SlideShare a Scribd company logo
Regional Petroleum Hydrogeological study of Bakken Formation,
Canadian part
Birendra Kumar Piya
MSc Integrated Petroleum Geosciences 2012/2013
Department of Earth and Atmospheric Sciences and
Department of Physics, University of Alberta
Supervisor: Professor Ben J. Rostron
August 8, 2013
1
OBJECTIVE
 To Carry out general hydrogeological study of Bakken
formation in Canadian parts.
 To generate Potentiometric surface map, structural
maps and to determine the groundwater flow direction.
 To analyse and evaluate the chemistry (TDS) of the
formation waters
 To generate Pressure versus depth plots
 To determine the position of hydrocarbon entrapments
using UVZ method
2
Introduction
Alberta
Saskatchewan
Study area
Manitoba
Canadian
Shield
North Dakota
South Dakota
Siouxarch
Montana
Wyoming
Location :
Longitude: 990
30' to 1110
53' W
Latitude : 490
to 520
20' N
Area: 84,000 Sq. Miles̴
(216,700 km2
)
Thickness: 0 – 47m
Bakken formation area
200,000 Sq. miles (520,000 Km2
)
(Kent and Christopher, 1994, Wikipedia)
Modified from, Benn and Rostron, 1998, Bakken outline-Smith and Bustin, 2000
Study area
3
Geoscout
Final Report
Data
Source Accumap
(IHS)
•Structural data,
•Chemical data
•Pressure data
Culling of data
Data
analysis
Database
management
Microsoft Excel
Calculation of
Hydraulic heads
Calculation for
formation
density
Calculation of DFR
and driving force
Calculation of �∇
and �∇
Surfer and IlWISHydraulic head
map, UVZ map
Structure map,
TDS map,
Methods
Hitchon and Brulotte, (1994)
4
Formulas
• Hydraulic head (h) = z +( P/ρg) ….……..1
• U =V – Z…………………………………...2
• U= {ρo/(ρo - ρw)} * ho…………………… 3
• V={ρw/(ρw-ρo)}*hw …………………………4
• DFR = (Δρ * E)/(ρ0 * Hf)…………………5
• The driving force (F) = Hf +(Δρ/ρf) * E. ..6
Hubbert, 1953; Davies, 1987
5
GENERAL GEOLOGY
Williston Basin
Bakken Formation
Lodgepole
Threefork
formation
Meissner, 1978 Osinski, 1970, Rocanville area
lodgepole
threefork
6
Hydrostratigraphy Of Williston Basin
Melnik, 2012
Melnik 2012, 12 aquifer, 12 aquitard
Palombi, 2008, 19 aquifer, 13 aquitard
7
The Laramide orogeny was caused
by subduction of a plate at a shallow
angle.
Wikipedia.org
Tectonics:
• Associated with laramide orogene
Mountain building activity, in late
Cretaceous period. Oceanic plate
sliding under the North American
plate at shallow angle.
According to Kent and Christopher (1994), the origin of
the basin is mainly due to subsidence and upliftment
caused due to normal process of heating and cooling
process in the inside of the earth.
8
Depositional environment
• Upper member: deposited in anaerobic condition (deep marine
environment ) i.e. restricted circulation of Oxygen
• Middle member: aerobic condition (diagenetically altered to
dolomites)
• Lower member: dysaerobic condition
• Deposited during major cycle of onlap and offlap sediments
(Transgression and regression series)
• The presence of some organic remains like planktonic organic
spores, fish remains, cephalopods, ostracodes and conodonts
indicate marine to marginal marine water conditions
• Absence of wave generated structure indicates deposition
below storm wave base
Halabura et al. (2007). Meissner, (1978) 9
S
N
Lower depth
Upper depth
Contour interval 500 ft
NW
SE
Bakken structure maps
10
Meissner, 1978
lower member = 3-20m
Middle member = few cm to
30m
Average = 13m
upper member
Max thickness varies 4-18m
= Average 2m
Halabura et al, 2007
11
Analysis
Hydraulic Head
h = z + P/ρg = z + Ψ
Hydraulic head is the sum of
elevation head and the pressure
head
ΨB
hB
SB
Surface
zB
Formation
Name
Bottom
Hole
Latitude
Bottom
Hole
Longitu
de
KB
Elevatio
n
(m)
Upper
Depth
(m)
Lower
Depth
(m)
Average kPa Head
H
BAKKEN /
TORQUAY 52.05 -109.99 753.7 766.0 778.8 772.4 5910.90 583.84
BAKKEN /
TORQUAY 52.05 -109.99 753.7 805.0 816.0 810.5 5910.9 545.74
BAKKEN / UNDEF 51.07 -108.98 726.9 886.1 897.9 892.0 9173.47 770.01
BAKKEN / UNDEF 51.06 -109.44 679.7 876.0 884.0 880.0 9101.63 727.49
BAKKEN / UNDEF 51.33 -109.99 700.1 857.0 873.0 865.0 8535.02 705.13
BAKKEN / UNDEF 51.38 -109.37 699.1 883.0 888.0 885.5 8400.70 669.94
BAKKEN / UNDEF 51.44 -109.83 689.5 739.0 751.0 745.0 8154.30 775.72
BAKKEN / UNDEF 51.50 -109.28 677.7 886.1 897.9 892.0 7675.20 568.09
BAKKEN / UNDEF 51.50 -109.81 693.8 876.0 884.0 880.0 7868.30 615.87
depth
P
Hubbert, 1953
12
• In practice direction of flow is normal to the equipotential lines,
provided no variable density and aquifer is horizontal
Final Potentiometric surface map
Contour interval 40m
1120 – 400m
13
Potentiometric surface Map
•Factors affecting flow direction are density variation, temperature,
pressure and topography.
