SlideShare a Scribd company logo
Reduced-cost ensemble Kalman filter
for parameter estimation!
Application to front-tracking problems!
Mélanie Rochoux!
in collaboration with S.Ricci, D. Lucor, B. Cuenot & A. Trouvé!
*	
  melanie.rochoux@cerfacs.fr!
MS-10 Reduced-order models for stochastic inverse problems – U626	
  
INTRODUCTION ●●●●
Data assimilation: why? how?!
2 !Rochoux et al. – UNCECOMP 2015 – MS-10!
➙ Key idea: “optimal combination of observations and forward model”!
Determine best estimate of a dynamical system
given 
 Weather forecast!
Atm. chemistry!
Hydrology!
Biomechanics!
- Sparse and imperfect 
- Relation between
observations and model
outputs
Observations
 Numerical model
Model formulation
Model parameters
Initial condition
Forcing data
Mathematical technique based on estimation theory
•  The “true state” is unknown and should be estimated
•  Measurements and models are imperfect
•  The estimate should be an optimal combination of both
measurements and models ➙ error minimization problem
Ex. applications
INTRODUCTION ●●●●
Data assimilation: why? how?!
➙ Key idea: “optimal combination of observations and forward model”!
Ensemble Kalman filter (EnKF)
•  Forecast step ➙ uncertainty propagation

- Explicit propagation of the error statistics

- Nonlinear extension of the Kalman filter
•  Analysis step ➙ Kalman filter update equation 

!
reality
	
  
	
  
model forecast
Diagnostic!
	
   	
  
	
  
	
  
	
  
measurements
analysis
Time!
Sequential approach
	
  =	
  	
  	
  	
  	
  	
  	
  	
  +	
  	
  	
  K	
  [	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ]	
  	
  	
  	
  	
  
Distance to observations!
G( )
Kalman gain matrix!
Stochastic characterization
Estimation of error
covariance matrices
Control variables!
3 !Rochoux et al. – UNCECOMP 2015 – MS-10!
INTRODUCTION ●●●●
Uncertainty quantification!
➙ Challenging idea: Use uncertainty quantification to overcome the slow
convergence rate and sampling errors of the Monte Carlo-based EnKF!







!
reality
	
  
	
  
model forecast
Diagnostic!
	
   	
  
	
  
	
  
	
  
measurements
analysis
Time!
Sequential approach
Npc
X
k=1
ˆck k( )	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ●	
  
Basis functions
4 !Rochoux et al. – UNCECOMP 2015 – MS-10!
	
  =	
  	
  	
  	
  	
  	
  	
  	
  +	
  	
  	
  K	
  [	
  	
  	
  	
  	
  	
  -­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ]	
  	
  	
  	
  	
  G( )
Control variables!
Hybrid Ensemble Kalman filter (PC-EnKF)
•  Forecast step ➙ uncertainty propagation

- Use of surrogate model to compute model trajectories

- Polynomial Chaos (PC) expansion
•  Analysis step ➙ Kalman filter update equation 

!
INTRODUCTION ●●●●
Parameter estimation!
➙ Objective: Improvement of the forecast performance
•  State estimation limitation ➙ no long persistence of the initial condition for a chaotic system
•  Parameter estimation ➙ accounting for the temporal variability in the errors
Difficulties 
➙ Possible nonlinear relationship between input parameters and model counterparts of the observations 
➙ Existence of an evolution model for parameters?

