 Intro: We already know the
standard form of a quadratic
equation is:
y = ax2 + bx + c
 The coefficients are: a , b, c
 The variables are: y, x
 The ROOTS (or
solutions) of a
polynomial are
its x-intercepts
 The x-intercepts
occur where y =
0.
Roots
 Example: Find the
roots: y = x2 + x - 6
 Solution: Factoring:
y = (x + 3)(x - 2)
 0 = (x + 3)(x - 2)
 The roots are:
 x = -3; x = 2
Roots
 After centuries of
work,
mathematicians
realized that as long
as you know the
coefficients, you can
find the roots of the
quadratic. Even if it
doesn’t factor!
y  ax2
 bx  c, a  0
x 
b  b2
 4ac
2a
Solve: y = 5x2
 8x  3
x 
b  b2
 4ac
2a
a  5, b  8, c  3
x 
(8)  (8)2
 4(5)(3)
2(5)
x 
8  64  60
10
x 
8  4
10
x 
8  2
10
x 
8  2
10
x 
8  2
10

10
10
 1
x 
8  2
10

6
10

3
5
Roots
y  5(1)2
 8(1)  3
y  5 8  3
y  0
y  5 3
5
 
2
 8 3
5
  3
y  5 9
25
  24
5
 3
y  45
25
  24
5
  3
y  9
5
  24
5
  15
5
 
y  0
Plug in your
answers for x.
If you’re right,
you’ll get y = 0.
Solve : y  2x2
 7x  4
a  2, b  7, c  4
x 
b  b2
 4ac
2a
x 
(7)  (7)2
 4(2)(4)
2(2)
x 
7  49  32
4
x 
7  81
4
x 
7  9
4
x 
2
4

1
2
x 
16
4
 4
Remember: All the terms must be on one
side BEFORE you use the quadratic
formula.
•Example: Solve 3m2 - 8 = 10m
•Solution: 3m2 - 10m - 8 = 0
•a = 3, b = -10, c = -8
 Solve: 3x2 = 7 - 2x
 Solution: 3x2 + 2x - 7 =
0
 a = 3, b = 2, c = -7
x 
b  b2
 4ac
2a
x 
(2)  (2)2
 4(3)(7)
2(3)
x 
2  4  84
6
x 
2  88
6
x 
2  4• 22
6
x 
2  2 22
6
x 
1 22
3
 Watch this:
http://www.youtube.com/watch?v=jGJrH49Z2ZA

More Related Content

PPTX
Lecture quadratic equations good one
PDF
quadraticequations-111211090004-phpapp02 (1).pdf
PPTX
g_9 - L_1 Solving Quadratic Equations.pptx
DOCX
Quadratic equations
PPTX
MATHS PRESENTATION OF CH 4.pptx
PPTX
Solving Quadratic-Equation.pptx
PPT
Business Math Chapter 3
PDF
quadraticequations-111211090004-phpapp02 (2).pdf
Lecture quadratic equations good one
quadraticequations-111211090004-phpapp02 (1).pdf
g_9 - L_1 Solving Quadratic Equations.pptx
Quadratic equations
MATHS PRESENTATION OF CH 4.pptx
Solving Quadratic-Equation.pptx
Business Math Chapter 3
quadraticequations-111211090004-phpapp02 (2).pdf

Similar to quadratic-formula.ppt (20)

PPTX
Quadratic equations
 
PPT
Quadratic Equations.ppt
PPTX
Quadratic Equations in One Variables.pptx
DOCX
Section 0.7 Quadratic Equations from Precalculus Prerequisite.docx
PPTX
QUADRATIC.pptx
PPT
Solving quadratic equations
PPTX
Quadratic equation
PPT
Solving quadratic equations[1]
PPTX
quadraticequations-111211090004-phpapp02.pptx
PPTX
Illustrationg Quadratic Equation and its characteristic
PPT
Quadractic equations.steps
PPT
G9 Math Q1- Week 1 Intro of Quadratic Equation.ppt
PDF
Form 4 add maths note
PPTX
presentation_quadraticequations-111211090004-phpapp02_1524500815_313961.pptx
PPTX
Quadratic Equation
PPT
Bonus math project
PPTX
Quadratic equation
PDF
Math for 800 08 algebra
PPTX
Slides on factoring Quadratic equation for middle school
PDF
1.4 Quadratic Equations
Quadratic equations
 
Quadratic Equations.ppt
Quadratic Equations in One Variables.pptx
Section 0.7 Quadratic Equations from Precalculus Prerequisite.docx
QUADRATIC.pptx
Solving quadratic equations
Quadratic equation
Solving quadratic equations[1]
quadraticequations-111211090004-phpapp02.pptx
Illustrationg Quadratic Equation and its characteristic
Quadractic equations.steps
G9 Math Q1- Week 1 Intro of Quadratic Equation.ppt
Form 4 add maths note
presentation_quadraticequations-111211090004-phpapp02_1524500815_313961.pptx
Quadratic Equation
Bonus math project
Quadratic equation
Math for 800 08 algebra
Slides on factoring Quadratic equation for middle school
1.4 Quadratic Equations
Ad

