SlideShare a Scribd company logo
Propeller Performance Prediction in an
Artificially Generated Wake Field Using RANSE
J. Baltazar1
, B. Schuiling2
, D. Rijpkema2
1Instituto Superior T´ecnico, Universidade de Lisboa, Portugal
2Maritime Research Institute Netherlands, Wageningen, the Netherlands
NuTTS 2019 Tomar, Portugal 29 September - 1 October 1
Outline
Motivation
Propeller-Ship Simulations (KCS)
(Nominal) Wake Field Generation
Propeller in Behind Condition (w/o Ship)
Conclusions
NuTTS 2019 Tomar, Portugal 29 September - 1 October 2
Propeller Performance in Behind Condition
Full Propeller-Ship Simulations
NuTTS 2019 Tomar, Portugal 29 September - 1 October 3
Propeller Performance in Behind Condition
Propeller Simulations
NuTTS 2019 Tomar, Portugal 29 September - 1 October 4
Propeller Performance in Behind Condition
NuTTS 2019 Tomar, Portugal 29 September - 1 October 5
Propeller Performance in Behind Condition
NuTTS 2019 Tomar, Portugal 29 September - 1 October 6
KRISO Container Ship
Model geometry:
Lpp = 7.2786 m
d = 0.3418 m
Sw = 9.4379 m2
Vm = 2.196 m/s
Model propeller:
D = 0.25 m
P/D0.7R = 0.9967
Ae/A0 = 0.800
Z = 5
Full scale:
LPPS = 230 m
VS = 24 kt
Propeller plane:
x/Lpp = 0.4825
from midship
NuTTS 2019 Tomar, Portugal 29 September - 1 October 7
Viscous Flow Simulations
RANSE solver ReFRESCO
Finite volume discretisation
k − ω SST turbulence model (Menter et al., 2003)
No wall functions are used (y+
∼ 1)
Discretisation of the convective flux:
Momentum: QUICK
Turbulence: upwind
Time integration: implicit 2nd order scheme
NuTTS 2019 Tomar, Portugal 29 September - 1 October 8
Full Propeller-Ship Simulations
Fn=0.26, Re=1.4×107
and fixed free surface (18.4M + 2.9M cells)
NuTTS 2019 Tomar, Portugal 29 September - 1 October 9
Full Propeller-Ship Simulations
Fn=0.26, Re=1.4×107
and fixed free surface (18.4M + 2.9M cells)
Azimuth [deg]
KT
72 144 216 288 360
0.010
0.020
0.030
0.040
0.050
0.060
Propeller in Behind Hull
Blade Thrust Coefficient
Azimuth [deg]
10KQ
72 144 216 288 360
0.030
0.040
0.050
0.060
0.070
0.080
0.090
0.100
Propeller in Behind Hull
Blade Torque Coefficient
Azimuth [deg]
KT
72 144 216 288 360
0.160
0.162
0.164
0.166
0.168
0.170
0.172
Propeller in Behind Hull
Propeller Thrust Coefficient
Azimuth [deg]
10KQ
72 144 216 288 360
0.290
0.295
0.300
0.305
Propeller in Behind Hull
Propeller Torque Coefficient
NuTTS 2019 Tomar, Portugal 29 September - 1 October 10
Bare Hull Simulations
Fn=0.26, Re=1.4×107
and fixed free surface (18.8M cells)
NuTTS 2019 Tomar, Portugal 29 September - 1 October 11
Bare Hull Simulations
Fn=0.26, Re=1.4×107
and fixed free surface (18.8M cells)
y/R
-1.0 -0.5 0.0 0.5 1.0
-1.0
-0.5
0.0
0.5
1.0
Vx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33
z/R
VS
Vwx /VS:
NuTTS 2019 Tomar, Portugal 29 September - 1 October 12
Nominal Wake Field Generation
Uniform flow at inlet (ship’s speed)
Body-forces upstream of propeller plane at 1D
Iterative calibration of body-forces:
F
(i)
x = −1/2ρ VS − V
(i)
wx VS + V
(i)
wx
1
∆V 1/3
F
(i)
y = 1/2ρ VS + V
(0)
wx V
(i)
wy
1
∆V 1/3
F
(i)
z = 1/2ρ VS + V
(0)
wx V
(i)
wz
1
∆V 1/3
with V
(i)
wx,y,z = V
(0)
wx,y,z − β V
(i−1)
wx,y,z − V
(0)
wx,y,z
where V
(0)
wx,y,z represents the nominal wake field
and β = 0.5 is a relaxation factor.
NuTTS 2019 Tomar, Portugal 29 September - 1 October 13
Nominal Wake Field Generation
Vinlet = VS (3.2M cells)
NuTTS 2019 Tomar, Portugal 29 September - 1 October 14
Nominal Wake Field Generation
Calibrated vs hull simulation
y/R
-1.0 -0.5 0.0 0.5 1.0
-1.0
-0.5
0.0
0.5
1.0
Vx2: 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89
z/R
VS
Vwx /VS:
y/R
-1.0 -0.5 0.0 0.5 1.0
-1.0
-0.5
0.0
0.5
1.0
Vx2: 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89
z/R
VS
Vwx /VS:
NuTTS 2019 Tomar, Portugal 29 September - 1 October 15
Nominal Wake Field Generation
Convergence history and circumferential averaged wake field
Iteration
max|eVw|[%]
mean|eVw|[%]
1 2 3 4 5 6 7 8 9 10 11 12 13
0
20
40
60
0
2
4
6
8
10
12mean|eVwx |
max|eVwx
|
mean|eVwy
|
max|eVwy
|
mean|eVwz
|
max|eVwz |
r/R
0.2 0.4 0.6 0.8 1.0 1.2
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
Vwx /VS: Bare Hull Simulation
Vwx
/VS
: Generated Wake Field
Vwr
/VS
: Bare Hull Simulation
Vwr
/VS
: Generated Wake Field
Vwθ
/VS
: Bare Hull Simulation
Vwθ
/VS
: Generated Wake Field
NuTTS 2019 Tomar, Portugal 29 September - 1 October 16
Propeller in Behind Condition (w/o Ship)
JS = 0.901 and n = 9.75rps (2.8M + 2.1M cells)
NuTTS 2019 Tomar, Portugal 29 September - 1 October 17
Propeller in Behind Condition
Comparison of force coefficients
Azimuth [deg]
KT
72 144 216 288 360
0.010
0.020
0.030
0.040
0.050
0.060
Propeller in Behind Hull
Propeller in Artificial Wake
Blade Thrust Coefficient
Azimuth [deg]
10KQ
72 144 216 288 360
0.030
0.040
0.050
0.060
0.070
0.080
0.090
0.100
Propeller in Behind Hull
Propeller in Artificial Wake
Blade Torque Coefficient
