SlideShare a Scribd company logo
Python Programming
D. Sheefa Ruby Grace
Department of Computer Science
Sarah Tucker College
Uses of Python
 shell tools
 system admin tools, command line programs
 extension-language work
 rapid prototyping and development
 language-based modules
 instead of special-purpose parsers
 graphical user interfaces
 database access
 distributed programming
 Internet scripting
Basic operations
 Assignment:
 size = 40
 a = b = c = 3
 Numbers
 integer, float
 complex numbers: 1j+3, abs(z)
 Strings
 'hello world', 'it's hot'
 "bye world"
 continuation via  or use """ long text """"
String operations
 concatenate with + or neighbors
 word = 'Help' + x
 word = 'Help' 'a'
 subscripting of strings
 'Hello'[2]  'l'
 slice: 'Hello'[1:2]  'el'
 word[-1]  last character
 len(word)  5
 immutable: cannot assign to subscript
Lists
 lists can be heterogeneous
 a = ['spam', 'eggs', 100, 1234, 2*2]
 Lists can be indexed and sliced:
 a[0]  spam
 a[:2]  ['spam', 'eggs']
 Lists can be manipulated
 a[2] = a[2] + 23
 a[0:2] = [1,12]
 a[0:0] = []
 len(a)  5
Basic programming
a,b = 0, 1
# non-zero = true
while b < 10:
# formatted output, without 
n
print b,
# multiple assignment
a,b = b, a+b
Control flow: if
x = int(raw_input("Please enter #:"))
if x < 0:
x = 0
print 'Negative changed to zero'
elif x == 0:
print 'Zero'
elif x == 1:
print 'Single'
else:
print 'More'
 no case statement
Control flow: for
a = ['cat', 'window', 'defenestrate']
for x in a:
print x, len(x)
 no arithmetic progression, but
 range(10)  [0, 1, 2, 3, 4, 5, 6, 7, 8,
9]
 for i in range(len(a)):
print i, a[i]
 do not modify the sequence being
iterated over
Loops: break, continue, else
 break and continue like C
 else after loop exhaustion
for n in range(2,10):
for x in range(2,n):
if n % x == 0:
print n, 'equals', x, '*', n/x
break
else:
# loop fell through without finding a
factor
print n, 'is prime'
Defining functions
def fib(n):
"""Print a Fibonacci series up to n."""
a, b = 0, 1
while b < n:
print b,
a, b = b, a+b
>>> fib(2000)
 First line is docstring
 first look for variables in local, then global
 need global to assign global variables
Functions: default argument
values
def ask_ok(prompt, retries=4,
complaint='Yes or no, please!'):
while 1:
ok = raw_input(prompt)
if ok in ('y', 'ye', 'yes'): return 1
if ok in ('n', 'no'): return 0
retries = retries - 1
if retries < 0: raise IOError,
'refusenik error'
print complaint
>>> ask_ok('Really?')
Keyword arguments
 last arguments can be given as keywords
def parrot(voltage, state='a stiff', action='voom',
type='Norwegian blue'):
print "-- This parrot wouldn't", action,
print "if you put", voltage, "Volts through it."
print "Lovely plumage, the ", type
print "-- It's", state, "!"