!
Forward
model
Parameters
Initial condition
Boundary conditions
Comparison
Model outputs
Observations
Ensemble Kalman filter
Parameter estimation
State estimation
5 !Rochoux et al. – UNCECOMP 2015 – MS-10!
INTRODUCTION ●●●●
Outline!
!
Reduced-cost ensemble Kalman filter for parameter
estimation (PC-EnKF)!
!
u  Algorithm!
u  Application to wildfire spread forecasting!
•  Front-tracking problem
•  Synthetic case
•  Controlled fire experiment
6 !Rochoux et al. – UNCECOMP 2015 – MS-10!
ALGORITHM ●●●
Standard EnKF!
Cxy = Pt
f
Gt
T
xt
a,(k)
= xt
f,(k)
+Cxy (Cyy + R)−1
(yt
o
+ξo,(k)
− yt
f,(k)
)
Prior
parameters
Prior
fire fronts
Posterior
parameters
xt
f,(1)
xt
f,(2)
xt
f,(Ne )
yt
f,(1)
yt
f,(2)
yt
f,(Ne )
Covariance matrices
EnKF
update
Cyy = GtPt
f
Gt
T
xt
a,(1)
xt
a,(2)
xt
a,(Ne )
yt
o
+ξo,(1)
Ke
t
Posterior
fire fronts
yt
a,(1)
yt
a,(2)
yt
a,(Ne )
EnKF
prediction
FORECAST ANALYSIS
EnKF
prediction
yt
o
+ξo,(Ne )
yt
o
+ξo,(2)
Gt Gt
➙ Key idea: 3D-Var approach with stochastically-based estimation of the error
covariance matrices over the assimilation cycle [t-1, t]
Specificities!!
•  Random walk model for
parameter evolution

•  Data randomization
➙ Burgers et al. 1998

•  Limitations
➙ Slow convergence
rate (large number of
members)
➙ Sampling errors (Li
2008) – local & global
7 !Rochoux et al. – UNCECOMP 2015 – MS-10!
ALGORITHM ●●●
Hybrid PC-EnKF!
➙ Objective: Reduce computational cost of forward model integration
•  Integrating Polynomial Chaos (PC) into forecast
•  Control parameters projected onto a stochastic space spanned by orthogonal PC functions of
independent Gaussian random variables
Surrogate model!
Model inputs!
Model outputs!
Random event!
•  Easy access to statistics (mean, covariance, ensemble sampling)
Ensemble sampling!
•  Integrating Polynomial Chaos (PC) into observation
•  Use the same basis for the model and for the data space (not obvious since observations and model
counterparts should remain uncorrelated, Evensen 2009)
8 !Rochoux et al. – UNCECOMP 2015 – MS-10!
ALGORITHM ●●●
Coupling PC and EnKF approaches!
EnKF prediction
Surrogate model
Surrogate model
Forward modelHermite quadrature Simulated fire fronts
Hermite polynomials Surrogate model
Forecast !
distribution!
➀!
Monte-Carlo sampling Predicted fire front
positions
Posterior estimate of
parameters
Updated fire front
positions
➁
➂
EnKF update
('q)q = 1, · · · , Npc
k = 1, · · · , Ne
k = 1, · · · , Ne
EnKF prediction
k = 1, · · · , Ne
k = 1, · · · , Ne
FIREFLY
j = 1, · · · , (Nquad)n
j = 1, · · · , (Nquad)n
⇣
x
f,(j)
t , !j
⌘ ⇣
y
f,(j)
t
⌘
pf
(xt)
yf
t = Gpc,t(xf
t)
⇣
x
f,(k)
t
⌘
⇣
x
a,(k)
t
⌘ ⇣
y
a,(k)
t
⌘
⇣
y
f,(k)
t
⌘
➙ Non-intrusive approach: PC used to build a surrogate model
of the observation operator
9 !Rochoux et al. – UNCECOMP 2015 – MS-10!
WILDFIRE SPREAD APPLICATION ●●●
Front-tracking problem!
Experimental grassland fire
(100m x 100m), N.S. Cheney,
Annaburroo site (Australia)!
➙ Wildfires feature a front-like
geometry at regional scales!
FRONT!
•  Scales ranging from meters up to
several kilometers
•  Thin flame zone propagating normal
to itself towards unburnt vegetation
•  Local propagation speed of the front
called “rate of spread” (ROS)
10 !Rochoux et al. – UNCECOMP 2015 – MS-10!
WILDFIRE SPREAD APPLICATION ●●●
Front-tracking problem!
•  2-D state variable: reaction progress variable c 

