SlideShare a Scribd company logo
Quantum networks
with superconducting circuits
and optomechanical transducers
Ondřej Černotík
Leibniz Universität Hannover
IST Austria, 10 November 2016
-
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Superconducting systems are among the
best candidates for quantum computers.
2
• Quantum gates and processors

L. DiCarlo et al., Nature 460, 240 (2009); ibid. 467, 574 (2010); A. Fedorov et
al., Nature 481, 170 (2011)
• Quantum teleportation

L. Steffen et al., Nature 500, 319 (2013)
• Quantum simulations

A. Houck et al., Nature Physics 8, 292 (2012)
• Quantum error correction

A. Córcoles et al., Nature Commun. 6, 6979

(2015); J. Kelly et al., Nature 519, 66 (2015); 

D. Ristè et al., Nature Commun. 6, 6983 (2015)
R. Schoelkopf, Yale
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Light is ideal for quantum communication
due to low losses and noise.
3
• Quantum key distribution

F. Grosshans et al., Nature 421, 238 (2003); T. Schmitt-Manderbach et al., PRL
98, 010504 (2007); H. Yin et al., PRL 117, 190501 (2016)
• Quantum teleportation

D. Bouwmeester et al., Nature 390, 575 (1997); A. Furusawa et al., Science 282,
706 (1998); H. Yonezawa et al., Nature 431, 430 (2004); T. Herbst et al., PNAS
112, 14202 (2015)
• Loophole-free Bell test

B. Hensen et al., Nature 526, 682 (2015); M. Giustina 

et al., PRL 115, 250401 (2015); L. Shalm et al., ibid., 

250402 (2015)
A. Zeilinger
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
There is a large gap between
superconducting and optical systems.
4
Superconducting circuits Optical communication
10 GHz 200 THzfrequency
625 0.03thermal occupation
(300 K)
0.5 K 10,000 K
ground state
temperature
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Mechanical oscillators can mediate
coupling between microwaves and light.
5
R. Andrews et al., Nature Phys. 10, 321 (2014)
K. Stannigel et al., PRL 105, 220501 (2010)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ 6
Parity measurements
in circuit QED
Optomechanical
force sensing
Long-distance entanglement
of superconducting qubits
Fext
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Full control of a qubit is possible using an
electromagnetic field.
7
Hint = g(a + + a†
)
A. Blais et al., PRA 69, 062920 (2004)
Jaynes–Cummings interaction
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Full control of a qubit is possible using an
electromagnetic field.
8
Hint =
g2
a†
a z
A. Blais et al., PRA 69, 062920 (2004)
dispersive interaction
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Dispersive coupling can be used to read
out the qubit state.
9
|0i
|1i
R. Vijay et al., PRL 106, 110502 (2011)
K. Murch et al., Nature 502, 211 (2013)
Hint =
g2
a†
a z
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Spin measurement can be used to
generate entanglement of two qubits.
10
C. Hutchison et al., Canadian J. Phys. 87, 225 (2009)
N. Roch et al., PRL 112, 170501 (2014)
|11i
|00i
|01i + |10i
| 0i = (|0i + |1i)(|0i + |1i)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Optomechanical interaction arises due to
radiation pressure.
11
a x
!,  ⌦, ¯n
!(x) ⇡ !(0) +
d!
dx
x
Cavity frequency:
g0 =
d!
dx
xzpf =
!
L
xzpfCoupling strength:
xzpf =
r
~
2m⌦
x = xzpf (b + b†
),
Hamiltonian:
H = ~!(x)a†
a + ~⌦b†
b
H = ~!a†
a + ~⌦b†
b + ~g0a†
a(b + b†
)
M. Aspelmeyer, et al.,
RMP 86, 1391 (2014)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
⌦
Strong coupling can be achieved using
laser driving.
12
Optomechanical coupling is weak
g0 = !
xzpf
L
⇡ 25 Hz
Solution: strong optical drive a ! ↵ + a
Interaction Hamiltonian Hint = ~g0↵(a + a†
)(b + b†
)
M. Aspelmeyer, et al.,
RMP 86, 1391 (2014)
Red-detuned drive:
Hint ⇡ ~g(a†
b + b†
a)
Optomechanical cooling
!L = ! ⌦
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
⌦
Strong coupling can be achieved using
laser driving.
13
Optomechanical coupling is weak
g0 = !
xzpf
L
⇡ 25 Hz
Solution: strong optical drive a ! ↵ + a
⌦
Interaction Hamiltonian Hint = ~g0↵(a + a†
)(b + b†
)
M. Aspelmeyer, et al.,
RMP 86, 1391 (2014)
Blue-detuned drive:
Hint ⇡ ~g(ab + a†
b†
)
Two-mode squeezing
!L = ! + ⌦
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
⌦
Strong coupling can be achieved using
laser driving.
14
Optomechanical coupling is weak
g0 = !
xzpf
L
⇡ 25 Hz
Solution: strong optical drive a ! ↵ + a
Interaction Hamiltonian Hint = ~g0↵(a + a†
)(b + b†
)
M. Aspelmeyer, et al.,
RMP 86, 1391 (2014)
Resonant drive:
Hint ⇡ ~g(a + a†
)(b + b†
)
Position readout
! = !L
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Standard quantum limit bounds the
sensitivity of displacement measurements.
15
A. Clerk et al., RMP 82, 1155 (2010)
M. Aspelmeyer et al., RMP 86, 1391 (2014)
˙x = !mp
˙p = !mx p g(a + a†
) + ⇠ + Fext
˙a =