Azimuth [deg]
KT
72 144 216 288 360
0.160
0.162
0.164
0.166
0.168
0.170
0.172
Propeller in Behind Hull
Propeller in Artificial Wake
Propeller Thrust Coefficient
Azimuth [deg]
10KQ
72 144 216 288 360
0.290
0.295
0.300
0.305
Propeller in Behind Hull
Propeller in Artificial Wake
Propeller Torque Coefficient
NuTTS 2019 Tomar, Portugal 29 September - 1 October 18
Propeller in Behind Condition
Mean, first and second harmonic amplitudes of the blade frequency
Behind Hull Artificial Wake
n K
(n)
T 10K
(n)
Q K
(n)
T 10K
(n)
Q
0 0.1660 0.2985 0.1630 0.2930
1 0.0025 0.0034 0.0017 0.0019
2 0.0002 0.0002 0.0002 0.0003
KT,Q (θ) = K
(0)
T,Q + K
(1)
T,Q sin Zθ + φ(1) + K
(2)
T,Q sin 2Zθ + φ(2)
NuTTS 2019 Tomar, Portugal 29 September - 1 October 19
Conclusions
NuTTS 2019 Tomar, Portugal 29 September - 1 October 20
Conclusions
A method for the prediction of the propeller unsteady
performance in an artificially generated wake field using
(iteratively calibrated) body-forces is presented.
NuTTS 2019 Tomar, Portugal 29 September - 1 October 20
Conclusions
A method for the prediction of the propeller unsteady
performance in an artificially generated wake field using
(iteratively calibrated) body-forces is presented.
This method offers an alternative to the full RANSE approach.
NuTTS 2019 Tomar, Portugal 29 September - 1 October 20
Conclusions
A method for the prediction of the propeller unsteady
performance in an artificially generated wake field using
(iteratively calibrated) body-forces is presented.
This method offers an alternative to the full RANSE approach.
The two approaches are compared, where minor differences in
the order of 1.8% are obtained for the mean propeller force
coefficients.
NuTTS 2019 Tomar, Portugal 29 September - 1 October 20
Conclusions
Main reasons for the differences:
NuTTS 2019 Tomar, Portugal 29 September - 1 October 21
Conclusions
Main reasons for the differences:
Artificial wake field present differences higher than 10% (at
inner radii) in respect to the ship velocity. Attributed to the
strong interaction between the axial and transversal wake flows.
NuTTS 2019 Tomar, Portugal 29 September - 1 October 21
Conclusions
Main reasons for the differences:
Artificial wake field present differences higher than 10% (at
inner radii) in respect to the ship velocity. Attributed to the
strong interaction between the axial and transversal wake flows.
The nominal wake field is considered for the propeller
simulations without hull. May contribute for the
under-prediction of the propeller forces.
NuTTS 2019 Tomar, Portugal 29 September - 1 October 21
Thank You!
c new wave media
NuTTS 2019 Tomar, Portugal 29 September - 1 October 22
Wake Field Modelling
Computational domain and boundary conditions
Cylindrical domain (size 5D)
Inflow b.c./body forces
Hub field: r/R < 0.2
Wake field: 0.2 ≤ r/R ≤ 1.2
Transition field: 1.2 < r/R < 2.0
Uniform inflow field: r/R ≥ 2.0
Tu=1% and µt/µ = 1
Farfield: pressure b.c.
Outlet: outflow b.c.
NuTTS 2019 Tomar, Portugal 29 September - 1 October 23
Wake Field Modelling
Boundary condition at the inlet/force field
Hub field: cubic
Hermite interpolator
Wake field:
Fourier function
Transition field: cubic
Hermite interpolator
Uniform infow field:
Vwx /VS = 1.0
y/R
z/R
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0 V23: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33
Vwx / VS:
Hub Field
Uniform Inflow Field
Transition Field
Wake Field
NuTTS 2019 Tomar, Portugal 29 September - 1 October 24
Decomposition of the Wake Field for a Propeller
Total velocity is the velocity at the propeller plane when the propeller is operating at the stern of the ship.
Nominal velocity is the velocity at the propeller plane when the propeller is absent.
Propeller induced velocity is the velocity at the propeller plane induced by the propeller.
Interaction velocity is the velocity at the propeller plane due to the interaction of the propeller with the nominal wake.
Effective velocity = Total velocity - Propeller induced velocity.
Effective velocity = Nominal velocity + Interaction velocity.
NuTTS 2019 Tomar, Portugal 29 September - 1 October 25
Nominal Wake Field Generation
Questions
NuTTS 2019 Tomar, Portugal 29 September - 1 October 26
Nominal Wake Field Generation
Iterative Convergence
Iteration
0 5000 10000 15000
10-7
10-6
10-5
10
-4
10-3
10-2
10-1
10
0
VX
VY
VZ
p
k
ω
L∞
Iteration
0 5000 10000 15000
10-9
10-8
10-7
10
-6
10-5
10-4
10-3
10
-2
VX
VY
VZ
p
k
ω
L2
NuTTS 2019 Tomar, Portugal 29 September - 1 October 27
Nominal Wake Field Generation
Iterative calibration of the body forces - Iter 1
y/R
z/R
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS:
VS
Iteration
max|eVw|[%]
mean|eVw|[%]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
0
2
4
6
8
10
12mean|eVwx |
max|eVwx
|
mean|eVwy
|
max|eVwy
|
mean|eVwz
|
max|eVwz |
NuTTS 2019 Tomar, Portugal 29 September - 1 October 28
