in Sponsored Sear...
PDF
Improving Post-Click User Engagement on Native Ads via Survival Analysis
PDF
Promoting Positive Post-click Experience for In-Stream Yahoo Gemini Users
PDF
Mobile advertising: The preclick experience
PDF
Tutorial on metrics of user engagement -- Applications to Search & E- commerce
PDF
Story-focused Reading in Online News and its Potential for User Engagement
PPT
Presentation online-advertising-toolbox
Advertising Quality Science
Friendly, Appealing or Both? Characterising User Experience in Sponsored Sear...
Improving Post-Click User Engagement on Native Ads via Survival Analysis
Promoting Positive Post-click Experience for In-Stream Yahoo Gemini Users
Mobile advertising: The preclick experience
Tutorial on metrics of user engagement -- Applications to Search & E- commerce
Story-focused Reading in Online News and its Potential for User Engagement
Presentation online-advertising-toolbox

What's hot (20)

PPTX
Behavioral targeting
PPTX
Activation, retention & engagement strategy
PDF
Display Advertising for Demand Marketers
PDF
Digital advertising 101
PPTX
2012 Online marketing-cmis542
PDF
Holistic Data Plan
PDF
Dma detroit larry freed mar 3 2011
PPTX
Social media and reviews are changing the landscape of revenue management
PPTX
Behavioral targeting
PPTX
How to Conduct UX Benchmarking
PDF
Quick Look - Auto Insurance UX Benchmark Study | UserZoom
PPTX
Webinar: Mobile Banking Benchmark
PPTX
Where to Go on Your Next Trip? Optimizing Travel Destinations Based on User P...
DOC
Mrs craig final exam 3
DOC
Mrs craig final exam 3
PPTX
Online advertising 101
PPT
measuring the effectiveness of interactive media
PDF
Remarketing Basics
PDF
Analytics and Adwords for Online Marketers DIC Excellence Series
PPTX
Online Advertising
Behavioral targeting
Activation, retention & engagement strategy
Display Advertising for Demand Marketers
Digital advertising 101
2012 Online marketing-cmis542
Holistic Data Plan
Dma detroit larry freed mar 3 2011
Social media and reviews are changing the landscape of revenue management
Behavioral targeting
How to Conduct UX Benchmarking
Quick Look - Auto Insurance UX Benchmark Study | UserZoom
Webinar: Mobile Banking Benchmark
Where to Go on Your Next Trip? Optimizing Travel Destinations Based on User P...
Mrs craig final exam 3
Mrs craig final exam 3
Online advertising 101
measuring the effectiveness of interactive media
Remarketing Basics
Analytics and Adwords for Online Marketers DIC Excellence Series
Online Advertising
Ad

Similar to Predicting Pre-click Quality for Native Advertisements (20)

PDF
Scalable advertising recommender systems
PDF
Marketplace in motion - AdKDD keynote - 2020
PDF
Christi Olson - Advanced Search Summit Napa 2021
PDF
The Do's and Don'ts for Digital Marketing for Higher Education
PPTX
Promozoo lunch and learn google adwords jan 2014
PPTX
Google AdWords Training
PPTX
How to Outpace Your PPC Rivals with Competitor Insights
PPTX
PPC explained visually
PPT
Search Engine Advertising
PPTX
Optimizing Your Digital Marketing Campaigns
PPT
Make Google AdWords More Effective
PPTX
Google Ads Training
PPTX
Digital Marketing
PPTX
التسويق الإلكتروني ودوره في نموء الأعمال والمحافظة على العملاء
PDF
Paid Traffic That Converts
PPT
Pay-Per-Click Marketing Principles Part 1
PDF
Sem google ads & ppc c
PPTX
(17) digital marketing overview ppt ah authors
PPTX
ReTargeting and the Future Of Display Advertising
PDF
Digital marketing training
Scalable advertising recommender systems
Marketplace in motion - AdKDD keynote - 2020
Christi Olson - Advanced Search Summit Napa 2021
The Do's and Don'ts for Digital Marketing for Higher Education
Promozoo lunch and learn google adwords jan 2014
Google AdWords Training
How to Outpace Your PPC Rivals with Competitor Insights
PPC explained visually
Search Engine Advertising
Optimizing Your Digital Marketing Campaigns
Make Google AdWords More Effective
Google Ads Training
Digital Marketing
التسويق الإلكتروني ودوره في نموء الأعمال والمحافظة على العملاء
Paid Traffic That Converts
Pay-Per-Click Marketing Principles Part 1
Sem google ads & ppc c
(17) digital marketing overview ppt ah authors
ReTargeting and the Future Of Display Advertising
Digital marketing training
Ad