14
WDF (F) = �� + Δ�/��∇
�∇
DFR = (�/ ��
) * ( � / �∇ ∇ f
)
Davies, 1987
�∇ � = pressure related driving force
(Δ�/��) � = density and slope related driving force∇
15
Easting Northing Δ Hf Δ Z ρf kg/m3
ρw kg/m3
(Δρ/ρf)*ΔE DFR Driving force
305508.6 5425089.1 0.001 0.001 1010 1000 0.00099 0.002 0.00001
302416.9 5426812.9 0.0011 0.0011 1010.1 1000 0.00108889 0.003 0.00001111
299052.8 5427876.72 0.0012 0.0012 1010.2 1000 0.00118776 0.004 0.00001224
295537.9 5428512.8 0.0013 0.0013 1010.3 1000 0.00128661 0.005 0.00001339
291998.3 5428920.78 0.0014 0.0014 1010.4 1000 0.00138544 0.006 0.00001456
288465.9 5429154.51 0.0015 0.0015 1010.5 1000 0.00148425 0.007 0.00001575
284926.4 5429160.57 0.0016 0.0016 1010.6 1000 0.00158304 0.008 0.00001696
281379.9 5428974.13 0.0017 0.0017 1010.7 1000 0.00168181 0.009 0.00001819
277850.3 5428844.11 0.0018 0.0018 1010.8 1000 0.00178056 0.01 0.00001944
274347.6 5428957.72 0.0019 0.0019 1010.9 1000 0.00187929 0.011 0.00002071
270800.7 5429193 0.002 0.002 1011 1000 0.001978 0.012 0.000022
267129.2 5429440.06 0.0021 0.0021 1011.1 1000 0.00207669 0.013 0.00002331
263574.1 5430053.69 0.0022 0.0022 1011.2 1000 0.00217536 0.014 0.00002464
Calculation of WDF and DFR
16
Hydraulic gradient map
Variation: 0.001 to 0.014
ΔHf=Δh/Δx
=( h2-h1)/l
17
Topographic gradient map
Variation; 0.001 to 0.037
ΔE=Δz/Δx
= (z2-z1)/l
18
Driving Force Ratio map DFR = (�/ ��
) * ( � / �∇ ∇ �
)
Variation: 0.002 to 1.106.
Variable density flow
19
Driving force Vector map: WDF (F) = �� + Δ�/�� �∇ ∇
Variation: 0.000251 to 0.006082
20
Density map of Bakken formation (Canadian part), contour interval
10kg/m3
997.69 kg/m3
to 1186.06 kg/m3
��
= 730.6+2.025*T-3.8*0.001*T^2+(2.362-1.197*0.01*T+1.835*0.00001*T^2) *P+(2.374-1.024*0.01*T
+1.49*0.00001*T^2-5.1*0.0001*P)*C Chierici, 1994
21
Borehole Temperature map
Contour interval 50
C
Variation: 10o
C to 850
C, average 33o
C Corresponds with Bachu and Burwash (2012)
22
Pressure (Kpas)Depthinmeter
23
P-D plots for Bakken formation in Manitoba region
24
P – D plot for different aquifer zone In Alberta region
Ordovician
25
Geochemistry
Ions
Minimum
mg/l
Maximum
mg/l Average Count Total Ave % Max %
Na+
34 122687 12185 301 303 32.57 29.95
Cl-
2790 190300 19965 303 303 53.37 46.45
K+
1 38500 1350 200 303 3.61 9.40
Ca++
5 18273 734 292 303 1.96 4.46
Mg++
1 4854 245 300 303 0.65 1.18
HCO3-
18 8170 858 300 303 2.29 1.99
SO4
--
1 23360 1921 296 303 5.14 5.70
CO3
++
0.05 3440 144 74 303 0.38 0.84
OH-
0 98 4 27 303 0.01 0.02
TDS 173 319172 35335 266 303
pH 5 9.7 7 300 303
26
End Member = NaCl (Brines) Chebotarev (1955)
Groundwater evolution chart
27
Contour interval 20000 mg/l28
29
Increasing depth
Increasing depth
30
UVZ method
U = V – Z
U = {ρo/(ρo - ρw)} * ho
V = {ρw/(ρw - ρo)} * hw
M. K. Hubbert, 1953
ρo = 0.844 g/cm3
ρ w = 1 g/cm3
Well Id (UWI) Longitude Latitude Head H ρw = g/cm3
ρo = g/cm3
V0 U0 = v0 - z
100/01-01-031-02W4/0 -110.15 51.62 690.18 1.0089 0.844 4222 2386
100/01-34-024-06W4/0 -110.75 51.08
1092.8
0 1.0140 0.844 6518 2386
100/01-34-031-03W4/0 -110.34 51.69 646.63 1.0140 0.844 3857 2386
100/02-10-026-03W4/0 -110.34 51.20
1042.5
4 1.0140 0.844 6218 2386
100/02-11-015-29W1/0 -101.37 50.26 427.11 1.0140 0.844 2548 3124
100/02-11-029-03W4/0 -110.32 51.46 879.85 1.0261 0.844 4957 3124
100/02-14-016-28W1/0 -101.23 50.36 405.20 1.0140 0.844 2417 3363