Nominal Wake Field Generation
Iterative calibration of the body forces - Iter 2
y/R
z/R
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS:
VS
Iteration
max|eVw|[%]
mean|eVw|[%]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
0
2
4
6
8
10
12mean|eVwx |
max|eVwx
|
mean|eVwy
|
max|eVwy
|
mean|eVwz
|
max|eVwz |
NuTTS 2019 Tomar, Portugal 29 September - 1 October 29
Nominal Wake Field Generation
Iterative calibration of the body forces - Iter 3
y/R
z/R
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS:
VS
Iteration
max|eVw|[%]
mean|eVw|[%]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
0
2
4
6
8
10
12mean|eVwx |
max|eVwx
|
mean|eVwy
|
max|eVwy
|
mean|eVwz
|
max|eVwz |
NuTTS 2019 Tomar, Portugal 29 September - 1 October 30
Nominal Wake Field Generation
Iterative calibration of the body forces - Iter 4
y/R
z/R
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS:
VS
Iteration
max|eVw|[%]
mean|eVw|[%]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
0
2
4
6
8
10
12mean|eVwx |
max|eVwx
|
mean|eVwy
|
max|eVwy
|
mean|eVwz
|
max|eVwz |
NuTTS 2019 Tomar, Portugal 29 September - 1 October 31
Nominal Wake Field Generation
Iterative calibration of the body forces - Iter 5
y/R
z/R
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS:
VS
Iteration
max|eVw|[%]
mean|eVw|[%]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
0
2
4
6
8
10
12mean|eVwx |
max|eVwx
|
mean|eVwy
|
max|eVwy
|
mean|eVwz
|
max|eVwz |
NuTTS 2019 Tomar, Portugal 29 September - 1 October 32
Nominal Wake Field Generation
Iterative calibration of the body forces - Iter 6
y/R
z/R
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS:
VS
Iteration
max|eVw|[%]
mean|eVw|[%]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
0
2
4
6
8
10
12mean|eVwx |
max|eVwx
|
mean|eVwy
|
max|eVwy
|
mean|eVwz
|
max|eVwz |
NuTTS 2019 Tomar, Portugal 29 September - 1 October 33
Nominal Wake Field Generation
Iterative calibration of the body forces - Iter 7
y/R
z/R
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS:
VS
Iteration
max|eVw|[%]
mean|eVw|[%]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
0
2
4
6
8
10
12mean|eVwx |
max|eVwx
|
mean|eVwy
|
max|eVwy
|
mean|eVwz
|
max|eVwz |
NuTTS 2019 Tomar, Portugal 29 September - 1 October 34
Nominal Wake Field Generation
Iterative calibration of the body forces - Iter 8
y/R
z/R
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS:
VS
Iteration
max|eVw|[%]
mean|eVw|[%]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
0
2
4
6
8
10
12mean|eVwx |
max|eVwx
|
mean|eVwy
|
max|eVwy
|
mean|eVwz
|
max|eVwz |
NuTTS 2019 Tomar, Portugal 29 September - 1 October 35
Nominal Wake Field Generation
Iterative calibration of the body forces - Iter 9
y/R
z/R
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS:
VS
Iteration
max|eVw|[%]
mean|eVw|[%]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
0
2
4
6
8
10
12mean|eVwx |
max|eVwx
|
mean|eVwy
|
max|eVwy
|
mean|eVwz
|
max|eVwz |
NuTTS 2019 Tomar, Portugal 29 September - 1 October 36
Nominal Wake Field Generation
Iterative calibration of the body forces - Iter 11
y/R
z/R
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS:
VS
Iteration
max|eVw|[%]
mean|eVw|[%]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
0
2
4
6
8
10
12mean|eVwx |
max|eVwx
|
mean|eVwy
|
max|eVwy
|
mean|eVwz
|
max|eVwz |
NuTTS 2019 Tomar, Portugal 29 September - 1 October 37
Nominal Wake Field Generation
Iterative calibration of the body forces - Iter 12
y/R
z/R
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS:
VS
Iteration
max|eVw|[%]
mean|eVw|[%]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
0
2
4
6
8
10
12mean|eVwx |
max|eVwx
|
mean|eVwy
|
max|eVwy
|
mean|eVwz
|
max|eVwz |
NuTTS 2019 Tomar, Portugal 29 September - 1 October 38
Nominal Wake Field Generation
Iterative calibration of the body forces - Iter 13
y/R
z/R
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS:
VS
Iteration
max|eVw|[%]
mean|eVw|[%]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
0
2
4
6
8
10
12mean|eVwx |
max|eVwx
|
mean|eVwy
|
max|eVwy
|
mean|eVwz
|
max|eVwz |
NuTTS 2019 Tomar, Portugal 29 September - 1 October 39
Nominal Wake Field Generation
Iterative calibration of the body forces - Iter 14
y/R
z/R
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS:
VS
Iteration
max|eVw|[%]
mean|eVw|[%]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
0
2
4
6
8
10
12mean|eVwx |
max|eVwx
|
mean|eVwy
|
max|eVwy
|
mean|eVwz
|
max|eVwz |
NuTTS 2019 Tomar, Portugal 29 September - 1 October 40
Nominal Wake Field Generation
Iterative calibration of the body forces - Iter 15
y/R
z/R
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS:
VS
Iteration
max|eVw|[%]
mean|eVw|[%]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
0
2
4
6
8
10
12mean|eVwx |
max|eVwx
|
mean|eVwy
|
max|eVwy
|
mean|eVwz
|
max|eVwz |
NuTTS 2019 Tomar, Portugal 29 September - 1 October 41

