This document presents a framework for efficiently pricing multi-asset options using Fourier methods. It discusses using the Fourier transform to map option pricing problems to frequency space, where the integrand may have better regularity. A damping parameter is introduced to ensure the transformed functions have sufficient decay at infinity. However, literature provides no guidance on choosing optimal damping parameters. The document proposes a method called Optimal Damping with Hierarchical Adaptive Quadrature to select damping parameters that improve the convergence rate of quadrature pricing methods in Fourier space. It applies this method to price options under various multi-dimensional models in numerical experiments.