Recently uploaded (20)

PDF
Navigating the Thai Supplements Landscape.pdf
PDF
Global Data and Analytics Market Outlook Report
PPTX
DS-40-Pre-Engagement and Kickoff deck - v8.0.pptx
PPTX
Introduction to Inferential Statistics.pptx
PDF
Data Engineering Interview Questions & Answers Cloud Data Stacks (AWS, Azure,...
PPTX
New ISO 27001_2022 standard and the changes
PPTX
Phase1_final PPTuwhefoegfohwfoiehfoegg.pptx
PPTX
modul_python (1).pptx for professional and student
PPTX
Pilar Kemerdekaan dan Identi Bangsa.pptx
PPT
DU, AIS, Big Data and Data Analytics.ppt
PPTX
IMPACT OF LANDSLIDE.....................
PPTX
Business_Capability_Map_Collection__pptx
PPTX
CYBER SECURITY the Next Warefare Tactics
PDF
Optimise Shopper Experiences with a Strong Data Estate.pdf
PPTX
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
PPTX
retention in jsjsksksksnbsndjddjdnFPD.pptx
PDF
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
PPTX
SET 1 Compulsory MNH machine learning intro
PDF
Data Engineering Interview Questions & Answers Batch Processing (Spark, Hadoo...
PDF
Systems Analysis and Design, 12th Edition by Scott Tilley Test Bank.pdf
Navigating the Thai Supplements Landscape.pdf
Global Data and Analytics Market Outlook Report
DS-40-Pre-Engagement and Kickoff deck - v8.0.pptx
Introduction to Inferential Statistics.pptx
Data Engineering Interview Questions & Answers Cloud Data Stacks (AWS, Azure,...
New ISO 27001_2022 standard and the changes
Phase1_final PPTuwhefoegfohwfoiehfoegg.pptx
modul_python (1).pptx for professional and student
Pilar Kemerdekaan dan Identi Bangsa.pptx
DU, AIS, Big Data and Data Analytics.ppt
IMPACT OF LANDSLIDE.....................
Business_Capability_Map_Collection__pptx
CYBER SECURITY the Next Warefare Tactics
Optimise Shopper Experiences with a Strong Data Estate.pdf
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
retention in jsjsksksksnbsndjddjdnFPD.pptx
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
SET 1 Compulsory MNH machine learning intro
Data Engineering Interview Questions & Answers Batch Processing (Spark, Hadoo...
Systems Analysis and Design, 12th Edition by Scott Tilley Test Bank.pdf
Ad

quadratic-formula.ppt

  • 1.  Intro: We already know the standard form of a quadratic equation is: y = ax2 + bx + c  The coefficients are: a , b, c  The variables are: y, x
  • 2.  The ROOTS (or solutions) of a polynomial are its x-intercepts  The x-intercepts occur where y = 0. Roots
  • 3.  Example: Find the roots: y = x2 + x - 6  Solution: Factoring: y = (x + 3)(x - 2)  0 = (x + 3)(x - 2)  The roots are:  x = -3; x = 2 Roots
  • 4.  After centuries of work, mathematicians realized that as long as you know the coefficients, you can find the roots of the quadratic. Even if it doesn’t factor! y  ax2  bx  c, a  0 x  b  b2  4ac 2a
  • 5. Solve: y = 5x2  8x  3 x  b  b2  4ac 2a a  5, b  8, c  3 x  (8)  (8)2  4(5)(3) 2(5) x  8  64  60 10 x  8  4 10 x  8  2 10
  • 6. x  8  2 10 x  8  2 10  10 10  1 x  8  2 10  6 10  3 5 Roots
  • 7. y  5(1)2  8(1)  3 y  5 8  3 y  0 y  5 3 5   2  8 3 5   3 y  5 9 25   24 5  3 y  45 25   24 5   3 y  9 5   24 5   15 5   y  0 Plug in your answers for x. If you’re right, you’ll get y = 0.
  • 8. Solve : y  2x2  7x  4 a  2, b  7, c  4 x  b  b2  4ac 2a x  (7)  (7)2  4(2)(4) 2(2) x  7  49  32 4 x  7  81 4 x  7  9 4 x  2 4  1 2 x  16 4  4
  • 9. Remember: All the terms must be on one side BEFORE you use the quadratic formula. •Example: Solve 3m2 - 8 = 10m •Solution: 3m2 - 10m - 8 = 0 •a = 3, b = -10, c = -8
  • 10.  Solve: 3x2 = 7 - 2x  Solution: 3x2 + 2x - 7 = 0  a = 3, b = 2, c = -7 x  b  b2  4ac 2a x  (2)  (2)2  4(3)(7) 2(3) x  2  4  84 6 x  2  88 6 x  2  4• 22 6 x  2  2 22 6 x  1 22 3