More Related Content

PPT
Iea59 optimiz tobita aaa
PDF
Seismic cpt (scpt) peter robertson
PDF
Pda capwap - frank rausche
PDF
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
PDF
Richard Perez - GW Solar Symposium 2012
PDF
Leading-Edge Vortex Flow Modelling Around Delta Wings Using a Boundary Elemen...
PDF
French standard for deep foundations roger frank
PDF
CRVBreakoutGlenzinski090807
Iea59 optimiz tobita aaa
Seismic cpt (scpt) peter robertson
Pda capwap - frank rausche
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
Richard Perez - GW Solar Symposium 2012
Leading-Edge Vortex Flow Modelling Around Delta Wings Using a Boundary Elemen...
French standard for deep foundations roger frank
CRVBreakoutGlenzinski090807

What's hot (15)

PDF
Unisoft software bengt h. fellenius, pierre goudrault
PDF
Notam Sul/Sudeste - 01-mai-16
PDF
Bogar nov99
PDF
1984 Hawker 700 B (VP-BMU sn 257212) Detailed Specs
PPT
Tides revision lrg
PDF
PETEX 2018
PDF
TGS NSA- Loyal 3D
 
PDF
TGS NSA- Firestone 3D
 
PPT
TU3.T10.5.ppt
PDF
Fawag snorre pilot_revisit
PPT
Tides and tidal streams 1 lrg
PDF
Posh-Endurance-Endeavour-Specs-13Oct2014
PPT
Coastal navigation lrg
PPT
Total tide lrg
PDF
Unsteady Analysis of a Horizontal Axis Marine Current Turbine in Yawed Inflow...
Unisoft software bengt h. fellenius, pierre goudrault
Notam Sul/Sudeste - 01-mai-16
Bogar nov99
1984 Hawker 700 B (VP-BMU sn 257212) Detailed Specs
Tides revision lrg
PETEX 2018
TGS NSA- Loyal 3D
 
TGS NSA- Firestone 3D
 
TU3.T10.5.ppt
Fawag snorre pilot_revisit
Tides and tidal streams 1 lrg
Posh-Endurance-Endeavour-Specs-13Oct2014
Coastal navigation lrg
Total tide lrg
Unsteady Analysis of a Horizontal Axis Marine Current Turbine in Yawed Inflow...
Ad

Similar to Propeller Performance Prediction in an Artificially Generated Wake Field Using RANSE (20)

PDF
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
PDF
IRJET- Study on Different Estimation Methods of Propulsion Power for 60 Mts O...
PDF
COMPARISON OF PROPELLER TYPE B-SERIES AND AU-OUTLINE GAWN SERIES FOR IMPROVIN...
PDF
CASD presentazione AVIO
PDF
Micro Wind Turbine paper
PPTX
NAME 338 ( Ship Design Project and Presentation )
PDF
IRJET- Analysis and Design of Berthing Structure
PDF
Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...
PDF
CFD Analysis of a Three Bladed H-Rotor of Vertical Axis Wind Turbine
PDF
DYNAMIC ANALYSIS AND GEOMETRY DESIGN OF FLOATING OFFSHORE WIND TURBINE (FOWTS)
PPT
Energy in wind
PPTX
ADP I PPT.pptx
PPTX
ADP I PPT.pptx
PDF
Numerical Modelling of the Potential Flow Around Ducted Propellers
PDF
PROPAN - Propeller Panel Code
PDF
Design, Development, Fabrication and Testing of Small Vertical Axis Wind Turb...
PDF
Performance Analysis of Aerodynamic Design for Wind Turbine Blade
PDF
Design Optimization and Carpet Plot
PDF
IRJET- Manufacturing System of Hybrid Vertical Axis Wind Turbine
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
IRJET- Study on Different Estimation Methods of Propulsion Power for 60 Mts O...
COMPARISON OF PROPELLER TYPE B-SERIES AND AU-OUTLINE GAWN SERIES FOR IMPROVIN...
CASD presentazione AVIO
Micro Wind Turbine paper
NAME 338 ( Ship Design Project and Presentation )
IRJET- Analysis and Design of Berthing Structure
Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...
CFD Analysis of a Three Bladed H-Rotor of Vertical Axis Wind Turbine
DYNAMIC ANALYSIS AND GEOMETRY DESIGN OF FLOATING OFFSHORE WIND TURBINE (FOWTS)
Energy in wind
ADP I PPT.pptx
ADP I PPT.pptx
Numerical Modelling of the Potential Flow Around Ducted Propellers
PROPAN - Propeller Panel Code
Design, Development, Fabrication and Testing of Small Vertical Axis Wind Turb...
Performance Analysis of Aerodynamic Design for Wind Turbine Blade
Design Optimization and Carpet Plot
IRJET- Manufacturing System of Hybrid Vertical Axis Wind Turbine
Ad