100/03-04-028-04W4/0 -110.51 51.36 935.16 1.0140 0.844 5578 3602
100/03-13-014-29W1/0 -101.32 50.18 452.13 1.0140 0.844 2697 4079
100/03-21-015-27W1/0 -101.14 50.29 413.98 1.0140 0.844 2469 4340
100/03-26-028-03W4/0 -110.32 51.42 821.11 1.0140 0.844 4898 4102
100/03-26-031-01W4/0 -110.04 51.68 526.72 1.0140 0.844 3142 3883
31
V0 Map
32
Structural map overlay on V0 Map
33
U0 plots (Intersection points between V0 and Z value
34
2
1
Possible site for
petroleum
accumulation
UVZ map for Light Oil (ρ0=0.844 g/cm3
)
Possible sites for hydrocarbon entrapment marked in a circle
35
Possible site of oil
accumulation
UVZ map for heavy Oil (0.933 g/cm3
)
Possible sites for hydrocarbon entrapment marked in a circle
More confined than the light one.
36
Conclusion
• Hydraulic head values gradually decreases towards North
and northeast direction
• Deeper parts of the formation indicate variable density flow
due to variation in density and the increase in salinity
• The TDS value increase towards deeper portion of the basin
and ranges from less than 10,000 mg/l to up to maximum of
317,00 mg/l.
• Hydrochemical study shows that, the formation water is rich in
sodium and chlorine ions that follow a positive trend with TDS.
• UVZ map for light oil show two possible sites for hydrocarbon
entrapments.
37
•The P-D plots results, occurrences of two pressure zones,
one at a depth less than 1300m (underpressure zone)
and the other at a depth greater than 1300m (overpressure
zone).
Recommendation:
Detail study covering entire Bakken formation (US and Canada
Part) is necessary to be carried out in order to understand
petroleum hydrogeological characteristics of the Bakken formation
as a whole. For this, enough data, enough budget and sufficient
time are required.
38
Acknowledgement
I would like to acknowledge,
 Supervisor Professor Ben Rostron
 Director of IPG program Prof. David Potter
 All IPG Professors
 EAS staffs (Technical non technical)
 Anatoly Melnik, Tibor Lengyel
 IPG Pool Awards (sponsored by ConocoPhillips, CNRL
and Nexen
 All IPG classmates
39
References:
Benn, A. A and B. J. Rostron, 1998, Regional hydrochemistry of Cambrian to
Devonian aquifers in the Williston basin, Canada-USA, Eighth international
Williston Basin Symposium, Sakatchewan Geological Society Special Publication
No. 13, p. 238-245.
Bachu, S., and B. Hitchon, 1996, Regional Scale Flow of Formation Waters in
the Williston Basin, AAPG Bulletin, v. 80, No. 2, p. 248-264.
Bachu, S., and R. A. Burwash, 2012, Geothermal Regime in the Western
Canada Sedimentary Basin, Geological Atlas of the Western Canada
Sedimentary Basin, Chapter 30.
Chebotarev, I. I., 1955. Metamorphism of natural water in the crust of
weathering, Geochemica et Cosmochimica Acta, v. 8, Issue 1-2, p. 22-48,
137-170, 198-212.
Chierici, G. L., 1994, Principles of petroleum reservoir engineering.
Springer-Verlag, Berlin, New York, p. 430
Davies, P. B., 1987, Modelling Areal, Variable density, ground water flow using
equivalent freshwater head, analysis of the potentially significant errors, proceedings
of the solving groundwater problems with models conference and exposition, NWFA,
p. 888-903.
Halabura, S., L. Buatois, S. Angulo, and L., Piche, 2007; From Source to
Trap: A review of the Bakken Petroleum System, Upper Devonian-Mississippian,
and Southeastern Saskatchewan.