parrot(1000)
parrot(action='VOOOM', voltage=100000)
Lambda forms
 anonymous functions
 may not work in older versions
def make_incrementor(n):
return lambda x: x + n
f = make_incrementor(42)
f(0)
f(1)
List methods
 append(x)
 extend(L)
 append all items in list (like Tcl lappend)
 insert(i,x)
 remove(x)
 pop([i]), pop()
 create stack (FIFO), or queue (LIFO)  pop(0)
 index(x)
 return the index for value x
List methods
 count(x)
 how many times x appears in list
 sort()
 sort items in place
 reverse()
 reverse list
Functional programming tools
 filter(function, sequence)
def f(x): return x%2 != 0 and x%3 0
filter(f, range(2,25))
 map(function, sequence)
 call function for each item
 return list of return values
 reduce(function, sequence)
 return a single value
 call binary function on the first two items
 then on the result and next item
 iterate
List comprehensions (2.0)
 Create lists without map(), filter(), lambda
 = expression followed by for clause + zero or more for or
of clauses
>>> vec = [2,4,6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [{x: x**2} for x in vec}
[{2: 4}, {4: 16}, {6: 36}]
List comprehensions
 cross products:
>>> vec1 = [2,4,6]
>>> vec2 = [4,3,-9]
>>> [x*y for x in vec1 for y in vec2]
[8,6,-18, 16,12,-36, 24,18,-54]
>>> [x+y for x in vec1 and y in vec2]
[6,5,-7,8,7,-5,10,9,-3]
>>> [vec1[i]*vec2[i] for i in
range(len(vec1))]
[8,12,-54]
List comprehensions
 can also use if:
>>> [3*x for x in vec if x >
3]
[12, 18]
>>> [3*x for x in vec if x <
2]
[]
del – removing list items
 remove by index, not value
 remove slices from list (rather than by
assigning an empty list)
>>> a = [-1,1,66.6,333,333,1234.5]
>>> del a[0]
>>> a
[1,66.6,333,333,1234.5]
>>> del a[2:4]
>>> a
[1,66.6,1234.5]
Tuples and sequences
 lists, strings, tuples: examples of sequence type
 tuple = values separated by commas
>>> t = 123, 543, 'bar'
>>> t[0]
123
>>> t
(123, 543, 'bar')
Tuples
 Tuples may be nested
>>> u = t, (1,2)
>>> u
((123, 542, 'bar'), (1,2))
 kind of like structs, but no element
names:
 (x,y) coordinates
 database records
 like strings, immutable  can't assign to
individual items
Tuples
 Empty tuples: ()
>>> empty = ()
>>> len(empty)
0
 one item  trailing comma
>>> singleton = 'foo',
Tuples
 sequence unpacking  distribute elements across
variables
>>> t = 123, 543, 'bar'
>>> x, y, z = t
>>> x
123
 packing always creates tuple
 unpacking works for any sequence
Dictionaries
 like Tcl or awk associative arrays
 indexed by keys
 keys are any immutable type: e.g., tuples
 but not lists (mutable!)
 uses 'key: value' notation
>>> tel = {'hgs' : 7042, 'lennox': 7018}
>>> tel['cs'] = 7000
>>> tel
Dictionaries
 no particular order
 delete elements with del
>>> del tel['foo']
 keys() method  unsorted list of keys
>>> tel.keys()
['cs', 'lennox', 'hgs']
 use has_key() to check for existence
>>> tel.has_key('foo')
0
Conditions
 can check for sequence membership
with is and is not:
>>> if (4 in vec):
... print '4 is'
 chained comparisons: a less than b
AND b equals c:
a < b == c
 and and or are short-circuit operators:
 evaluated from left to right
 stop evaluation as soon as outcome clear
Conditions
 Can assign comparison to variable:
>>> s1,s2,s3='', 'foo', 'bar'
>>> non_null = s1 or s2 or s3
>>> non_null
foo
 Unlike C, no assignment within expression
Comparing sequences
(1,2,3) < (1,2,4)
[1,2,3] < [1,2,4]
'ABC' < 'C' < 'Pascal' < 'Python'
(1,2,3) == (1.0,2.0,3.0)
(1,2) < (1,2,-1)
Modules
 collection of functions and variables, typically in scripts
 definitions can be imported
 file name is module name + .py
 e.g., create module fibo.py
def fib(n): # write Fib. series up to n
...
def fib2(n): # return Fib. series up to n
Modules
 import module:
import fibo
 Use modules via "name space":
>>> fibo.fib(1000)
>>> fibo.__name__
'fibo'
 can give it a local name:
>>> fib = fibo.fib
>>> fib(500)
Modules
 function definition + executable
statements
 executed only when module is imported
 modules have private symbol tables
 avoids name clash for global variables
 accessible as module.globalname
 can import into name space:
>>> from fibo import fib, fib2
>>> fib(500)
 can import all names defined by module:
>>> from fibo import *
Module search path
 current directory
 list of directories specified in PYTHONPATH
environment variable
 uses installation-default if not defined,
e.g., .:/usr/local/lib/python
 uses sys.path
>>> import sys
>>> sys.path
['', 'C:PROGRA~1Python2.2', 'C:Program Files
Python2.2DLLs', 'C:Program FilesPython2.2lib', 'C:
Program FilesPython2.2liblib-tk', 'C:Program Files
Python2.2', 'C:Program FilesPython2.2libsite-
packages']
Classes
 mixture of C++ and Modula-3
 multiple base classes
 derived class can override any methods of
its base class(es)
 method can call the method of a base
class with the same name
 objects have private data
 C++ terms:
 all class members are public
 all member functions are virtual
 no constructors or destructors (not needed)
Classes
 classes (and data types) are objects
 built-in types cannot be used as base classes by user
 arithmetic operators, subscripting can be redefined for
class instances (like C++, unlike Java)
Class definitions
Class ClassName:
<statement-1>
...