More from Mounia Lalmas-Roelleke (20)

PDF
Engagement, Metrics & Personalisation at Scale
PDF
Engagement, metrics and "recommenders"
PDF
Metrics, Engagement & Personalization
PDF
Tutorial on Online User Engagement: Metrics and Optimization
PDF
Recommending and searching @ Spotify
PDF
Personalizing the listening experience
PDF
Recommending and Searching (Research @ Spotify)
PDF
Search @ Spotify
PDF
An introduction to system-oriented evaluation in Information Retrieval
PDF
Social Media and AI: Don’t forget the users
PDF
Describing Patterns and Disruptions in Large Scale Mobile App Usage Data
PDF
Evaluating the search experience: from Retrieval Effectiveness to User Engage...
PDF
A Journey into Evaluation: from Retrieval Effectiveness to User Engagement
PDF
From “Selena Gomez” to “Marlon Brando”: Understanding Explorative Entity Search
PDF
How Big Data is Changing User Engagement
PDF
Measuring user engagement: the do, the do not do, and the we do not know
PDF
An Engaging Click ... or how can user engagement measurement inform web searc...
PDF
Social Media News Communities: Gatekeeping, Coverage, and Statement Bias
PDF
On the Reliability and Intuitiveness of Aggregated Search Metrics
PPTX
Penguins in Sweaters, or Serendipitous Entity Search on User-generated Content
Engagement, Metrics & Personalisation at Scale
Engagement, metrics and "recommenders"
Metrics, Engagement & Personalization
Tutorial on Online User Engagement: Metrics and Optimization
Recommending and searching @ Spotify
Personalizing the listening experience
Recommending and Searching (Research @ Spotify)
Search @ Spotify
An introduction to system-oriented evaluation in Information Retrieval
Social Media and AI: Don’t forget the users
Describing Patterns and Disruptions in Large Scale Mobile App Usage Data
Evaluating the search experience: from Retrieval Effectiveness to User Engage...
A Journey into Evaluation: from Retrieval Effectiveness to User Engagement
From “Selena Gomez” to “Marlon Brando”: Understanding Explorative Entity Search
How Big Data is Changing User Engagement
Measuring user engagement: the do, the do not do, and the we do not know
An Engaging Click ... or how can user engagement measurement inform web searc...
Social Media News Communities: Gatekeeping, Coverage, and Statement Bias
On the Reliability and Intuitiveness of Aggregated Search Metrics
Penguins in Sweaters, or Serendipitous Entity Search on User-generated Content

Recently uploaded (20)