Hubbert, M. K., 1953, Entrapment of petroleum under hydrodynamic condition,
AAPG Bulletin, v. 37, no. 8p. 1954-2056.
40
Hitchon, B., and M. Brulotte, 1994, Culling Criteria for "Standard" formation
water analyses, Elsevier Science Ltd. vol. 9, pp. 637-645.
Kent, D. M., and J. E. Christopher, 1994, Geological History of the Williston
basin and Sweetgrass Arch, Geological Atlas of the Western Canada Sedimentary
Basin Chapter 27.
Meissner, F. F., 1978, Petroleum Geology of the Bakken Formation, Williston
Basin, North Dakota and Montana; in the economic Geology of the Williston Basin:
Montana, North Dakota, South Dakota, Saskatchewan, Manitoba, 1978 Williston Basin
Symposium, Montana Geological Society, 4th
Annual Field Conference, September
10 to 12, Guidebook, p. 207-227.
Melnik, A., 2012, Regional Hydrogeology of Southwestern Saskatchewan:
Unpublished M. Sc. Thesis, University of Alberta, Edmonton, Alberta, Canada, 153 p.
Osinski, W. P. C., 1970, Geology and Production History of South eastern
Saskatchewan, a report submitted to Department of Mineral Resources of
Saskatchewan, Geological science branch, Sedimentary geology division.
Palombi, D. D., 2008, Regional Hydrogeological Characterization of the Northeastern
Margin in the Williston Basin: Unpublished M. Sc. Thesis, U of A, Edmonton, Alberta,
Canada, 196 p.
Smith, M. G., and R. M. Bustin, 2000, Late Devonian and Early Mississippian
Bakken and Exshaw Black Shale Source Rocks, Western Canada Sedimentary
Basin: A Sequence Stratigraphic Interpretation, AAPG Bulletin, v. 84, No. 7, p. 940-960.
41
Nepal’s beauty42

More Related Content

PPTX
Elizabeth Brannon Poster
PDF
1 a shakhova_final
PDF
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
PDF
Larsen ice shelf has progressively thinned
PPTX
Lapisan Batas Atmosfer
PDF
THE ENTERIOR OF EARTH
PDF
ncomms11897
PDF
Andrew Frampton - modelling groundwater transport and travel times in warming...
Elizabeth Brannon Poster
1 a shakhova_final
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
Larsen ice shelf has progressively thinned
Lapisan Batas Atmosfer
THE ENTERIOR OF EARTH
ncomms11897
Andrew Frampton - modelling groundwater transport and travel times in warming...

What's hot (20)

PPT
River ice jams : risk evaluation, driving conditions and geomorphological imp...
PPS
The Record of Sea Level Change From Satellite Measurements: What Have We Lea...
PDF
Mercator Ocean newsletter 10
DOCX
Geologic Controls on Liquefaction Processes at the Bottineau Quicksand Site
PDF
Quaternary cycles
PPT
atmospheric boundary layer studies
PPTX
6 month review.pptx
PPTX
Effects of climate change on the emmission of n2o
PDF
Reservoir Characterization from Abnormal Pressure in Parts of Eleme, Southea...
PDF
Drivers and uncertainties in past and future sea level changes
PDF
The integration of space born and ground remotely sensed data
PDF
Dinesh pandey
PPT
JessicaJinAGU_POSTER (V4)
PDF
MOSAiC – The International Arctic Drift Expedition
PPT
Climate Change Science Since 2007
PPT
Climate Change Science Since 2007
PDF
Sea level rise, emerging issues paper, royal society of new zealand, sept 2010
PDF
Cycles of climatic changes
PPTX
Exploration and analysis of oil and gas field ( 3D seismic survey)
River ice jams : risk evaluation, driving conditions and geomorphological imp...
The Record of Sea Level Change From Satellite Measurements: What Have We Lea...
Mercator Ocean newsletter 10
Geologic Controls on Liquefaction Processes at the Bottineau Quicksand Site
Quaternary cycles
atmospheric boundary layer studies
6 month review.pptx
Effects of climate change on the emmission of n2o
Reservoir Characterization from Abnormal Pressure in Parts of Eleme, Southea...