•  Front marker: contour line c = 0.5
•  Submodel for the local ROS along the normal
direction to the front
•  Semi-empirical formulation (Rothermel)
•  Function of the local environmental conditions
➙ Level-set-based front propagation simulator
ROS = f(uw, ↵sl, Mv, v, ⌃v, ...)
Simulated front c= 0.5 !
(x1
, y1
)
(x2
, y2
)
(x3
, y3
)
(x4
, y4
)
@c
@t
= ROS |rc|
11 !Rochoux et al. – UNCECOMP 2015 – MS-10!
WILDFIRE SPREAD APPLICATION ●●●
Front-tracking problem!
•  2-D state variable: reaction progress variable c 

•  Front marker: contour line c = 0.5
•  Submodel for the local ROS along the normal
direction to the front
•  Semi-empirical formulation (Rothermel)
•  Function of the local environmental conditions
➙ Level-set-based front propagation simulator
ROS = f(uw, ↵sl, Mv, v, ⌃v, ...)
Simulated front c= 0.5 !
(x1
, y1
)
(x2
, y2
)
(x3
, y3
)
(x4
, y4
)
@c
@t
= ROS |rc|➙ Observation represented as a
discretized fire front!!
raw data: infrared imagery

12 !Rochoux et al. – UNCECOMP 2015 – MS-10!
WILDFIRE SPREAD APPLICATION ●●●
Synthetic experiment!
•  Estimation of a uniform proportionality coefficient P in the ROS formulation
•  True parameter at the tail of the Gaussian distribution associated with the forecast estimates
•  Reduced-cost approach: 
•  5 model integrations to build the surrogate model
•  1000 members in the ensemble
•  Observation error STD = 2 m
!
75 85 95 105 115 125
75
85
95
105
115
125
x [m]
y[m]
m
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
75
85
95
105
115
125
P [1/s]x−coordinate[m]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
75
85
95
105
115
125
P [1/s]
y−coordinate[m]
forecast true
trueforecast
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
75
85
95
105
115
125
P [1/s]
x−coordinate[m]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
75
85
95
105
115
125
y−coordinate[m]
analysis
analysis true
true
- forecast
- analysis
+ observations
quadrature points
▾ Response surface for the x-coordinate front marker m
◀ Fire front positions at time 50 s (analysis time)
13 !Rochoux et al. – UNCECOMP 2015 – MS-10!
WILDFIRE SPREAD APPLICATION ●●●
Controlled fire experiment!
•  Reduced scale fire experiment (4 m x 4 m) over quasi-homogeneous short grass
!
1min32s
50s
 1min46s
1min04s
 1min18s
Wind 1m/s
0 0.5 1 1.5 2 2.5 3 3.5
0
0.5
1
1.5
2
x [m]
y [m]
•  Mid-Infrared imaging

•  Quasi-homogeneous short
grass (22% moisture content)
•  Mean wind speed: 1m/s in
northwestern direction
•  Mean ROS = 2 cm/s