2
a igx +
p
ain
Fext
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Standard quantum limit bounds the
sensitivity of displacement measurements.
16
A. Clerk et al., RMP 82, 1155 (2010)
M. Aspelmeyer et al., RMP 86, 1391 (2014)
Fext
pout = i(aout a†
out)
=
4g!m
p

(!2
m !2 + i !)( + 2i!)
✓
Fext + ⇠
2g
p

 + 2i!
xin
◆
+
 2i!
 + 2i!
pin
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Optomechanical transducer acts as a
force sensor.
17
F = ~ /(
p
2xzpf )
S2
F (!) = x2
zpf /[8g2 2
m(!)]Sensitivity:
⌧meas =
S2
F (!)
F2
=
!2
m
16 2g2
⌧ T1,2Measurement time:
H = z(b + b†
) + !mb†
b + g(a + a†
)(b + b†
)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
The thermal mechanical bath affects the
qubit.
18
mech = S2
f (!) =
2 2
!2
m
¯nDephasing rate:
⌧meas <
1
mech
! C =
4g2
 ¯n
>
1
2
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
The system can be modelled using a
conditional master equation.
19
D[O]⇢ = O⇢O† 1
2 (O†
O⇢ + ⇢O†
O)
H[O]⇢ = (O hOi)⇢ + ⇢(O†
hO†
i)
H. Wiseman & G. Milburn, Quantum
measurement and control (Cambridge)
d⇢ = i[H, ⇢]dt + Lq⇢dt +
2X
j=1
{(¯n + 1)D[bj] + ¯nD[b†
j]}⇢dt
+ D[a1 a2]⇢dt +
p
H[i(a1 a2)]⇢dW
H =
2X
j=1
j
z(bj + b†
j) + !mb†
jbj
+ g(aj + a†
j)(bj + b†
j) + i

2
(a1a†
2 a2a†
1)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
The transducer is Gaussian and can be
adiabatically eliminated.
20
OC et al., PRA 92, 012124 (2015)ˇ
2 qubits
Mechanics,
light
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
We obtain an effective equation for the
qubits.
21
d⇢q =
2X
j=1