Drivers and uncertainties in past and future sea level changes
The integration of space born and ground remotely sensed data
Dinesh pandey
JessicaJinAGU_POSTER (V4)
MOSAiC – The International Arctic Drift Expedition
Climate Change Science Since 2007
Climate Change Science Since 2007
Sea level rise, emerging issues paper, royal society of new zealand, sept 2010
Cycles of climatic changes
Exploration and analysis of oil and gas field ( 3D seismic survey)
Ad

Viewers also liked (10)

PDF
Gignet v2 4
DOCX
rubric-for-presentation
DOC
El nacimiento del niño
PPT
Bone mets pitch
PDF
ETIK2016 - En værdig afslutning på livet. Den praktiserende læges rolle
PPTX
Новогодний утренник группы №2
PPT
P.P.los invertebrados.Ana Delia López
PDF
Conversie attributie-jurjen-jongejan
PDF
Public Protector Sate of Capture Report
Gignet v2 4
rubric-for-presentation
El nacimiento del niño
Bone mets pitch
ETIK2016 - En værdig afslutning på livet. Den praktiserende læges rolle
Новогодний утренник группы №2
P.P.los invertebrados.Ana Delia López
Conversie attributie-jurjen-jongejan
Public Protector Sate of Capture Report
Ad

Similar to Presentation_final1 (20)

PDF
Payne and Hook - RMS AAPG 2012 - FINAL
PPTX
Construction and calibration of a fractured tight reservoir model
PPTX
Tamer's Group FDP I Presentation (1) 2.pptx
PDF
Pumped Ambient 2009
PDF
EAGE_Conference_London2013
PPTX
Basic Hydraulic Fracturing
PDF
Pn gz 2014
PPTX
Creating a Worldwide Unconventional Revolution Through a Technically Driven S...
PDF
Key aspects of reservoir evaluation for deep water reservoirs
DOCX
Oceanography 101 LAB 3 Saunders Ocean Sediments & Bathymet.docx
PPTX
Ogin of petroleum
PPTX
MSc Thesis - Modelling of the Bowland and Holywell Shales
PDF
Advanced logging evaluation gas reservoir of Levantine basin
PDF
South_Blakey_Evolution of GIS Based Analysis ECIM Haugesund 2010
PDF
THESIS
PDF
PorPerSight – Porosity & Permeability Characterization product sheet
DOCX
Curtin University Department of Petroleum Engineering .docx
PDF
(Aapg methods in exploration volume 3) george b. asquith, charles r. gibson ...
PPTX
Migration of hydrocarbons in oil and gas insdustry
PDF
Groundwater Hydrology.pdf
Payne and Hook - RMS AAPG 2012 - FINAL
Construction and calibration of a fractured tight reservoir model
Tamer's Group FDP I Presentation (1) 2.pptx
Pumped Ambient 2009
EAGE_Conference_London2013
Basic Hydraulic Fracturing
Pn gz 2014
Creating a Worldwide Unconventional Revolution Through a Technically Driven S...
Key aspects of reservoir evaluation for deep water reservoirs
Oceanography 101 LAB 3 Saunders Ocean Sediments & Bathymet.docx
Ogin of petroleum
MSc Thesis - Modelling of the Bowland and Holywell Shales
Advanced logging evaluation gas reservoir of Levantine basin
South_Blakey_Evolution of GIS Based Analysis ECIM Haugesund 2010
THESIS
PorPerSight – Porosity & Permeability Characterization product sheet
Curtin University Department of Petroleum Engineering .docx
(Aapg methods in exploration volume 3) george b. asquith, charles r. gibson ...
Migration of hydrocarbons in oil and gas insdustry
Groundwater Hydrology.pdf

Presentation_final1

  • 1. Regional Petroleum Hydrogeological study of Bakken Formation, Canadian part Birendra Kumar Piya MSc Integrated Petroleum Geosciences 2012/2013 Department of Earth and Atmospheric Sciences and Department of Physics, University of Alberta Supervisor: Professor Ben J. Rostron August 8, 2013 1
  • 2. OBJECTIVE  To Carry out general hydrogeological study of Bakken formation in Canadian parts.  To generate Potentiometric surface map, structural maps and to determine the groundwater flow direction.  To analyse and evaluate the chemistry (TDS) of the formation waters  To generate Pressure versus depth plots  To determine the position of hydrocarbon entrapments using UVZ method 2
  • 3. Introduction Alberta Saskatchewan Study area Manitoba Canadian Shield North Dakota South Dakota Siouxarch Montana Wyoming Location : Longitude: 990 30' to 1110 53' W Latitude : 490 to 520 20' N Area: 84,000 Sq. Miles̴ (216,700 km2 ) Thickness: 0 – 47m Bakken formation area 200,000 Sq. miles (520,000 Km2 ) (Kent and Christopher, 1994, Wikipedia) Modified from, Benn and Rostron, 1998, Bakken outline-Smith and Bustin, 2000 Study area 3