More from João Baltazar (20)

PDF
Recent Developments in Computational Methods for the Analysis of Ducted Prope...
PDF
Potential Flow Modelling of Ducted Propellers with Blunt Trailing Edge Duct U...
PDF
Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
PDF
Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE
PDF
Prediction of Sheet Cavitation on Marine Current Turbines With a Boundary Ele...
PDF
Hydrodynamic Design and Analysis of Horizontal Axis Marine Current Turbines W...
PDF
Numerical Studies for Verification and Validation of Open-Water Propeller RAN...
PDF
Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
PDF
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
PDF
A Comparison of Panel Method and RANS Calculations for a Horizontal Axis Mari...
PDF
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
PDF
A Numerical Study on the Iterative Techniques to Solve Partial Cavitation on ...
PDF
A Boundary Element Method for the Unsteady Hydrodynamic Analysis of Marine Cu...
PDF
Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine with a Boun...
PDF
Estudo Experimental do Balanço Transversal
PDF
A Surface Grid Generation Technique for Practical Applications of Boundary El...
PPT
Unsteady Potential Flow Calculations of Marine Propellers Using BEM
PDF
A Study on the Modeling of Marine Propeller Tip Flows Using BEM
PDF
A Study on the Accuracy of Low and Higher Order BEM in Three Dimensional Pote...
PDF
Prediction of the Open-Water Performance of Ducted Propellers With a Panel Me...
Recent Developments in Computational Methods for the Analysis of Ducted Prope...
Potential Flow Modelling of Ducted Propellers with Blunt Trailing Edge Duct U...
Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE
Prediction of Sheet Cavitation on Marine Current Turbines With a Boundary Ele...
Hydrodynamic Design and Analysis of Horizontal Axis Marine Current Turbines W...
Numerical Studies for Verification and Validation of Open-Water Propeller RAN...
Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
A Comparison of Panel Method and RANS Calculations for a Horizontal Axis Mari...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Iterative Techniques to Solve Partial Cavitation on ...
A Boundary Element Method for the Unsteady Hydrodynamic Analysis of Marine Cu...
Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine with a Boun...
Estudo Experimental do Balanço Transversal
A Surface Grid Generation Technique for Practical Applications of Boundary El...
Unsteady Potential Flow Calculations of Marine Propellers Using BEM
A Study on the Modeling of Marine Propeller Tip Flows Using BEM
A Study on the Accuracy of Low and Higher Order BEM in Three Dimensional Pote...
Prediction of the Open-Water Performance of Ducted Propellers With a Panel Me...

Recently uploaded (20)

PDF
Digital Logic Computer Design lecture notes
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
Welding lecture in detail for understanding
PPTX
additive manufacturing of ss316l using mig welding
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
Geodesy 1.pptx...............................................
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
web development for engineering and engineering
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
Sustainable Sites - Green Building Construction
PPTX
CH1 Production IntroductoryConcepts.pptx
Digital Logic Computer Design lecture notes
bas. eng. economics group 4 presentation 1.pptx
Welding lecture in detail for understanding
additive manufacturing of ss316l using mig welding
OOP with Java - Java Introduction (Basics)
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Lecture Notes Electrical Wiring System Components
CYBER-CRIMES AND SECURITY A guide to understanding
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
R24 SURVEYING LAB MANUAL for civil enggi
Geodesy 1.pptx...............................................
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
web development for engineering and engineering
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Embodied AI: Ushering in the Next Era of Intelligent Systems
Sustainable Sites - Green Building Construction
CH1 Production IntroductoryConcepts.pptx

Propeller Performance Prediction in an Artificially Generated Wake Field Using RANSE