<statement-N>
 must be executed
 can be executed conditionally (see Tcl)
 creates new namespace
Namespaces
 mapping from name to object:
 built-in names (abs())
 global names in module
 local names in function invocation
 attributes = any following a dot
 z.real, z.imag
 attributes read-only or writable
 module attributes are writeable
Namespaces
 scope = textual region of Python program
where a namespace is directly accessible
(without dot)
 innermost scope (first) = local names
 middle scope = current module's global names
 outermost scope (last) = built-in names
 assignments always affect innermost
scope
 don't copy, just create name bindings to
objects
 global indicates name is in global scope
Class objects
 obj.name references (plus module!):
class MyClass:
"A simple example class"
i = 123
def f(self):
return 'hello world'
>>> MyClass.i
123
 MyClass.f is method object
Class objects
 class instantiation:
>>> x = MyClass()
>>> x.f()
'hello world'
 creates new instance of class
 note x = MyClass vs. x = MyClass()
 ___init__() special method for
initialization of object
def __init__(self,realpart,imagpart):
self.r = realpart
self.i = imagpart
Instance objects
 attribute references
 data attributes (C++/Java data members)
 created dynamically
x.counter = 1
while x.counter < 10:
x.counter = x.counter * 2
print x.counter
del x.counter
Method objects
 Called immediately:
x.f()
 can be referenced:
xf = x.f
while 1:
print xf()
 object is passed as first argument of function  'self'
 x.f() is equivalent to MyClass.f(x)
Inheritance
class
DerivedClassName(BaseClassName)
<statement-1>
...
<statement-N>
 search class attribute, descending chain of base classes
 may override methods in the base class
 call directly via
BaseClassName.method
Multiple inheritance
class
DerivedClass(Base1,Base2,Base3)
:
<statement>
 depth-first, left-to-right
 problem: class derived from two classes with a common
base class
Private variables
 No real support, but textual replacement (name
mangling)
 __var is replaced by _classname_var
 prevents only accidental modification, not true
protection
Exceptions
 syntax (parsing) errors
while 1 print 'Hello World'
File "<stdin>", line 1
while 1 print 'Hello World'
^
SyntaxError: invalid syntax
 exceptions
 run-time errors
 e.g., ZeroDivisionError, NameError, TypeError
Handling exceptions
while 1:
try:
x = int(raw_input("Please enter a number: "))
break
except ValueError:
print "Not a valid number"
 First, execute try clause
 if no exception, skip except clause
 if exception, skip rest of try clause and use
except clause
 if no matching exception, attempt outer try
statement
Handling exceptions
 try.py
import sys
for arg in sys.argv[1:]:
try:
f = open(arg, 'r')
except IOError:
print 'cannot open', arg
else:
print arg, 'lines:',
len(f.readlines())
f.close
 e.g., as python try.py *.py

More Related Content

PDF
Introduction to Python
PDF
Introduction To Programming with Python
PPTX
Python Workshop - Learn Python the Hard Way
PPTX
Python Tutorial Part 1
PDF
Introduction to python
PDF
Raspberry Pi - Lecture 5 Python for Raspberry Pi
PPTX
An Introduction : Python
PDF
Introduction to Python Programming | InsideAIML
Introduction to Python
Introduction To Programming with Python
Python Workshop - Learn Python the Hard Way
Python Tutorial Part 1
Introduction to python
Raspberry Pi - Lecture 5 Python for Raspberry Pi
An Introduction : Python
Introduction to Python Programming | InsideAIML

Similar to python language programming presentation (20)

PDF
Python Part 1
PPT
FALLSEM2022-23_ITA3007_ETH_VL2022230100613_Reference_Material_I_23-09-2022_py...