  • 4. Geoscout Final Report Data Source Accumap (IHS) •Structural data, •Chemical data •Pressure data Culling of data Data analysis Database management Microsoft Excel Calculation of Hydraulic heads Calculation for formation density Calculation of DFR and driving force Calculation of �∇ and �∇ Surfer and IlWISHydraulic head map, UVZ map Structure map, TDS map, Methods Hitchon and Brulotte, (1994) 4
  • 5. Formulas • Hydraulic head (h) = z +( P/ρg) ….……..1 • U =V – Z…………………………………...2 • U= {ρo/(ρo - ρw)} * ho…………………… 3 • V={ρw/(ρw-ρo)}*hw …………………………4 • DFR = (Δρ * E)/(ρ0 * Hf)…………………5 • The driving force (F) = Hf +(Δρ/ρf) * E. ..6 Hubbert, 1953; Davies, 1987 5
  • 6. GENERAL GEOLOGY Williston Basin Bakken Formation Lodgepole Threefork formation Meissner, 1978 Osinski, 1970, Rocanville area lodgepole threefork 6
  • 7. Hydrostratigraphy Of Williston Basin Melnik, 2012 Melnik 2012, 12 aquifer, 12 aquitard Palombi, 2008, 19 aquifer, 13 aquitard 7
  • 8. The Laramide orogeny was caused by subduction of a plate at a shallow angle. Wikipedia.org Tectonics: • Associated with laramide orogene Mountain building activity, in late Cretaceous period. Oceanic plate sliding under the North American plate at shallow angle. According to Kent and Christopher (1994), the origin of the basin is mainly due to subsidence and upliftment caused due to normal process of heating and cooling process in the inside of the earth. 8
  • 9. Depositional environment • Upper member: deposited in anaerobic condition (deep marine environment ) i.e. restricted circulation of Oxygen • Middle member: aerobic condition (diagenetically altered to dolomites) • Lower member: dysaerobic condition • Deposited during major cycle of onlap and offlap sediments (Transgression and regression series) • The presence of some organic remains like planktonic organic spores, fish remains, cephalopods, ostracodes and conodonts indicate marine to marginal marine water conditions • Absence of wave generated structure indicates deposition below storm wave base Halabura et al. (2007). Meissner, (1978) 9
  • 10. S N Lower depth Upper depth Contour interval 500 ft NW SE Bakken structure maps 10
  • 11. Meissner, 1978 lower member = 3-20m Middle member = few cm to 30m Average = 13m upper member Max thickness varies 4-18m = Average 2m Halabura et al, 2007 11
  • 12. Analysis Hydraulic Head h = z + P/ρg = z + Ψ Hydraulic head is the sum of elevation head and the pressure head ΨB hB SB Surface zB Formation Name Bottom Hole Latitude Bottom Hole Longitu de KB Elevatio n (m) Upper Depth (m) Lower Depth (m) Average kPa Head H BAKKEN / TORQUAY 52.05 -109.99 753.7 766.0 778.8 772.4 5910.90 583.84 BAKKEN / TORQUAY 52.05 -109.99 753.7 805.0 816.0 810.5 5910.9 545.74 BAKKEN / UNDEF 51.07 -108.98 726.9 886.1 897.9 892.0 9173.47 770.01 BAKKEN / UNDEF 51.06 -109.44 679.7 876.0 884.0 880.0 9101.63 727.49 BAKKEN / UNDEF 51.33 -109.99 700.1 857.0 873.0 865.0 8535.02 705.13 BAKKEN / UNDEF 51.38 -109.37 699.1 883.0 888.0 885.5 8400.70 669.94 BAKKEN / UNDEF 51.44 -109.83 689.5 739.0 751.0 745.0 8154.30 775.72 BAKKEN / UNDEF 51.50 -109.28 677.7 886.1 897.9 892.0 7675.20 568.09 BAKKEN / UNDEF 51.50 -109.81 693.8 876.0 884.0 880.0 7868.30 615.87 depth P Hubbert, 1953 12
  • 13. • In practice direction of flow is normal to the equipotential lines, provided no variable density and aquifer is horizontal Final Potentiometric surface map Contour interval 40m 1120 – 400m 13
  • 14. Potentiometric surface Map •Factors affecting flow direction are density variation, temperature, pressure and topography. 14
  • 15. WDF (F) = �� + Δ�/��∇ �∇ DFR = (Δ�/ �� ) * ( � / �∇ ∇ f ) Davies, 1987 �∇ � = pressure related driving force (Δ�/��) � = density and slope related driving force∇ 15