  • 1. Propeller Performance Prediction in an Artificially Generated Wake Field Using RANSE J. Baltazar1 , B. Schuiling2 , D. Rijpkema2 1Instituto Superior T´ecnico, Universidade de Lisboa, Portugal 2Maritime Research Institute Netherlands, Wageningen, the Netherlands NuTTS 2019 Tomar, Portugal 29 September - 1 October 1
  • 2. Outline Motivation Propeller-Ship Simulations (KCS) (Nominal) Wake Field Generation Propeller in Behind Condition (w/o Ship) Conclusions NuTTS 2019 Tomar, Portugal 29 September - 1 October 2
  • 3. Propeller Performance in Behind Condition Full Propeller-Ship Simulations NuTTS 2019 Tomar, Portugal 29 September - 1 October 3
  • 4. Propeller Performance in Behind Condition Propeller Simulations NuTTS 2019 Tomar, Portugal 29 September - 1 October 4
  • 5. Propeller Performance in Behind Condition NuTTS 2019 Tomar, Portugal 29 September - 1 October 5
  • 6. Propeller Performance in Behind Condition NuTTS 2019 Tomar, Portugal 29 September - 1 October 6
  • 7. KRISO Container Ship Model geometry: Lpp = 7.2786 m d = 0.3418 m Sw = 9.4379 m2 Vm = 2.196 m/s Model propeller: D = 0.25 m P/D0.7R = 0.9967 Ae/A0 = 0.800 Z = 5 Full scale: LPPS = 230 m VS = 24 kt Propeller plane: x/Lpp = 0.4825 from midship NuTTS 2019 Tomar, Portugal 29 September - 1 October 7
  • 8. Viscous Flow Simulations RANSE solver ReFRESCO Finite volume discretisation k − ω SST turbulence model (Menter et al., 2003) No wall functions are used (y+ ∼ 1) Discretisation of the convective flux: Momentum: QUICK Turbulence: upwind Time integration: implicit 2nd order scheme NuTTS 2019 Tomar, Portugal 29 September - 1 October 8
  • 9. Full Propeller-Ship Simulations Fn=0.26, Re=1.4×107 and fixed free surface (18.4M + 2.9M cells) NuTTS 2019 Tomar, Portugal 29 September - 1 October 9
  • 10. Full Propeller-Ship Simulations Fn=0.26, Re=1.4×107 and fixed free surface (18.4M + 2.9M cells) Azimuth [deg] KT 72 144 216 288 360 0.010 0.020 0.030 0.040 0.050 0.060 Propeller in Behind Hull Blade Thrust Coefficient Azimuth [deg] 10KQ 72 144 216 288 360 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 Propeller in Behind Hull Blade Torque Coefficient Azimuth [deg] KT 72 144 216 288 360 0.160 0.162 0.164 0.166 0.168 0.170 0.172 Propeller in Behind Hull Propeller Thrust Coefficient Azimuth [deg] 10KQ 72 144 216 288 360 0.290 0.295 0.300 0.305 Propeller in Behind Hull Propeller Torque Coefficient NuTTS 2019 Tomar, Portugal 29 September - 1 October 10
  • 11. Bare Hull Simulations Fn=0.26, Re=1.4×107 and fixed free surface (18.8M cells) NuTTS 2019 Tomar, Portugal 29 September - 1 October 11
  • 12. Bare Hull Simulations Fn=0.26, Re=1.4×107 and fixed free surface (18.8M cells) y/R -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 Vx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33 z/R VS Vwx /VS: NuTTS 2019 Tomar, Portugal 29 September - 1 October 12
  • 13. Nominal Wake Field Generation Uniform flow at inlet (ship’s speed) Body-forces upstream of propeller plane at 1D Iterative calibration of body-forces: F (i) x = −1/2ρ VS − V (i) wx VS + V (i) wx 1 ∆V 1/3 F (i) y = 1/2ρ VS + V (0) wx V (i) wy 1 ∆V 1/3 F (i) z = 1/2ρ VS + V (0) wx V (i) wz 1 ∆V 1/3 with V (i) wx,y,z = V (0) wx,y,z − β V (i−1) wx,y,z − V (0) wx,y,z where V (0) wx,y,z represents the nominal wake field and β = 0.5 is a relaxation factor. NuTTS 2019 Tomar, Portugal 29 September - 1 October 13
  • 14. Nominal Wake Field Generation Vinlet = VS (3.2M cells) NuTTS 2019 Tomar, Portugal 29 September - 1 October 14
  • 15. Nominal Wake Field Generation Calibrated vs hull simulation y/R -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 Vx2: 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89 z/R VS Vwx /VS: y/R -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 Vx2: 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89 z/R VS Vwx /VS: NuTTS 2019 Tomar, Portugal 29 September - 1 October 15
  • 16. Nominal Wake Field Generation Convergence history and circumferential averaged wake field Iteration max|eVw|[%] mean|eVw|[%] 1 2 3 4 5 6 7 8 9 10 11 12 13 0 20 40 60 0 2 4 6 8 10 12mean|eVwx | max|eVwx | mean|eVwy | max|eVwy | mean|eVwz | max|eVwz | r/R 0.2 0.4 0.6 0.8 1.0 1.2 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Vwx /VS: Bare Hull Simulation Vwx /VS : Generated Wake Field Vwr /VS : Bare Hull Simulation Vwr /VS : Generated Wake Field Vwθ /VS : Bare Hull Simulation Vwθ /VS : Generated Wake Field NuTTS 2019 Tomar, Portugal 29 September - 1 October 16
  • 17. Propeller in Behind Condition (w/o Ship) JS = 0.901 and n = 9.75rps (2.8M + 2.1M cells) NuTTS 2019 Tomar, Portugal 29 September - 1 October 17
  • 18. Propeller in Behind Condition Comparison of force coefficients Azimuth [deg] KT 72 144 216 288 360 0.010 0.020 0.030 0.040 0.050 0.060 Propeller in Behind Hull Propeller in Artificial Wake Blade Thrust Coefficient Azimuth [deg] 10KQ 72 144 216 288 360 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 Propeller in Behind Hull Propeller in Artificial Wake Blade Torque Coefficient Azimuth [deg] KT 72 144 216 288 360 0.160 0.162 0.164 0.166 0.168 0.170 0.172 Propeller in Behind Hull Propeller in Artificial Wake Propeller Thrust Coefficient Azimuth [deg] 10KQ 72 144 216 288 360 0.290 0.295 0.300 0.305 Propeller in Behind Hull Propeller in Artificial Wake Propeller Torque Coefficient NuTTS 2019 Tomar, Portugal 29 September - 1 October 18