1
T1
D[ j
] +
✓
1
T2
+ mech
◆
D[ j
z] ⇢qdt
+ measD[ 1
z + 2
z]⇢qdt +
p
measH[ 1
z + 2
z]⇢qdW
meas = 16
2
g2
!2
m
, mech =
2
!2
m
(2¯n + 1)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Optical losses introduce additional
dephasing.
22
p
⌘ measH[ 1
z + 2
z]⇢q
(1 ⌧) measD[ 1
z]⇢q
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
A transmon qubit can capacitively couple
to a nanobeam oscillator.
23
G. Anetsberger et al., Nature Phys. 5, 909 (2009)
J. Pirkkalainen et al., Nat. Commun. 6, 6981 (2015)
= 2⇡ ⇥ 5.8 MHz
g = 2⇡ ⇥ 900 kHz
 = 2⇡ ⇥ 39MHz
!m = 2⇡ ⇥ 8.7 MHz
Qm = 5 ⇥ 104
T = 20 mK
¯n = 48
T1,2 = 20 µs
C = 10
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
A transmon qubit can capacitively couple
to a nanobeam oscillator.
24
= 2⇡ ⇥ 5.8 MHz
g = 2⇡ ⇥ 900 kHz
 = 2⇡ ⇥ 39MHz
!m = 2⇡ ⇥ 8.7 MHz
Qm = 5 ⇥ 104
T = 20 mK
¯n = 48
T1,2 = 20 µs
C = 10
⌘
Psucc
Psucc
OC and K. Hammerer, PRA 94, 012340 (2016)ˇ
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
With high-frequency mechanical
oscillators, modulated interaction can be
used.
25
H = z(b + b†
) ig(a + a†
)(b b†
)
meas = 16
2
g2
 2
, mech =
2
(2¯n + 1)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Microwave cavity can improve the
lifetime of the qubit.
26
meas = 256
2
g2
ag2
c
2
a!2
mc
,
deph = 4
2
a
+ 256
2
g4
a
3
a!2
m
+ 16
2
g2
a
2
a!2
m
(2¯n + 1)
H = z(a + a†
)
iga(a a†
)(b + b†
)
+ !mb†
b + gc(c + c†
)(b + b†
)
a
b
c
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Both techniques can also be combined in
one system.
27
a
b
c
H = z(a + a†
)
iga(a a†
)(b + b†
)
igc(c + c†
)(b b†
)
meas = 1024
2
g2
ag2
c
2
a
2c
,
deph = 4
2
a
+ 64
2
g2
a
2
a
(2¯n + 1)
Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ
Mechanical oscillators can mediate
interaction between light and SC qubits.
28
OC and K. Hammerer, PRA 94, 012340 (2016)ˇ
-
C =
4g2
 ¯n
>
1
2
• Strong optomechanical cooperativity,
• Sufficient qubit lifetime

More Related Content

PDF
Novel approaches to optomechanical transduction
PDF
Hybrid quantum systems
PDF
Controlling the motion of levitated particles by coherent scattering
PDF
Quantum force sensing with optomechanical transducers
PDF
Ancilla-error-transparent swap tests in circuit quantum electrodynamics
PDF
Microwave entanglement created using swap tests with biased noise
PDF
Measurement-induced long-distance entanglement of superconducting qubits usin...
PDF
Improved optomechanical interactions for quantum technologies
Novel approaches to optomechanical transduction
Hybrid quantum systems
Controlling the motion of levitated particles by coherent scattering
Quantum force sensing with optomechanical transducers
Ancilla-error-transparent swap tests in circuit quantum electrodynamics
Microwave entanglement created using swap tests with biased noise
Measurement-induced long-distance entanglement of superconducting qubits usin...
Improved optomechanical interactions for quantum technologies

What's hot (20)