  • 16. Easting Northing Δ Hf Δ Z ρf kg/m3 ρw kg/m3 (Δρ/ρf)*ΔE DFR Driving force 305508.6 5425089.1 0.001 0.001 1010 1000 0.00099 0.002 0.00001 302416.9 5426812.9 0.0011 0.0011 1010.1 1000 0.00108889 0.003 0.00001111 299052.8 5427876.72 0.0012 0.0012 1010.2 1000 0.00118776 0.004 0.00001224 295537.9 5428512.8 0.0013 0.0013 1010.3 1000 0.00128661 0.005 0.00001339 291998.3 5428920.78 0.0014 0.0014 1010.4 1000 0.00138544 0.006 0.00001456 288465.9 5429154.51 0.0015 0.0015 1010.5 1000 0.00148425 0.007 0.00001575 284926.4 5429160.57 0.0016 0.0016 1010.6 1000 0.00158304 0.008 0.00001696 281379.9 5428974.13 0.0017 0.0017 1010.7 1000 0.00168181 0.009 0.00001819 277850.3 5428844.11 0.0018 0.0018 1010.8 1000 0.00178056 0.01 0.00001944 274347.6 5428957.72 0.0019 0.0019 1010.9 1000 0.00187929 0.011 0.00002071 270800.7 5429193 0.002 0.002 1011 1000 0.001978 0.012 0.000022 267129.2 5429440.06 0.0021 0.0021 1011.1 1000 0.00207669 0.013 0.00002331 263574.1 5430053.69 0.0022 0.0022 1011.2 1000 0.00217536 0.014 0.00002464 Calculation of WDF and DFR 16
  • 17. Hydraulic gradient map Variation: 0.001 to 0.014 ΔHf=Δh/Δx =( h2-h1)/l 17
  • 18. Topographic gradient map Variation; 0.001 to 0.037 ΔE=Δz/Δx = (z2-z1)/l 18
  • 19. Driving Force Ratio map DFR = (Δ�/ �� ) * ( � / �∇ ∇ � ) Variation: 0.002 to 1.106. Variable density flow 19
  • 20. Driving force Vector map: WDF (F) = �� + Δ�/�� �∇ ∇ Variation: 0.000251 to 0.006082 20
  • 21. Density map of Bakken formation (Canadian part), contour interval 10kg/m3 997.69 kg/m3 to 1186.06 kg/m3 �� = 730.6+2.025*T-3.8*0.001*T^2+(2.362-1.197*0.01*T+1.835*0.00001*T^2) *P+(2.374-1.024*0.01*T +1.49*0.00001*T^2-5.1*0.0001*P)*C Chierici, 1994 21
  • 22. Borehole Temperature map Contour interval 50 C Variation: 10o C to 850 C, average 33o C Corresponds with Bachu and Burwash (2012) 22
  • 24. P-D plots for Bakken formation in Manitoba region 24
  • 25. P – D plot for different aquifer zone In Alberta region Ordovician 25
  • 26. Geochemistry Ions Minimum mg/l Maximum mg/l Average Count Total Ave % Max % Na+ 34 122687 12185 301 303 32.57 29.95 Cl- 2790 190300 19965 303 303 53.37 46.45 K+ 1 38500 1350 200 303 3.61 9.40 Ca++ 5 18273 734 292 303 1.96 4.46 Mg++ 1 4854 245 300 303 0.65 1.18 HCO3- 18 8170 858 300 303 2.29 1.99 SO4 -- 1 23360 1921 296 303 5.14 5.70 CO3 ++ 0.05 3440 144 74 303 0.38 0.84 OH- 0 98 4 27 303 0.01 0.02 TDS 173 319172 35335 266 303 pH 5 9.7 7 300 303 26
  • 27. End Member = NaCl (Brines) Chebotarev (1955) Groundwater evolution chart 27
  • 29. 29
  • 31. UVZ method U = V – Z U = {ρo/(ρo - ρw)} * ho V = {ρw/(ρw - ρo)} * hw M. K. Hubbert, 1953 ρo = 0.844 g/cm3 ρ w = 1 g/cm3 Well Id (UWI) Longitude Latitude Head H ρw = g/cm3 ρo = g/cm3 V0 U0 = v0 - z 100/01-01-031-02W4/0 -110.15 51.62 690.18 1.0089 0.844 4222 2386 100/01-34-024-06W4/0 -110.75 51.08 1092.8 0 1.0140 0.844 6518 2386 100/01-34-031-03W4/0 -110.34 51.69 646.63 1.0140 0.844 3857 2386 100/02-10-026-03W4/0 -110.34 51.20 1042.5 4 1.0140 0.844 6218 2386 100/02-11-015-29W1/0 -101.37 50.26 427.11 1.0140 0.844 2548 3124 100/02-11-029-03W4/0 -110.32 51.46 879.85 1.0261 0.844 4957 3124 100/02-14-016-28W1/0 -101.23 50.36 405.20 1.0140 0.844 2417 3363 100/03-04-028-04W4/0 -110.51 51.36 935.16 1.0140 0.844 5578 3602 100/03-13-014-29W1/0 -101.32 50.18 452.13 1.0140 0.844 2697 4079 100/03-21-015-27W1/0 -101.14 50.29 413.98 1.0140 0.844 2469 4340 100/03-26-028-03W4/0 -110.32 51.42 821.11 1.0140 0.844 4898 4102 100/03-26-031-01W4/0 -110.04 51.68 526.72 1.0140 0.844 3142 3883 31
  • 33. Structural map overlay on V0 Map 33
  • 34. U0 plots (Intersection points between V0 and Z value 34
  • 35. 2 1 Possible site for petroleum accumulation UVZ map for Light Oil (ρ0=0.844 g/cm3 ) Possible sites for hydrocarbon entrapment marked in a circle 35
  • 36. Possible site of oil accumulation UVZ map for heavy Oil (0.933 g/cm3 ) Possible sites for hydrocarbon entrapment marked in a circle More confined than the light one. 36
  • 37. Conclusion • Hydraulic head values gradually decreases towards North and northeast direction • Deeper parts of the formation indicate variable density flow due to variation in density and the increase in salinity • The TDS value increase towards deeper portion of the basin and ranges from less than 10,000 mg/l to up to maximum of 317,00 mg/l. • Hydrochemical study shows that, the formation water is rich in sodium and chlorine ions that follow a positive trend with TDS. • UVZ map for light oil show two possible sites for hydrocarbon entrapments. 37
