SlideShare a Scribd company logo
Mastering Data Science with
NumPy and Pandas
Advanced Python Programming
Techniques
By Anurag
Agenda
• 1. Introduction to NumPy
• 2. Advanced Matrix Operations
• 3. Introduction to Pandas
• 4. Data Grouping & Aggregation
• 5. Advanced Linear Algebra with NumPy
• 6. Pivot Tables in Pandas
Introduction to NumPy
• NumPy is the backbone of numerical
computations in Python.
• Why NumPy is faster than lists:
import numpy as np
arr = np.array([1, 2, 3, 4])
Advanced NumPy - Matrix
Operations
• Perform advanced matrix operations with
NumPy.
matrix.T # Transpose
np.dot(matrix1, matrix2) # Matrix Multiplication
Introduction to Pandas
• Pandas simplifies data manipulation with
Series and DataFrames.
import pandas as pd
data = {'Name': ['Alice', 'Bob'], 'Age': [25, 30]}
df = pd.DataFrame(data)
Grouping and Aggregating Data
• Group and aggregate data effectively with
Pandas.
df.groupby('Category')['Value'].sum()
df.agg({'Value': ['sum', 'mean']})
Advanced NumPy - Linear Algebra
• Perform advanced linear algebra operations
with NumPy.
np.linalg.eig(matrix) # Eigenvalues and Eigenvectors
np.linalg.svd(matrix) # SVD Decomposition
Pivot Tables in Pandas
• Reshape and summarize data using pivot
tables in Pandas.
pd.pivot_table(df, values='Value', index='Category', aggfunc='sum')
Interactive Exercise
• Practice what you've learned with these
exercises:
# Filter rows where Age > 30
df[df['Age'] > 30]
Summary
• Key takeaways:
• - NumPy: Fast numerical computations.
• - Pandas: Easy data manipulation.
• - Advanced operations enhance efficiency.
Questions and Closing
• What concepts would you like to explore
further?
• Practice and explore real-world datasets.

More Related Content

PPTX
UNIT-03_Numpy (1) python yeksodbbsisbsjsjsh
PPTX
getting started with numpy and pandas.pptx
PDF
Numpy,Python Library, Pandas, AI, Machine Learning
PPT
Python crash course libraries numpy-1, panda.ppt
PPTX
NumPy.pptx
PDF
All python data_analyst_r_course
PDF
CDAT - cdms numpy arrays - Introduction
PPTX
Presentation1.pptxvghvfhgvbn nbnmbnbjkbjkbjib
UNIT-03_Numpy (1) python yeksodbbsisbsjsjsh
getting started with numpy and pandas.pptx
Numpy,Python Library, Pandas, AI, Machine Learning
Python crash course libraries numpy-1, panda.ppt
NumPy.pptx
All python data_analyst_r_course
CDAT - cdms numpy arrays - Introduction
Presentation1.pptxvghvfhgvbn nbnmbnbjkbjkbjib

Similar to python_Dynamic_Presentation_NumPy_Pandas.pptx (20)

PPTX
introduction to data structures in pandas
PPTX
Introduction-to-NumPy-in-Python (1).pptx
PPTX
Unit 3_Numpy_VP.pptx
PPTX
pandas directories on the python language.pptx
PPT
Introduction to Numpy Foundation Study GuideStudyGuide
PPTX
Numpy and Pandas Introduction for Beginners
PPTX
Python 8416516 16 196 46 5163 51 63 51 6.pptx
PPTX
More on Pandas.pptx
PPTX
Basic data manipulation with pandas pandas
PPTX
python-numwpyandpandas-170922144956.pptx
PPTX
Introduction to a Python Libraries and python frameworks
PDF
Matplotlib adalah pustaka plotting 2D Python yang menghasilkan gambar berkual...
PPTX
Pandas
PPTX
Python - Numpy/Pandas/Matplot Machine Learning Libraries
PPTX
Data Analysis with Python Pandas
PPTX
Unit 3_Numpy_VP.pptx
PPTX
Lecture 2 _Foundions foundions NumPyI.pptx
PPTX
Introduction to numpy
PPTX
python-numpyandpandas-170922144956 (1).pptx
PPTX
XII IP New PYTHN Python Pandas 2020-21.pptx
introduction to data structures in pandas
Introduction-to-NumPy-in-Python (1).pptx
Unit 3_Numpy_VP.pptx
pandas directories on the python language.pptx
Introduction to Numpy Foundation Study GuideStudyGuide
Numpy and Pandas Introduction for Beginners
Python 8416516 16 196 46 5163 51 63 51 6.pptx
More on Pandas.pptx
Basic data manipulation with pandas pandas
python-numwpyandpandas-170922144956.pptx
Introduction to a Python Libraries and python frameworks
Matplotlib adalah pustaka plotting 2D Python yang menghasilkan gambar berkual...
Pandas
Python - Numpy/Pandas/Matplot Machine Learning Libraries
Data Analysis with Python Pandas
Unit 3_Numpy_VP.pptx
Lecture 2 _Foundions foundions NumPyI.pptx
Introduction to numpy
python-numpyandpandas-170922144956 (1).pptx
XII IP New PYTHN Python Pandas 2020-21.pptx
Ad