  • 19. Propeller in Behind Condition Mean, first and second harmonic amplitudes of the blade frequency Behind Hull Artificial Wake n K (n) T 10K (n) Q K (n) T 10K (n) Q 0 0.1660 0.2985 0.1630 0.2930 1 0.0025 0.0034 0.0017 0.0019 2 0.0002 0.0002 0.0002 0.0003 KT,Q (θ) = K (0) T,Q + K (1) T,Q sin Zθ + φ(1) + K (2) T,Q sin 2Zθ + φ(2) NuTTS 2019 Tomar, Portugal 29 September - 1 October 19
  • 20. Conclusions NuTTS 2019 Tomar, Portugal 29 September - 1 October 20
  • 21. Conclusions A method for the prediction of the propeller unsteady performance in an artificially generated wake field using (iteratively calibrated) body-forces is presented. NuTTS 2019 Tomar, Portugal 29 September - 1 October 20
  • 22. Conclusions A method for the prediction of the propeller unsteady performance in an artificially generated wake field using (iteratively calibrated) body-forces is presented. This method offers an alternative to the full RANSE approach. NuTTS 2019 Tomar, Portugal 29 September - 1 October 20
  • 23. Conclusions A method for the prediction of the propeller unsteady performance in an artificially generated wake field using (iteratively calibrated) body-forces is presented. This method offers an alternative to the full RANSE approach. The two approaches are compared, where minor differences in the order of 1.8% are obtained for the mean propeller force coefficients. NuTTS 2019 Tomar, Portugal 29 September - 1 October 20
  • 24. Conclusions Main reasons for the differences: NuTTS 2019 Tomar, Portugal 29 September - 1 October 21
  • 25. Conclusions Main reasons for the differences: Artificial wake field present differences higher than 10% (at inner radii) in respect to the ship velocity. Attributed to the strong interaction between the axial and transversal wake flows. NuTTS 2019 Tomar, Portugal 29 September - 1 October 21
  • 26. Conclusions Main reasons for the differences: Artificial wake field present differences higher than 10% (at inner radii) in respect to the ship velocity. Attributed to the strong interaction between the axial and transversal wake flows. The nominal wake field is considered for the propeller simulations without hull. May contribute for the under-prediction of the propeller forces. NuTTS 2019 Tomar, Portugal 29 September - 1 October 21
  • 27. Thank You! c new wave media NuTTS 2019 Tomar, Portugal 29 September - 1 October 22
  • 28. Wake Field Modelling Computational domain and boundary conditions Cylindrical domain (size 5D) Inflow b.c./body forces Hub field: r/R < 0.2 Wake field: 0.2 ≤ r/R ≤ 1.2 Transition field: 1.2 < r/R < 2.0 Uniform inflow field: r/R ≥ 2.0 Tu=1% and µt/µ = 1 Farfield: pressure b.c. Outlet: outflow b.c. NuTTS 2019 Tomar, Portugal 29 September - 1 October 23
  • 29. Wake Field Modelling Boundary condition at the inlet/force field Hub field: cubic Hermite interpolator Wake field: Fourier function Transition field: cubic Hermite interpolator Uniform infow field: Vwx /VS = 1.0 y/R z/R -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 V23: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33 Vwx / VS: Hub Field Uniform Inflow Field Transition Field Wake Field NuTTS 2019 Tomar, Portugal 29 September - 1 October 24
  • 30. Decomposition of the Wake Field for a Propeller Total velocity is the velocity at the propeller plane when the propeller is operating at the stern of the ship. Nominal velocity is the velocity at the propeller plane when the propeller is absent. Propeller induced velocity is the velocity at the propeller plane induced by the propeller. Interaction velocity is the velocity at the propeller plane due to the interaction of the propeller with the nominal wake. Effective velocity = Total velocity - Propeller induced velocity. Effective velocity = Nominal velocity + Interaction velocity. NuTTS 2019 Tomar, Portugal 29 September - 1 October 25
  • 31. Nominal Wake Field Generation Questions NuTTS 2019 Tomar, Portugal 29 September - 1 October 26
  • 32. Nominal Wake Field Generation Iterative Convergence Iteration 0 5000 10000 15000 10-7 10-6 10-5 10 -4 10-3 10-2 10-1 10 0 VX VY VZ p k ω L∞ Iteration 0 5000 10000 15000 10-9 10-8 10-7 10 -6 10-5 10-4 10-3 10 -2 VX VY VZ p k ω L2 NuTTS 2019 Tomar, Portugal 29 September - 1 October 27
  • 33. Nominal Wake Field Generation Iterative calibration of the body forces - Iter 1 y/R z/R -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS: VS Iteration max|eVw|[%] mean|eVw|[%] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 0 2 4 6 8 10 12mean|eVwx | max|eVwx | mean|eVwy | max|eVwy | mean|eVwz | max|eVwz | NuTTS 2019 Tomar, Portugal 29 September - 1 October 28
