This document discusses using PyTables to analyze large datasets. PyTables is built on HDF5 and uses NumPy to provide an object-oriented interface for efficiently browsing, processing, and querying very large amounts of data. It addresses the problem of CPU starvation by utilizing techniques like caching, compression, and high performance libraries like Numexpr and Blosc to minimize data transfer times. PyTables allows fast querying of data through flexible iterators and indexing to facilitate extracting important information from large datasets.