PDF
Measurement-induced long-distance entanglement of superconducting qubits usin...
PPTX
Iván Brihuega-Probing graphene physics at the atomic scale
PPT
Search for Neutron Electric Dipole Moment
PDF
Visit at CERN
PDF
Fundamental Processes in 
 Organic and Hybrid Solar Cells
PDF
Calculation of isotopic dipole moments with spectroscopic accuracy
PDF
NANO266 - Lecture 13 - Ab initio molecular dyanmics
PDF
optics chapter_07_solution_manual
PDF
CUPC Oct 14, 2015
PPTX
Gupta Roy MS Thesis Defense
PDF
Two efficient algorithms for drawing accurate and beautiful phonon dispersion
PDF
VPrasad_DAEBRNSHEPDec2014talk
PPT
ppt on the Solar cells understanding semiconductor devices
PDF
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
PPTX
Characterization of Carrier Lifetime
PDF
27 Double π0 photoproduction on the neutron at GRAAL - Physics Letters B, Jul...
PDF
Loss mechanisms in Polymer-Fullerene Solar Cells
PDF
Phase-field modeling of crystal nucleation II: Comparison with simulations an...
PPTX
giessen short
PPT
Презентация Microsoft PowerPoint
Measurement-induced long-distance entanglement of superconducting qubits usin...
Iván Brihuega-Probing graphene physics at the atomic scale
Search for Neutron Electric Dipole Moment
Visit at CERN
Fundamental Processes in 
 Organic and Hybrid Solar Cells
Calculation of isotopic dipole moments with spectroscopic accuracy
NANO266 - Lecture 13 - Ab initio molecular dyanmics
optics chapter_07_solution_manual
CUPC Oct 14, 2015
Gupta Roy MS Thesis Defense
Two efficient algorithms for drawing accurate and beautiful phonon dispersion
VPrasad_DAEBRNSHEPDec2014talk
ppt on the Solar cells understanding semiconductor devices
Semi-empirical Monte Carlo optical-gain modelling of Nuclear Imaging scintill...
Characterization of Carrier Lifetime
27 Double π0 photoproduction on the neutron at GRAAL - Physics Letters B, Jul...
Loss mechanisms in Polymer-Fullerene Solar Cells
Phase-field modeling of crystal nucleation II: Comparison with simulations an...
giessen short
Презентация Microsoft PowerPoint
Ad

Similar to Quantum networks with superconducting circuits and optomechanical transducers (20)

PDF
Novel approaches to optomechanical transduction
PDF
Interference effects in cavity optomechanics with hybridized membranes
PDF
Measurement-induced long-distance entanglement with optomechanical transducers
PDF
Measurement-induced long-distance entanglement of superconducting qubits usin...
PDF
Novel approaches to optomechanical transduction
PPT
Localized Characterization of GaAs/AlGaAs Quantum Well Devices
PDF
Wireless Power Transmission for Implantable Medical Devices
PDF
Quantum Electronic Transport : TranSiesta
PDF
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
PPTX
Nenopartical optical sensors
PPTX
Thesis defense
PDF
Optical interferometery to detect sound waves as an analogue for gravitationa...
PDF
Noise Resilience of Variational Quantum Compiling
PPT
Uv Vis Calculated Of Mv2+ And Mv+
PPTX
Generation and application of attosecond laser pulse
PDF
Gaussian control and readout of levitated nanoparticles via coherent scattering
PDF
nothing
PDF
Ldb Convergenze Parallele_sorba_01
PDF
Ldb Convergenze Parallele_11
PDF
2016.06.21 lasuam NanoFrontMag
Novel approaches to optomechanical transduction
Interference effects in cavity optomechanics with hybridized membranes
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement of superconducting qubits usin...
Novel approaches to optomechanical transduction
Localized Characterization of GaAs/AlGaAs Quantum Well Devices
Wireless Power Transmission for Implantable Medical Devices
Quantum Electronic Transport : TranSiesta
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
Nenopartical optical sensors
Thesis defense
Optical interferometery to detect sound waves as an analogue for gravitationa...
Noise Resilience of Variational Quantum Compiling
Uv Vis Calculated Of Mv2+ And Mv+
Generation and application of attosecond laser pulse
Gaussian control and readout of levitated nanoparticles via coherent scattering
nothing
Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_11
2016.06.21 lasuam NanoFrontMag
Ad

More from Ondrej Cernotik (9)