  • 34. Nominal Wake Field Generation Iterative calibration of the body forces - Iter 2 y/R z/R -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS: VS Iteration max|eVw|[%] mean|eVw|[%] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 0 2 4 6 8 10 12mean|eVwx | max|eVwx | mean|eVwy | max|eVwy | mean|eVwz | max|eVwz | NuTTS 2019 Tomar, Portugal 29 September - 1 October 29
  • 35. Nominal Wake Field Generation Iterative calibration of the body forces - Iter 3 y/R z/R -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS: VS Iteration max|eVw|[%] mean|eVw|[%] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 0 2 4 6 8 10 12mean|eVwx | max|eVwx | mean|eVwy | max|eVwy | mean|eVwz | max|eVwz | NuTTS 2019 Tomar, Portugal 29 September - 1 October 30
  • 36. Nominal Wake Field Generation Iterative calibration of the body forces - Iter 4 y/R z/R -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS: VS Iteration max|eVw|[%] mean|eVw|[%] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 0 2 4 6 8 10 12mean|eVwx | max|eVwx | mean|eVwy | max|eVwy | mean|eVwz | max|eVwz | NuTTS 2019 Tomar, Portugal 29 September - 1 October 31
  • 37. Nominal Wake Field Generation Iterative calibration of the body forces - Iter 5 y/R z/R -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS: VS Iteration max|eVw|[%] mean|eVw|[%] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 0 2 4 6 8 10 12mean|eVwx | max|eVwx | mean|eVwy | max|eVwy | mean|eVwz | max|eVwz | NuTTS 2019 Tomar, Portugal 29 September - 1 October 32
  • 38. Nominal Wake Field Generation Iterative calibration of the body forces - Iter 6 y/R z/R -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS: VS Iteration max|eVw|[%] mean|eVw|[%] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 0 2 4 6 8 10 12mean|eVwx | max|eVwx | mean|eVwy | max|eVwy | mean|eVwz | max|eVwz | NuTTS 2019 Tomar, Portugal 29 September - 1 October 33
  • 39. Nominal Wake Field Generation Iterative calibration of the body forces - Iter 7 y/R z/R -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS: VS Iteration max|eVw|[%] mean|eVw|[%] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 0 2 4 6 8 10 12mean|eVwx | max|eVwx | mean|eVwy | max|eVwy | mean|eVwz | max|eVwz | NuTTS 2019 Tomar, Portugal 29 September - 1 October 34
  • 40. Nominal Wake Field Generation Iterative calibration of the body forces - Iter 8 y/R z/R -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS: VS Iteration max|eVw|[%] mean|eVw|[%] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 0 2 4 6 8 10 12mean|eVwx | max|eVwx | mean|eVwy | max|eVwy | mean|eVwz | max|eVwz | NuTTS 2019 Tomar, Portugal 29 September - 1 October 35
  • 41. Nominal Wake Field Generation Iterative calibration of the body forces - Iter 9 y/R z/R -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS: VS Iteration max|eVw|[%] mean|eVw|[%] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 0 2 4 6 8 10 12mean|eVwx | max|eVwx | mean|eVwy | max|eVwy | mean|eVwz | max|eVwz | NuTTS 2019 Tomar, Portugal 29 September - 1 October 36
  • 42. Nominal Wake Field Generation Iterative calibration of the body forces - Iter 11 y/R z/R -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS: VS Iteration max|eVw|[%] mean|eVw|[%] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 0 2 4 6 8 10 12mean|eVwx | max|eVwx | mean|eVwy | max|eVwy | mean|eVwz | max|eVwz | NuTTS 2019 Tomar, Portugal 29 September - 1 October 37
  • 43. Nominal Wake Field Generation Iterative calibration of the body forces - Iter 12 y/R z/R -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS: VS Iteration max|eVw|[%] mean|eVw|[%] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 0 2 4 6 8 10 12mean|eVwx | max|eVwx | mean|eVwy | max|eVwy | mean|eVwz | max|eVwz | NuTTS 2019 Tomar, Portugal 29 September - 1 October 38
  • 44. Nominal Wake Field Generation Iterative calibration of the body forces - Iter 13 y/R z/R -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS: VS Iteration max|eVw|[%] mean|eVw|[%] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 0 2 4 6 8 10 12mean|eVwx | max|eVwx | mean|eVwy | max|eVwy | mean|eVwz | max|eVwz | NuTTS 2019 Tomar, Portugal 29 September - 1 October 39
  • 45. Nominal Wake Field Generation Iterative calibration of the body forces - Iter 14 y/R z/R -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS: VS Iteration max|eVw|[%] mean|eVw|[%] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 0 2 4 6 8 10 12mean|eVwx | max|eVwx | mean|eVwy | max|eVwy | mean|eVwz | max|eVwz | NuTTS 2019 Tomar, Portugal 29 September - 1 October 40
  • 46. Nominal Wake Field Generation Iterative calibration of the body forces - Iter 15 y/R z/R -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0Vwx: -0.89 -0.81 -0.73 -0.65 -0.57 -0.49 -0.41 -0.33Vwx / VS: VS Iteration max|eVw|[%] mean|eVw|[%] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 0 2 4 6 8 10 12mean|eVwx | max|eVwx | mean|eVwy | max|eVwy | mean|eVwz | max|eVwz | NuTTS 2019 Tomar, Portugal 29 September - 1 October 41