Recently uploaded (20)

PPTX
Big Data Technologies - Introduction.pptx
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Electronic commerce courselecture one. Pdf
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Encapsulation_ Review paper, used for researhc scholars
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PPTX
Machine Learning_overview_presentation.pptx
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
Spectroscopy.pptx food analysis technology
PDF
cuic standard and advanced reporting.pdf
Big Data Technologies - Introduction.pptx
MYSQL Presentation for SQL database connectivity
Mobile App Security Testing_ A Comprehensive Guide.pdf
Electronic commerce courselecture one. Pdf
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
The AUB Centre for AI in Media Proposal.docx
Review of recent advances in non-invasive hemoglobin estimation
Encapsulation_ Review paper, used for researhc scholars
Digital-Transformation-Roadmap-for-Companies.pptx
gpt5_lecture_notes_comprehensive_20250812015547.pdf
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Reach Out and Touch Someone: Haptics and Empathic Computing
A comparative analysis of optical character recognition models for extracting...
Dropbox Q2 2025 Financial Results & Investor Presentation
Machine Learning_overview_presentation.pptx
20250228 LYD VKU AI Blended-Learning.pptx
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Spectroscopy.pptx food analysis technology
cuic standard and advanced reporting.pdf
Ad

python_Dynamic_Presentation_NumPy_Pandas.pptx

  • 1. Mastering Data Science with NumPy and Pandas Advanced Python Programming Techniques By Anurag
  • 2. Agenda • 1. Introduction to NumPy • 2. Advanced Matrix Operations • 3. Introduction to Pandas • 4. Data Grouping & Aggregation • 5. Advanced Linear Algebra with NumPy • 6. Pivot Tables in Pandas
  • 3. Introduction to NumPy • NumPy is the backbone of numerical computations in Python. • Why NumPy is faster than lists: import numpy as np arr = np.array([1, 2, 3, 4])
  • 4. Advanced NumPy - Matrix Operations • Perform advanced matrix operations with NumPy. matrix.T # Transpose np.dot(matrix1, matrix2) # Matrix Multiplication
  • 5. Introduction to Pandas • Pandas simplifies data manipulation with Series and DataFrames. import pandas as pd data = {'Name': ['Alice', 'Bob'], 'Age': [25, 30]} df = pd.DataFrame(data)
  • 6. Grouping and Aggregating Data • Group and aggregate data effectively with Pandas. df.groupby('Category')['Value'].sum() df.agg({'Value': ['sum', 'mean']})
  • 7. Advanced NumPy - Linear Algebra • Perform advanced linear algebra operations with NumPy. np.linalg.eig(matrix) # Eigenvalues and Eigenvectors np.linalg.svd(matrix) # SVD Decomposition
  • 8. Pivot Tables in Pandas • Reshape and summarize data using pivot tables in Pandas. pd.pivot_table(df, values='Value', index='Category', aggfunc='sum')
  • 9. Interactive Exercise • Practice what you've learned with these exercises: # Filter rows where Age > 30 df[df['Age'] > 30]
  • 10. Summary • Key takeaways: • - NumPy: Fast numerical computations. • - Pandas: Easy data manipulation. • - Advanced operations enhance efficiency.
  • 11. Questions and Closing • What concepts would you like to explore further? • Practice and explore real-world datasets.