PDF
Transformations of continuous-variable entangled states of light
PDF
Improved optomechanical interactions for quantum technologies
PDF
Entangling distant superconducting qubits using nanomechanical transducers
PDF
Measurement-induced long-distance entanglement of superconducting qubits usin...
PDF
Displacement-enhanced continuous-variable entanglement concentration
PDF
Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
PDF
Cavity optomechanics with variable polarizability mirrors
PDF
Interference effects in doped cavity optomechanics
PDF
Motional Gaussian states and gates for a levitating particle
Transformations of continuous-variable entangled states of light
Improved optomechanical interactions for quantum technologies
Entangling distant superconducting qubits using nanomechanical transducers
Measurement-induced long-distance entanglement of superconducting qubits usin...
Displacement-enhanced continuous-variable entanglement concentration
Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
Cavity optomechanics with variable polarizability mirrors
Interference effects in doped cavity optomechanics
Motional Gaussian states and gates for a levitating particle

Recently uploaded (20)

PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
Complications of Minimal Access Surgery at WLH
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Cell Structure & Organelles in detailed.
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
01-Introduction-to-Information-Management.pdf
PPTX
History, Philosophy and sociology of education (1).pptx
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
RMMM.pdf make it easy to upload and study
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPTX
master seminar digital applications in india
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Complications of Minimal Access Surgery at WLH
Computing-Curriculum for Schools in Ghana
Cell Structure & Organelles in detailed.
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Final Presentation General Medicine 03-08-2024.pptx
01-Introduction-to-Information-Management.pdf
History, Philosophy and sociology of education (1).pptx
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
RMMM.pdf make it easy to upload and study
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Anesthesia in Laparoscopic Surgery in India
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
master seminar digital applications in india
2.FourierTransform-ShortQuestionswithAnswers.pdf