  • 38. •The P-D plots results, occurrences of two pressure zones, one at a depth less than 1300m (underpressure zone) and the other at a depth greater than 1300m (overpressure zone). Recommendation: Detail study covering entire Bakken formation (US and Canada Part) is necessary to be carried out in order to understand petroleum hydrogeological characteristics of the Bakken formation as a whole. For this, enough data, enough budget and sufficient time are required. 38
  • 39. Acknowledgement I would like to acknowledge,  Supervisor Professor Ben Rostron  Director of IPG program Prof. David Potter  All IPG Professors  EAS staffs (Technical non technical)  Anatoly Melnik, Tibor Lengyel  IPG Pool Awards (sponsored by ConocoPhillips, CNRL and Nexen  All IPG classmates 39
  • 40. References: Benn, A. A and B. J. Rostron, 1998, Regional hydrochemistry of Cambrian to Devonian aquifers in the Williston basin, Canada-USA, Eighth international Williston Basin Symposium, Sakatchewan Geological Society Special Publication No. 13, p. 238-245. Bachu, S., and B. Hitchon, 1996, Regional Scale Flow of Formation Waters in the Williston Basin, AAPG Bulletin, v. 80, No. 2, p. 248-264. Bachu, S., and R. A. Burwash, 2012, Geothermal Regime in the Western Canada Sedimentary Basin, Geological Atlas of the Western Canada Sedimentary Basin, Chapter 30. Chebotarev, I. I., 1955. Metamorphism of natural water in the crust of weathering, Geochemica et Cosmochimica Acta, v. 8, Issue 1-2, p. 22-48, 137-170, 198-212. Chierici, G. L., 1994, Principles of petroleum reservoir engineering. Springer-Verlag, Berlin, New York, p. 430 Davies, P. B., 1987, Modelling Areal, Variable density, ground water flow using equivalent freshwater head, analysis of the potentially significant errors, proceedings of the solving groundwater problems with models conference and exposition, NWFA, p. 888-903. Halabura, S., L. Buatois, S. Angulo, and L., Piche, 2007; From Source to Trap: A review of the Bakken Petroleum System, Upper Devonian-Mississippian, and Southeastern Saskatchewan. Hubbert, M. K., 1953, Entrapment of petroleum under hydrodynamic condition, AAPG Bulletin, v. 37, no. 8p. 1954-2056. 40
  • 41. Hitchon, B., and M. Brulotte, 1994, Culling Criteria for "Standard" formation water analyses, Elsevier Science Ltd. vol. 9, pp. 637-645. Kent, D. M., and J. E. Christopher, 1994, Geological History of the Williston basin and Sweetgrass Arch, Geological Atlas of the Western Canada Sedimentary Basin Chapter 27. Meissner, F. F., 1978, Petroleum Geology of the Bakken Formation, Williston Basin, North Dakota and Montana; in the economic Geology of the Williston Basin: Montana, North Dakota, South Dakota, Saskatchewan, Manitoba, 1978 Williston Basin Symposium, Montana Geological Society, 4th Annual Field Conference, September 10 to 12, Guidebook, p. 207-227. Melnik, A., 2012, Regional Hydrogeology of Southwestern Saskatchewan: Unpublished M. Sc. Thesis, University of Alberta, Edmonton, Alberta, Canada, 153 p. Osinski, W. P. C., 1970, Geology and Production History of South eastern Saskatchewan, a report submitted to Department of Mineral Resources of Saskatchewan, Geological science branch, Sedimentary geology division. Palombi, D. D., 2008, Regional Hydrogeological Characterization of the Northeastern Margin in the Williston Basin: Unpublished M. Sc. Thesis, U of A, Edmonton, Alberta, Canada, 196 p. Smith, M. G., and R. M. Bustin, 2000, Late Devonian and Early Mississippian Bakken and Exshaw Black Shale Source Rocks, Western Canada Sedimentary Basin: A Sequence Stratigraphic Interpretation, AAPG Bulletin, v. 84, No. 7, p. 940-960. 41

Editor's Notes

  • #9: http://en.wikipedia.org/wiki/Laramide_orogeny
  • #23: The highest temperatures are found in the deepest parts of the basin: along the Cordillera in the west (up to 160°C), and in the Williston Basin in southeastern Saskatchewan (up to 110°C): chap 30, Bachu and Burwash, 1994