PPT
python within 50 page .ppt
PPT
PPT
python presentation lists,strings,operation
PPTX
scripting in Python
PPTX
Python programming workshop
PPT
Pythonintroduction
PPT
Python scripting kick off
PDF
Python: An introduction A summer workshop
PPT
Python tutorialfeb152012
PPTX
PYTHON PPT.pptx python is very useful for day to day life
PDF
Python cheatsheat.pdf
PPT
python.ppt
PPT
Python basics to advanced in on ppt is available
PDF
Python lecture 05
PPTX
Python Workshop
PPT
Python Training v2
PDF
Q-Step_WS_02102019_Practical_introduction_to_Python.pdf
PPTX
Introduction to Python Programming
Python Part 1
FALLSEM2022-23_ITA3007_ETH_VL2022230100613_Reference_Material_I_23-09-2022_py...
python within 50 page .ppt
python presentation lists,strings,operation
scripting in Python
Python programming workshop
Pythonintroduction
Python scripting kick off
Python: An introduction A summer workshop
Python tutorialfeb152012
PYTHON PPT.pptx python is very useful for day to day life
Python cheatsheat.pdf
python.ppt
Python basics to advanced in on ppt is available
Python lecture 05
Python Workshop
Python Training v2
Q-Step_WS_02102019_Practical_introduction_to_Python.pdf
Introduction to Python Programming
Ad

Recently uploaded (20)

PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
Well-logging-methods_new................
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
Digital Logic Computer Design lecture notes
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPT
Mechanical Engineering MATERIALS Selection
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
additive manufacturing of ss316l using mig welding
PPTX
UNIT 4 Total Quality Management .pptx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
Lesson 3_Tessellation.pptx finite Mathematics
DOCX
573137875-Attendance-Management-System-original
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
Structs to JSON How Go Powers REST APIs.pdf
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Well-logging-methods_new................
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Digital Logic Computer Design lecture notes
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Foundation to blockchain - A guide to Blockchain Tech
Mechanical Engineering MATERIALS Selection
bas. eng. economics group 4 presentation 1.pptx
additive manufacturing of ss316l using mig welding
UNIT 4 Total Quality Management .pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Lesson 3_Tessellation.pptx finite Mathematics
573137875-Attendance-Management-System-original
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
OOP with Java - Java Introduction (Basics)
CYBER-CRIMES AND SECURITY A guide to understanding
Structs to JSON How Go Powers REST APIs.pdf
Ad

python language programming presentation

  • 1. Python Programming D. Sheefa Ruby Grace Department of Computer Science Sarah Tucker College
  • 2. Uses of Python  shell tools  system admin tools, command line programs  extension-language work  rapid prototyping and development  language-based modules  instead of special-purpose parsers  graphical user interfaces  database access  distributed programming  Internet scripting
  • 3. Basic operations  Assignment:  size = 40  a = b = c = 3  Numbers  integer, float  complex numbers: 1j+3, abs(z)  Strings  'hello world', 'it's hot'  "bye world"  continuation via or use """ long text """"
  • 4. String operations  concatenate with + or neighbors  word = 'Help' + x  word = 'Help' 'a'  subscripting of strings  'Hello'[2]  'l'  slice: 'Hello'[1:2]  'el'  word[-1]  last character  len(word)  5  immutable: cannot assign to subscript
  • 5. Lists  lists can be heterogeneous  a = ['spam', 'eggs', 100, 1234, 2*2]  Lists can be indexed and sliced:  a[0]  spam  a[:2]  ['spam', 'eggs']  Lists can be manipulated  a[2] = a[2] + 23  a[0:2] = [1,12]  a[0:0] = []  len(a)  5
  • 6. Basic programming a,b = 0, 1 # non-zero = true while b < 10: # formatted output, without n print b, # multiple assignment a,b = b, a+b
  • 7. Control flow: if x = int(raw_input("Please enter #:")) if x < 0: x = 0 print 'Negative changed to zero' elif x == 0: print 'Zero' elif x == 1: print 'Single' else: print 'More'  no case statement
  • 8. Control flow: for a = ['cat', 'window', 'defenestrate'] for x in a: print x, len(x)  no arithmetic progression, but  range(10)  [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]  for i in range(len(a)): print i, a[i]  do not modify the sequence being iterated over
  • 9. Loops: break, continue, else  break and continue like C  else after loop exhaustion for n in range(2,10): for x in range(2,n): if n % x == 0: print n, 'equals', x, '*', n/x break else: # loop fell through without finding a factor print n, 'is prime'
  • 10. Defining functions def fib(n): """Print a Fibonacci series up to n.""" a, b = 0, 1 while b < n: print b, a, b = b, a+b >>> fib(2000)  First line is docstring  first look for variables in local, then global  need global to assign global variables
  • 11. Functions: default argument values def ask_ok(prompt, retries=4, complaint='Yes or no, please!'): while 1: ok = raw_input(prompt) if ok in ('y', 'ye', 'yes'): return 1 if ok in ('n', 'no'): return 0 retries = retries - 1 if retries < 0: raise IOError, 'refusenik error' print complaint >>> ask_ok('Really?')