Quantum networks with superconducting circuits and optomechanical transducers

  • 1. Quantum networks with superconducting circuits and optomechanical transducers Ondřej Černotík Leibniz Universität Hannover IST Austria, 10 November 2016 -
  • 2. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Superconducting systems are among the best candidates for quantum computers. 2 • Quantum gates and processors
 L. DiCarlo et al., Nature 460, 240 (2009); ibid. 467, 574 (2010); A. Fedorov et al., Nature 481, 170 (2011) • Quantum teleportation
 L. Steffen et al., Nature 500, 319 (2013) • Quantum simulations
 A. Houck et al., Nature Physics 8, 292 (2012) • Quantum error correction
 A. Córcoles et al., Nature Commun. 6, 6979
 (2015); J. Kelly et al., Nature 519, 66 (2015); 
 D. Ristè et al., Nature Commun. 6, 6983 (2015) R. Schoelkopf, Yale
  • 3. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Light is ideal for quantum communication due to low losses and noise. 3 • Quantum key distribution
 F. Grosshans et al., Nature 421, 238 (2003); T. Schmitt-Manderbach et al., PRL 98, 010504 (2007); H. Yin et al., PRL 117, 190501 (2016) • Quantum teleportation
 D. Bouwmeester et al., Nature 390, 575 (1997); A. Furusawa et al., Science 282, 706 (1998); H. Yonezawa et al., Nature 431, 430 (2004); T. Herbst et al., PNAS 112, 14202 (2015) • Loophole-free Bell test
 B. Hensen et al., Nature 526, 682 (2015); M. Giustina 
 et al., PRL 115, 250401 (2015); L. Shalm et al., ibid., 
 250402 (2015) A. Zeilinger
  • 4. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ There is a large gap between superconducting and optical systems. 4 Superconducting circuits Optical communication 10 GHz 200 THzfrequency 625 0.03thermal occupation (300 K) 0.5 K 10,000 K ground state temperature
  • 5. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Mechanical oscillators can mediate coupling between microwaves and light. 5 R. Andrews et al., Nature Phys. 10, 321 (2014) K. Stannigel et al., PRL 105, 220501 (2010)
  • 6. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ 6 Parity measurements in circuit QED Optomechanical force sensing Long-distance entanglement of superconducting qubits Fext
  • 7. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Full control of a qubit is possible using an electromagnetic field. 7 Hint = g(a + + a† ) A. Blais et al., PRA 69, 062920 (2004) Jaynes–Cummings interaction
  • 8. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Full control of a qubit is possible using an electromagnetic field. 8 Hint = g2 a† a z A. Blais et al., PRA 69, 062920 (2004) dispersive interaction
  • 9. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Dispersive coupling can be used to read out the qubit state. 9 |0i |1i R. Vijay et al., PRL 106, 110502 (2011) K. Murch et al., Nature 502, 211 (2013) Hint = g2 a† a z
  • 10. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Spin measurement can be used to generate entanglement of two qubits. 10 C. Hutchison et al., Canadian J. Phys. 87, 225 (2009) N. Roch et al., PRL 112, 170501 (2014) |11i |00i |01i + |10i | 0i = (|0i + |1i)(|0i + |1i)
  • 11. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Optomechanical interaction arises due to radiation pressure. 11 a x !,  ⌦, ¯n !(x) ⇡ !(0) + d! dx x Cavity frequency: g0 = d! dx xzpf = ! L xzpfCoupling strength: xzpf = r ~ 2m⌦ x = xzpf (b + b† ), Hamiltonian: H = ~!(x)a† a + ~⌦b† b H = ~!a† a + ~⌦b† b + ~g0a† a(b + b† ) M. Aspelmeyer, et al., RMP 86, 1391 (2014)
  • 12. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ ⌦ Strong coupling can be achieved using laser driving. 12 Optomechanical coupling is weak g0 = ! xzpf L ⇡ 25 Hz Solution: strong optical drive a ! ↵ + a Interaction Hamiltonian Hint = ~g0↵(a + a† )(b + b† ) M. Aspelmeyer, et al., RMP 86, 1391 (2014) Red-detuned drive: Hint ⇡ ~g(a† b + b† a) Optomechanical cooling !L = ! ⌦
  • 13. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ ⌦ Strong coupling can be achieved using laser driving. 13 Optomechanical coupling is weak g0 = ! xzpf L ⇡ 25 Hz Solution: strong optical drive a ! ↵ + a ⌦ Interaction Hamiltonian Hint = ~g0↵(a + a† )(b + b† ) M. Aspelmeyer, et al., RMP 86, 1391 (2014) Blue-detuned drive: Hint ⇡ ~g(ab + a† b† ) Two-mode squeezing !L = ! + ⌦
