This document discusses advancements in machine learning and predictive analytics for healthcare. It begins with an introduction discussing how technologies like machine learning and artificial intelligence can help researchers and doctors achieve goals faster when integrated with healthcare. The document then reviews literature on challenges with analyzing big healthcare data due to issues like data variety, speed and volume. It discusses different machine learning algorithms that have been used for disease prediction and diagnosis, including decision trees, random forests, bagging and boosting. The methodology section outlines the use of an ensemble approach, combining multiple models to improve overall accuracy. Technologies implemented in this work include Python libraries like Pandas, NumPy and Scikit-learn for data processing and modeling, along with Flask and AWS for web app deployment. The