•  Max. ROS = 5 cm/s
ANALYSIS 
TIME
FORECAST 
TIME
14 !Rochoux et al. – UNCECOMP 2015 – MS-10!
WILDFIRE SPREAD APPLICATION ●●●
Controlled fire experiment!
•  Reduced scale fire experiment (4 m x 4 m) over quasi-homogeneous short grass
•  Estimation of 2 biomass fuel parameters: moisture content (Mv), geometrical parameter (Σv)
•  Reduced-cost approach: 
•  25 model integrations to build the surrogate model
•  1000 members in the ensemble
•  Observation error STD = 5 cm
!
15 11500
Σv [1/m]Mv [%]
Σv [1/m]Mv [%]
15 11500
x-coordinate[m]y-coordinate[m]
13.8 2234513.8 22345
13.8 22345
Σv [1/m]Mv [%]
x-coordinate[m]y-coordinate[m]
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2
0
0.5
1
1.5
2
x [m]
y[m]
m
▾ Response surface for the x-coordinate front marker m
◀ Fire front positions at time 1min18 s
quadrature
points
forecast!
analysis!
- Forecast (PC-EnKF)
- Analysis (PC-EnKF)
□ Analysis (standard EnKF)
+ observations
ANALYSIS TIME
15 !Rochoux et al. – UNCECOMP 2015 – MS-10!
WILDFIRE SPREAD APPLICATION ●●●
Controlled fire experiment!
•  Reduced scale fire experiment (4 m x 4 m) over quasi-homogeneous short grass
•  Estimation of 2 biomass fuel parameters: moisture content (Mv), geometrical parameter (Σv)
•  Reduced-cost approach: 
•  25 model integrations to build the surrogate model
•  1000 members in the ensemble
•  Observation error STD = 5 cm
!
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2
0
0.5
1
1.5
2
x [m]
y[m]
m
ANALYSIS TIME
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2
0
0.5
1
1.5
2
x [m]
y[m]
- Forecast (PC-EnKF)
- Analysis (PC-EnKF)
□ Analysis (standard EnKF)
+ observations
FORECAST TIME
Good behavior
of the PC
surrogate model!
16 !Rochoux et al. – UNCECOMP 2015 – MS-10!
CONCLUSION
Key ideas!
Rochoux et al (2014), NHESS!
Rochoux et al (2012), CTR brief!
➙ Reduced-cost ensemble Kalman filter (PC-EnKF)
for parameter estimation in front-tracking problems!
•  Stand-alone parameter estimation ➙ forecast improvement!
•  Prototype able to address multi-parameter sequential estimation at a reduced cost
•  Spatially-uniform and constant parameters over the time window
•  Application: Reduced-scale wildfire spread problem
➙ Need to extend the strategy at regional scales
➙ Need to combine parameter estimation and state estimation approaches to
treat anisotropic uncertainties
!
17 !Rochoux et al. – UNCECOMP 2015 – MS-10!
CONCLUSION
Key ideas!
Rochoux et al (2014), NHESS!
Rochoux et al (2012), CTR brief!
➙ Reduced-cost ensemble Kalman filter (PC-EnKF)
for parameter estimation in front-tracking problems!
•  Stand-alone parameter estimation ➙ forecast improvement!
•  Prototype able to address multi-parameter sequential estimation at a reduced cost
•  Spatially-uniform and constant parameters over the time window
•  Application: Reduced-scale wildfire spread problem
➙ Need to extend the strategy at regional scales 
➙ Need to combine parameter estimation and state estimation approaches to
treat anisotropic uncertainties

•  Front-tracking problem ➙ dynamically-evolving observation operator over time!
•  Prototype able to track coherent features
•  Unusual application of the EnKF algorithm
➙ Need to test the sensitivity of the hybrid data assimilation algorithm to different
representations of the front

!
18 !Rochoux et al. – UNCECOMP 2015 – MS-10!
*	
  Melanie.Rochoux@cerfacs.fr
Thank you for your attention!
Any question?
Cxy = Pt
f
Gt
T
xt
a,(k)
= xt
f,(k)
+Cxy (Cyy + R)−1
(yt
o
+ξo,(k)
− yt
f,(k)
)
Prior
parameters
Prior
fire fronts
Posterior
parameters
xt
f,(1)
xt
f,(2)
xt
f,(Ne )
yt
f,(1)
yt
f,(2)
yt
f,(Ne )
Covariance matrices
EnKF
update
Cyy = GtPt
f
Gt
T
xt
a,(1)
xt
a,(2)
xt
a,(Ne )
yt
o
+ξo,(1)
Ke
t
Posterior
fire fronts
yt
a,(1)
yt
a,(2)
yt
a,(Ne )
EnKF
prediction
FORECAST ANALYSIS
EnKF
prediction
yt
o
+ξo,(Ne )
yt
o
+ξo,(2)
Gt Gt
ALGORITHM ●●●
Standard EnKF!
➙ Key idea: 3D-Var approach with stochastically-based estimation of the error
covariance matrices over the assimilation cycle [t-1, t]
!
•  Local error (over one assimilation cycle) 
!
•  Global error (over all assimilation cycles) 
Specificities!!
•  Random walk model for
parameter evolution