  • 12. Keyword arguments  last arguments can be given as keywords def parrot(voltage, state='a stiff', action='voom', type='Norwegian blue'): print "-- This parrot wouldn't", action, print "if you put", voltage, "Volts through it." print "Lovely plumage, the ", type print "-- It's", state, "!" parrot(1000) parrot(action='VOOOM', voltage=100000)
  • 13. Lambda forms  anonymous functions  may not work in older versions def make_incrementor(n): return lambda x: x + n f = make_incrementor(42) f(0) f(1)
  • 14. List methods  append(x)  extend(L)  append all items in list (like Tcl lappend)  insert(i,x)  remove(x)  pop([i]), pop()  create stack (FIFO), or queue (LIFO)  pop(0)  index(x)  return the index for value x
  • 15. List methods  count(x)  how many times x appears in list  sort()  sort items in place  reverse()  reverse list
  • 16. Functional programming tools  filter(function, sequence) def f(x): return x%2 != 0 and x%3 0 filter(f, range(2,25))  map(function, sequence)  call function for each item  return list of return values  reduce(function, sequence)  return a single value  call binary function on the first two items  then on the result and next item  iterate
  • 17. List comprehensions (2.0)  Create lists without map(), filter(), lambda  = expression followed by for clause + zero or more for or of clauses >>> vec = [2,4,6] >>> [3*x for x in vec] [6, 12, 18] >>> [{x: x**2} for x in vec} [{2: 4}, {4: 16}, {6: 36}]
  • 18. List comprehensions  cross products: >>> vec1 = [2,4,6] >>> vec2 = [4,3,-9] >>> [x*y for x in vec1 for y in vec2] [8,6,-18, 16,12,-36, 24,18,-54] >>> [x+y for x in vec1 and y in vec2] [6,5,-7,8,7,-5,10,9,-3] >>> [vec1[i]*vec2[i] for i in range(len(vec1))] [8,12,-54]
  • 19. List comprehensions  can also use if: >>> [3*x for x in vec if x > 3] [12, 18] >>> [3*x for x in vec if x < 2] []
  • 20. del – removing list items  remove by index, not value  remove slices from list (rather than by assigning an empty list) >>> a = [-1,1,66.6,333,333,1234.5] >>> del a[0] >>> a [1,66.6,333,333,1234.5] >>> del a[2:4] >>> a [1,66.6,1234.5]
  • 21. Tuples and sequences  lists, strings, tuples: examples of sequence type  tuple = values separated by commas >>> t = 123, 543, 'bar' >>> t[0] 123 >>> t (123, 543, 'bar')
  • 22. Tuples  Tuples may be nested >>> u = t, (1,2) >>> u ((123, 542, 'bar'), (1,2))  kind of like structs, but no element names:  (x,y) coordinates  database records  like strings, immutable  can't assign to individual items
  • 23. Tuples  Empty tuples: () >>> empty = () >>> len(empty) 0  one item  trailing comma >>> singleton = 'foo',
  • 24. Tuples  sequence unpacking  distribute elements across variables >>> t = 123, 543, 'bar' >>> x, y, z = t >>> x 123  packing always creates tuple  unpacking works for any sequence
  • 25. Dictionaries  like Tcl or awk associative arrays  indexed by keys  keys are any immutable type: e.g., tuples  but not lists (mutable!)  uses 'key: value' notation >>> tel = {'hgs' : 7042, 'lennox': 7018} >>> tel['cs'] = 7000 >>> tel
  • 26. Dictionaries  no particular order  delete elements with del >>> del tel['foo']  keys() method  unsorted list of keys >>> tel.keys() ['cs', 'lennox', 'hgs']  use has_key() to check for existence >>> tel.has_key('foo') 0
  • 27. Conditions  can check for sequence membership with is and is not: >>> if (4 in vec): ... print '4 is'  chained comparisons: a less than b AND b equals c: a < b == c  and and or are short-circuit operators:  evaluated from left to right  stop evaluation as soon as outcome clear
  • 28. Conditions  Can assign comparison to variable: >>> s1,s2,s3='', 'foo', 'bar' >>> non_null = s1 or s2 or s3 >>> non_null foo  Unlike C, no assignment within expression
  • 29. Comparing sequences (1,2,3) < (1,2,4) [1,2,3] < [1,2,4] 'ABC' < 'C' < 'Pascal' < 'Python' (1,2,3) == (1.0,2.0,3.0) (1,2) < (1,2,-1)
  • 30. Modules  collection of functions and variables, typically in scripts  definitions can be imported  file name is module name + .py  e.g., create module fibo.py def fib(n): # write Fib. series up to n ... def fib2(n): # return Fib. series up to n
  • 31. Modules  import module: import fibo  Use modules via "name space": >>> fibo.fib(1000) >>> fibo.__name__ 'fibo'  can give it a local name: >>> fib = fibo.fib >>> fib(500)