PDF
Smart Home Technology for Health Monitoring (www.kiu.ac.ug)
PPTX
Slides PPTX World Game (s) Eco Economic Epochs.pptx
PPTX
Digital Literacy And Online Safety on internet
PDF
Exploring VPS Hosting Trends for SMBs in 2025
PPTX
Mathew Digital SEO Checklist Guidlines 2025
PPTX
E -tech empowerment technologies PowerPoint
DOCX
Unit-3 cyber security network security of internet system
PDF
Unit-1 introduction to cyber security discuss about how to secure a system
PDF
Sims 4 Historia para lo sims 4 para jugar
PPTX
PptxGenJS_Demo_Chart_20250317130215833.pptx
PPTX
Funds Management Learning Material for Beg
PDF
Best Practices for Testing and Debugging Shopify Third-Party API Integrations...
PDF
An introduction to the IFRS (ISSB) Stndards.pdf
PPTX
Module 1 - Cyber Law and Ethics 101.pptx
PPTX
international classification of diseases ICD-10 review PPT.pptx
PPTX
Introuction about ICD -10 and ICD-11 PPT.pptx
PPTX
introduction about ICD -10 & ICD-11 ppt.pptx
PPTX
SAP Ariba Sourcing PPT for learning material
PPT
FIRE PREVENTION AND CONTROL PLAN- LUS.FM.MQ.OM.UTM.PLN.00014.ppt
PPTX
innovation process that make everything different.pptx
Smart Home Technology for Health Monitoring (www.kiu.ac.ug)
Slides PPTX World Game (s) Eco Economic Epochs.pptx
Digital Literacy And Online Safety on internet
Exploring VPS Hosting Trends for SMBs in 2025
Mathew Digital SEO Checklist Guidlines 2025
E -tech empowerment technologies PowerPoint
Unit-3 cyber security network security of internet system
Unit-1 introduction to cyber security discuss about how to secure a system
Sims 4 Historia para lo sims 4 para jugar
PptxGenJS_Demo_Chart_20250317130215833.pptx
Funds Management Learning Material for Beg
Best Practices for Testing and Debugging Shopify Third-Party API Integrations...
An introduction to the IFRS (ISSB) Stndards.pdf
Module 1 - Cyber Law and Ethics 101.pptx
international classification of diseases ICD-10 review PPT.pptx
Introuction about ICD -10 and ICD-11 PPT.pptx
introduction about ICD -10 & ICD-11 ppt.pptx
SAP Ariba Sourcing PPT for learning material
FIRE PREVENTION AND CONTROL PLAN- LUS.FM.MQ.OM.UTM.PLN.00014.ppt
innovation process that make everything different.pptx