  • 14. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ ⌦ Strong coupling can be achieved using laser driving. 14 Optomechanical coupling is weak g0 = ! xzpf L ⇡ 25 Hz Solution: strong optical drive a ! ↵ + a Interaction Hamiltonian Hint = ~g0↵(a + a† )(b + b† ) M. Aspelmeyer, et al., RMP 86, 1391 (2014) Resonant drive: Hint ⇡ ~g(a + a† )(b + b† ) Position readout ! = !L
  • 15. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Standard quantum limit bounds the sensitivity of displacement measurements. 15 A. Clerk et al., RMP 82, 1155 (2010) M. Aspelmeyer et al., RMP 86, 1391 (2014) ˙x = !mp ˙p = !mx p g(a + a† ) + ⇠ + Fext ˙a =  2 a igx + p ain Fext
  • 16. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Standard quantum limit bounds the sensitivity of displacement measurements. 16 A. Clerk et al., RMP 82, 1155 (2010) M. Aspelmeyer et al., RMP 86, 1391 (2014) Fext pout = i(aout a† out) = 4g!m p  (!2 m !2 + i !)( + 2i!) ✓ Fext + ⇠ 2g p   + 2i! xin ◆ +  2i!  + 2i! pin
  • 17. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Optomechanical transducer acts as a force sensor. 17 F = ~ /( p 2xzpf ) S2 F (!) = x2 zpf /[8g2 2 m(!)]Sensitivity: ⌧meas = S2 F (!) F2 = !2 m 16 2g2 ⌧ T1,2Measurement time: H = z(b + b† ) + !mb† b + g(a + a† )(b + b† )
  • 18. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ The thermal mechanical bath affects the qubit. 18 mech = S2 f (!) = 2 2 !2 m ¯nDephasing rate: ⌧meas < 1 mech ! C = 4g2  ¯n > 1 2
  • 19. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ The system can be modelled using a conditional master equation. 19 D[O]⇢ = O⇢O† 1 2 (O† O⇢ + ⇢O† O) H[O]⇢ = (O hOi)⇢ + ⇢(O† hO† i) H. Wiseman & G. Milburn, Quantum measurement and control (Cambridge) d⇢ = i[H, ⇢]dt + Lq⇢dt + 2X j=1 {(¯n + 1)D[bj] + ¯nD[b† j]}⇢dt + D[a1 a2]⇢dt + p H[i(a1 a2)]⇢dW H = 2X j=1 j z(bj + b† j) + !mb† jbj + g(aj + a† j)(bj + b† j) + i  2 (a1a† 2 a2a† 1)
  • 20. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ The transducer is Gaussian and can be adiabatically eliminated. 20 OC et al., PRA 92, 012124 (2015)ˇ 2 qubits Mechanics, light
  • 21. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ We obtain an effective equation for the qubits. 21 d⇢q = 2X j=1  1 T1 D[ j ] + ✓ 1 T2 + mech ◆ D[ j z] ⇢qdt + measD[ 1 z + 2 z]⇢qdt + p measH[ 1 z + 2 z]⇢qdW meas = 16 2 g2 !2 m , mech = 2 !2 m (2¯n + 1)
  • 22. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Optical losses introduce additional dephasing. 22 p ⌘ measH[ 1 z + 2 z]⇢q (1 ⌧) measD[ 1 z]⇢q
  • 23. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ A transmon qubit can capacitively couple to a nanobeam oscillator. 23 G. Anetsberger et al., Nature Phys. 5, 909 (2009) J. Pirkkalainen et al., Nat. Commun. 6, 6981 (2015) = 2⇡ ⇥ 5.8 MHz g = 2⇡ ⇥ 900 kHz  = 2⇡ ⇥ 39MHz !m = 2⇡ ⇥ 8.7 MHz Qm = 5 ⇥ 104 T = 20 mK ¯n = 48 T1,2 = 20 µs C = 10
  • 24. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ A transmon qubit can capacitively couple to a nanobeam oscillator. 24 = 2⇡ ⇥ 5.8 MHz g = 2⇡ ⇥ 900 kHz  = 2⇡ ⇥ 39MHz !m = 2⇡ ⇥ 8.7 MHz Qm = 5 ⇥ 104 T = 20 mK ¯n = 48 T1,2 = 20 µs C = 10 ⌘ Psucc Psucc OC and K. Hammerer, PRA 94, 012340 (2016)ˇ
  • 25. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ With high-frequency mechanical oscillators, modulated interaction can be used. 25 H = z(b + b† ) ig(a + a† )(b b† ) meas = 16 2 g2  2 , mech = 2 (2¯n + 1)
  • 26. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Microwave cavity can improve the lifetime of the qubit. 26 meas = 256 2 g2 ag2 c 2 a!2 mc , deph = 4 2 a + 256 2 g4 a 3 a!2 m + 16 2 g2 a 2 a!2 m (2¯n + 1) H = z(a + a† ) iga(a a† )(b + b† ) + !mb† b + gc(c + c† )(b + b† ) a b c
  • 27. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Both techniques can also be combined in one system. 27 a b c H = z(a + a† ) iga(a a† )(b + b† ) igc(c + c† )(b b† ) meas = 1024 2 g2 ag2 c 2 a 2c , deph = 4 2 a + 64 2 g2 a 2 a (2¯n + 1)
  • 28. Ondrej Cernotík (Hannover): Quantum networks with SC qubits and OM transducersˇˇ Mechanical oscillators can mediate interaction between light and SC qubits. 28 OC and K. Hammerer, PRA 94, 012340 (2016)ˇ - C = 4g2  ¯n > 1 2 • Strong optomechanical cooperativity, • Sufficient qubit lifetime