  • 32. Modules  function definition + executable statements  executed only when module is imported  modules have private symbol tables  avoids name clash for global variables  accessible as module.globalname  can import into name space: >>> from fibo import fib, fib2 >>> fib(500)  can import all names defined by module: >>> from fibo import *
  • 33. Module search path  current directory  list of directories specified in PYTHONPATH environment variable  uses installation-default if not defined, e.g., .:/usr/local/lib/python  uses sys.path >>> import sys >>> sys.path ['', 'C:PROGRA~1Python2.2', 'C:Program Files Python2.2DLLs', 'C:Program FilesPython2.2lib', 'C: Program FilesPython2.2liblib-tk', 'C:Program Files Python2.2', 'C:Program FilesPython2.2libsite- packages']
  • 34. Classes  mixture of C++ and Modula-3  multiple base classes  derived class can override any methods of its base class(es)  method can call the method of a base class with the same name  objects have private data  C++ terms:  all class members are public  all member functions are virtual  no constructors or destructors (not needed)
  • 35. Classes  classes (and data types) are objects  built-in types cannot be used as base classes by user  arithmetic operators, subscripting can be redefined for class instances (like C++, unlike Java)
  • 36. Class definitions Class ClassName: <statement-1> ... <statement-N>  must be executed  can be executed conditionally (see Tcl)  creates new namespace
  • 37. Namespaces  mapping from name to object:  built-in names (abs())  global names in module  local names in function invocation  attributes = any following a dot  z.real, z.imag  attributes read-only or writable  module attributes are writeable
  • 38. Namespaces  scope = textual region of Python program where a namespace is directly accessible (without dot)  innermost scope (first) = local names  middle scope = current module's global names  outermost scope (last) = built-in names  assignments always affect innermost scope  don't copy, just create name bindings to objects  global indicates name is in global scope
  • 39. Class objects  obj.name references (plus module!): class MyClass: "A simple example class" i = 123 def f(self): return 'hello world' >>> MyClass.i 123  MyClass.f is method object
  • 40. Class objects  class instantiation: >>> x = MyClass() >>> x.f() 'hello world'  creates new instance of class  note x = MyClass vs. x = MyClass()  ___init__() special method for initialization of object def __init__(self,realpart,imagpart): self.r = realpart self.i = imagpart
  • 41. Instance objects  attribute references  data attributes (C++/Java data members)  created dynamically x.counter = 1 while x.counter < 10: x.counter = x.counter * 2 print x.counter del x.counter
  • 42. Method objects  Called immediately: x.f()  can be referenced: xf = x.f while 1: print xf()  object is passed as first argument of function  'self'  x.f() is equivalent to MyClass.f(x)
  • 43. Inheritance class DerivedClassName(BaseClassName) <statement-1> ... <statement-N>  search class attribute, descending chain of base classes  may override methods in the base class  call directly via BaseClassName.method
  • 44. Multiple inheritance class DerivedClass(Base1,Base2,Base3) : <statement>  depth-first, left-to-right  problem: class derived from two classes with a common base class
  • 45. Private variables  No real support, but textual replacement (name mangling)  __var is replaced by _classname_var  prevents only accidental modification, not true protection
  • 46. Exceptions  syntax (parsing) errors while 1 print 'Hello World' File "<stdin>", line 1 while 1 print 'Hello World' ^ SyntaxError: invalid syntax  exceptions  run-time errors  e.g., ZeroDivisionError, NameError, TypeError
  • 47. Handling exceptions while 1: try: x = int(raw_input("Please enter a number: ")) break except ValueError: print "Not a valid number"  First, execute try clause  if no exception, skip except clause  if exception, skip rest of try clause and use except clause  if no matching exception, attempt outer try statement
  • 48. Handling exceptions  try.py import sys for arg in sys.argv[1:]: try: f = open(arg, 'r') except IOError: print 'cannot open', arg else: print arg, 'lines:', len(f.readlines()) f.close  e.g., as python try.py *.py