Predicting Pre-click Quality for Native Advertisements

  • 2. Facebook  Suggested  Post     Twi3er  Promoted  Tweet   Yahoo  Sponsored  Content   Na#ve  adver#sing  
  • 3. Offensive  ads  disengage  the  users!   D.  G.  Goldstein,  R.  P.  McAfee,  and  S.  Suri.  The  cost  of  annoying  ads.  WWW  2013.     A.  Goldfarb  and  C.  Tucker.  Online  display  adver#sing:  Targe#ng  and  obtrusiveness.  MarkeIng  Science  2011.    
  • 4.   •  How  to  measure?   •  What  makes  an  ad   preferred  by  users?   •  How  to  model?     Pre-­‐click  ad  quality  
  • 5.   •  How  to  measure?   •  What  makes  an  ad   preferred  by  users?   •  How  to  model?     Pre-­‐click  ad  quality  
  • 6.        How  to  measure  the  pre-­‐click  quality?   •  Is  CTR  (click-­‐through  rate)  a  good  pre-­‐click   metric?   –  A  compounding  metric:   •  Relevance:  how  ads  match  user   interests.   •  Quality:    nature  of  the  ad  product  and   ad  creaIve  design  decision.     •  Pre-­‐click  metrics  solely  measure  on  ad  quality?   –  Let  us  elicit  from  the  users  (crowdsourcing)    
  • 7.        Using  ad  feedbacks  as  a  signal  of  bad  ad  quality  
  • 8.        Proxy  of  pre-­‐click  ad  quality   Offensive  Feedback  Rate  (OFR)    offensive  feedback  /      ad  impression    
  • 9.          CTR  vs.  Offensiveness  (OFR)   Bad  ads  a&rac)ng  clicks  (clickbaits?)   •  Correlation between CTR and OFR (very weak) –  Spearman: 0.155 –  Pearson: -0.043 •  Quantile analysis –  High OFR distribute across ads with various CTR –  Higher CTR more ads with higher OFR    
  • 10.   •  How  to  measure?   •  What  makes  an  ad   preferred  by  users?   •  How  to  model?     Pre-­‐click  ad  quality  
  • 11. What  makes  an  ad  preferred  by  users?                     ●  Methodology   ○  Pair-­‐wise  ad  preference  +  reasons   ○  Sample  ads  with  various  CTR  (whole   quality  spectrum)   ○  Quality  based  comparison   within  category  (verIcal)       ●  Underlying  preference  reasons   ○  Aesthe#c  appeal  >  Product,  Brand,   Trustworthiness  >  Clarity  >  Layout   ○  VerIcal  Differences   personal  finance  (clarity)   beauty  and  educaIon  (product)       within  verIcal  comparison  
  • 12.        Can  we  engineer  ad  quality  features?   brand   readability,  senIment   aestheIc,  visual   User  Reasons   Engineerable  Ad  Crea#ve  Features   Brand   Brand  (domain  pagerank,  search  term  popularity)   Product/Service   Content  (YCT,  adult  detector,  image  objects)   Trustworthiness   Psychology  (senIment,  psychological  incenIves)   Content  Coherence  (similarity  between  Itle  and  desc)   Language  Style  (formality,  punctuaIon,  superlaIve)   Language  Usage  (spam,  hatespeech,  click  bait)   Clarity   Readability  (Flesch  reading  ease,  num  of  complex  words)   Layout   Readability  (num  of  sentences,  words)   Image  ComposiIon  (Presence  of  objects,  symmetry)   Aesthe;c  appeal   Colors  (H.S.V,  Contrast,  Pleasure)   Textures  (GLCM  properIes)   Photographic  Quality  (JPEG  quality,  sharpness)   ○  By  mining  ad  copy  (Itle  and  descripIon),  image  and  adverIser  informaIon   ○  Cold-­‐start  features  
  • 13.      We  also  use  historical  features   User  Behavior   Engineerable  Features   Click   CTR  (click-­‐through  rate)   Post-­‐click   Bounce  Rate   Average  Dwell  Time   We  mine  user  interacIons  with  the  ads  
  • 14.        Feature  correla#on  with  OFR     The  offensive  ads  tend  to:   start  with  number   maintain  lower  image  JPEG  quality   be  less  formal   express  negaIve  senIment  in  the  ad  Itle  
  • 15.   •  How  to  measure?   •  What  makes  an  ad   preferred  by  users?   •  How  to  model?     Pre-­‐click  ad  quality  
  • 16.       Data   NaIve  mobile  iOS  and  Android  app  28,664  ads                        (Sampled  from  March  01-­‐18,  2015)   Ad  feedback  data  obtained  from  Yahoo  news  stream     Classifier   Logis;c  Regression  as  a  binary  classifier                      posiIve  examples:  high  quanIle  of  OFR  ads   negaIve  examples:  all  others       EvaluaIon   5-­‐fold  Cross-­‐validaIon     Metric:  AUC  (Area  Under  the  ROC  Curve)     Pre-­‐click  model:  Data  and  evalua#on     brand readability, sentiment aesthetic, visual
  • 17.      Overview  of  model  performance     Models  based  on  each  feature   category:   product  >  trustworthiness   >  brand  >  aestheIc  appeal   >  clarity  >  layout     Model  summary:     •  cold  start:     AUC  (0.77)   •  User  behavior:                AUC  (0.70)   •  cold  start  +  user  behavior:        AUC  (0.79)  
  • 18. A/B  Tes#ng  online  evalua#on   •  Baseline  System   –  Score(ad)  =  bid  *  pCTR     •  Pre-­‐click  Quality  System   –  Eliminate  the  ad  from  ad  ranking  if  P(Offensive|ad)  >   𝛿   –  𝛿  is  determined  by  other  constraints  (e.g.  eCPM)     Mobile:    OFR  (-­‐17.6%)   Desktop:  OFR  (-­‐8.7%)  
  • 19. Take-­‐away  messages   •  How  to  measure  pre-­‐click  ad  quality?   – Offensive  feedback  rate  as  a  metric     – Capture  bad  quality  be3er  than  CTR   •  What  makes  an  ad  preferred  by  users  (reasons)?   – AestheIc  appeal  >  Product,  Brand,  Trustworthiness  >  Clarity  >  Layout   •  How  to  model?   – Mining  ad  copy  features  from  ad  text,  image  and  adverIser   – EffecIve  in  the  predicIon  
  • 20. Ques#ons?       Ad  feedback   Offensive   Feedback  Rate   vs.  CTR   brand   readability,  senIment   aestheIc,  visual   PredicIve  model   by  mining  ad   features