•  Data randomization
➙ Burgers et al. 1998

•  Limitations
➙ Slow convergence
rate (large number of
members)
➙ Sampling errors (Li
2008) – local & global
20 !Rochoux et al. – UNCECOMP 2015 – MS-10!

More Related Content

PDF
Data Assimilation in Numerical Weather Prediction Models
PPTX
Radiometric Calibration of Digital Images
PPTX
Weather forecasting
PDF
Introduction to Data Assimilation
PDF
Machine Learning for Weather Forecasts
PDF
HYPERSPECTRAL RS IN MINERAL MAPPING
PPTX
3. Atmospheric circulation
PPTX
Weather forecasting
Data Assimilation in Numerical Weather Prediction Models
Radiometric Calibration of Digital Images
Weather forecasting
Introduction to Data Assimilation
Machine Learning for Weather Forecasts
HYPERSPECTRAL RS IN MINERAL MAPPING
3. Atmospheric circulation
Weather forecasting

What's hot (20)

PPTX
drought monitoring and management using remote sensing
PDF
Iirs Role of Remote sensing and GIS in Ground water studies
PPTX
hyperspectral remote sensing and its geological applications
PPTX
Atmospheric Correction Algorithm_IGARSS.pptx
PPT
Historical Development of Photogrammetry
PPTX
Remote sensing in Disaster management
PDF
Digital image processing
PPTX
Height measurement of aerial photograph
PPT
REMOTE SENSING
PPT
Image mosaicing
PDF
Introduction to Synthetic Aperture Radar (SAR)
PDF
SAR Interferometry Technique
PPTX
Map Projections
PPTX
Remote sensing history and its application in Pakistan
PPTX
Aerial photogrammetry ppt 2
PPTX
Thermal remote sensing
PDF
Lecture01: Introduction to Photogrammetry
PDF
Spatial interpolation techniques
PPTX
Inverse distance weighting
PDF
REMOTE SENSING & GIS APPLICATIONS IN WATERSHED MANAGEMENT
drought monitoring and management using remote sensing
Iirs Role of Remote sensing and GIS in Ground water studies
hyperspectral remote sensing and its geological applications
Atmospheric Correction Algorithm_IGARSS.pptx
Historical Development of Photogrammetry
Remote sensing in Disaster management
Digital image processing
Height measurement of aerial photograph
REMOTE SENSING
Image mosaicing
Introduction to Synthetic Aperture Radar (SAR)
SAR Interferometry Technique
Map Projections
Remote sensing history and its application in Pakistan
Aerial photogrammetry ppt 2
Thermal remote sensing
Lecture01: Introduction to Photogrammetry
Spatial interpolation techniques
Inverse distance weighting
REMOTE SENSING & GIS APPLICATIONS IN WATERSHED MANAGEMENT
Ad

Similar to Reduced-cost ensemble Kalman filter for front-tracking problems (20)

PDF
Data-driven wildfire spread modeling - Extension to cases with complex terrai...
PDF
Bayesian Inference for front-tracking problems - 2013 IPDO conference
PDF
First step towards data-driven wildfire spread modeling
PPTX
Data-driven wildfire spread modeling
PDF
Nonlinear filtering approaches to field mapping by sampling using mobile sensors
PDF
Datadriven Computational Methods Parameter And Operator Estimations Harlim
PDF
Litvinenko nlbu2016
PDF
Solving inverse problems via non-linear Bayesian Update of PCE coefficients
PPTX
Detection&Tracking - Thermal imaging object detection and tracking
DOCX
Physics Research Summer2009
PDF
Adaptive pi based on direct synthesis nishant
PDF
Preconditioning in Large-scale VDA
PPT
presentation.ppt
PDF
CLIM: Transition Workshop - Activities and Progress in the “Parameter Optimiz...
PPTX
Forest fire management using gis
PDF
Lectures in signals and systems
PDF
Modern Control Engineering Problems Ch 3.pdf
PDF
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
PPTX
presentation data fusion methods ex.pptx
PDF
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Data-driven wildfire spread modeling - Extension to cases with complex terrai...
Bayesian Inference for front-tracking problems - 2013 IPDO conference
First step towards data-driven wildfire spread modeling
Data-driven wildfire spread modeling
Nonlinear filtering approaches to field mapping by sampling using mobile sensors
Datadriven Computational Methods Parameter And Operator Estimations Harlim
Litvinenko nlbu2016
Solving inverse problems via non-linear Bayesian Update of PCE coefficients
Detection&Tracking - Thermal imaging object detection and tracking
Physics Research Summer2009
Adaptive pi based on direct synthesis nishant
Preconditioning in Large-scale VDA
presentation.ppt
CLIM: Transition Workshop - Activities and Progress in the “Parameter Optimiz...
Forest fire management using gis
Lectures in signals and systems
Modern Control Engineering Problems Ch 3.pdf
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
presentation data fusion methods ex.pptx
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Ad

Recently uploaded (20)

PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PPT
protein biochemistry.ppt for university classes
PDF
Placing the Near-Earth Object Impact Probability in Context
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PDF
. Radiology Case Scenariosssssssssssssss
PPTX
famous lake in india and its disturibution and importance
PPTX
Microbiology with diagram medical studies .pptx
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
Cell Membrane: Structure, Composition & Functions
PPTX
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
PPTX
BIOMOLECULES PPT........................
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PDF
An interstellar mission to test astrophysical black holes
PPTX
neck nodes and dissection types and lymph nodes levels
7. General Toxicologyfor clinical phrmacy.pptx
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
protein biochemistry.ppt for university classes
Placing the Near-Earth Object Impact Probability in Context
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
. Radiology Case Scenariosssssssssssssss
famous lake in india and its disturibution and importance
Microbiology with diagram medical studies .pptx
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
Cell Membrane: Structure, Composition & Functions
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
BIOMOLECULES PPT........................
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
Comparative Structure of Integument in Vertebrates.pptx
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
INTRODUCTION TO EVS | Concept of sustainability
Taita Taveta Laboratory Technician Workshop Presentation.pptx
An interstellar mission to test astrophysical black holes
neck nodes and dissection types and lymph nodes levels

Reduced-cost ensemble Kalman filter for front-tracking problems

  • 1. Reduced-cost ensemble Kalman filter for parameter estimation! Application to front-tracking problems! Mélanie Rochoux! in collaboration with S.Ricci, D. Lucor, B. Cuenot & A. Trouvé! *  melanie.rochoux@cerfacs.fr! MS-10 Reduced-order models for stochastic inverse problems – U626  
  • 2. INTRODUCTION ●●●● Data assimilation: why? how?! 2 !Rochoux et al. – UNCECOMP 2015 – MS-10! ➙ Key idea: “optimal combination of observations and forward model”! Determine best estimate of a dynamical system given Weather forecast! Atm. chemistry! Hydrology! Biomechanics! - Sparse and imperfect - Relation between observations and model outputs Observations Numerical model Model formulation Model parameters Initial condition Forcing data Mathematical technique based on estimation theory •  The “true state” is unknown and should be estimated •  Measurements and models are imperfect •  The estimate should be an optimal combination of both measurements and models ➙ error minimization problem Ex. applications
  • 3. INTRODUCTION ●●●● Data assimilation: why? how?! ➙ Key idea: “optimal combination of observations and forward model”! Ensemble Kalman filter (EnKF) •  Forecast step ➙ uncertainty propagation - Explicit propagation of the error statistics - Nonlinear extension of the Kalman filter •  Analysis step ➙ Kalman filter update equation ! reality     model forecast Diagnostic!           measurements analysis Time! Sequential approach  =                +      K  [            -­‐                        ]           Distance to observations! G( ) Kalman gain matrix! Stochastic characterization Estimation of error covariance matrices Control variables! 3 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 4. INTRODUCTION ●●●● Uncertainty quantification! ➙ Challenging idea: Use uncertainty quantification to overcome the slow convergence rate and sampling errors of the Monte Carlo-based EnKF! ! reality     model forecast Diagnostic!           measurements analysis Time! Sequential approach Npc X k=1 ˆck k( )                          ●   Basis functions 4 !Rochoux et al. – UNCECOMP 2015 – MS-10!  =                +      K  [            -­‐                        ]          G( ) Control variables! Hybrid Ensemble Kalman filter (PC-EnKF) •  Forecast step ➙ uncertainty propagation - Use of surrogate model to compute model trajectories - Polynomial Chaos (PC) expansion •  Analysis step ➙ Kalman filter update equation !
  • 5. INTRODUCTION ●●●● Parameter estimation! ➙ Objective: Improvement of the forecast performance •  State estimation limitation ➙ no long persistence of the initial condition for a chaotic system •  Parameter estimation ➙ accounting for the temporal variability in the errors Difficulties ➙ Possible nonlinear relationship between input parameters and model counterparts of the observations ➙ Existence of an evolution model for parameters? ! Forward model Parameters Initial condition Boundary conditions Comparison Model outputs Observations Ensemble Kalman filter Parameter estimation State estimation 5 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 6. INTRODUCTION ●●●● Outline! ! Reduced-cost ensemble Kalman filter for parameter estimation (PC-EnKF)! ! u  Algorithm! u  Application to wildfire spread forecasting! •  Front-tracking problem •  Synthetic case •  Controlled fire experiment 6 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 7. ALGORITHM ●●● Standard EnKF! Cxy = Pt f Gt T xt a,(k) = xt f,(k) +Cxy (Cyy + R)−1 (yt o +ξo,(k) − yt f,(k) ) Prior parameters Prior fire fronts Posterior parameters xt f,(1) xt f,(2) xt f,(Ne ) yt f,(1) yt f,(2) yt f,(Ne ) Covariance matrices EnKF update Cyy = GtPt f Gt T xt a,(1) xt a,(2) xt a,(Ne ) yt o +ξo,(1) Ke t Posterior fire fronts yt a,(1) yt a,(2) yt a,(Ne ) EnKF prediction FORECAST ANALYSIS EnKF prediction yt o +ξo,(Ne ) yt o +ξo,(2) Gt Gt ➙ Key idea: 3D-Var approach with stochastically-based estimation of the error covariance matrices over the assimilation cycle [t-1, t] Specificities!! •  Random walk model for parameter evolution •  Data randomization ➙ Burgers et al. 1998 •  Limitations ➙ Slow convergence rate (large number of members) ➙ Sampling errors (Li 2008) – local & global 7 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 8. ALGORITHM ●●● Hybrid PC-EnKF! ➙ Objective: Reduce computational cost of forward model integration •  Integrating Polynomial Chaos (PC) into forecast •  Control parameters projected onto a stochastic space spanned by orthogonal PC functions of independent Gaussian random variables Surrogate model! Model inputs! Model outputs! Random event! •  Easy access to statistics (mean, covariance, ensemble sampling) Ensemble sampling! •  Integrating Polynomial Chaos (PC) into observation •  Use the same basis for the model and for the data space (not obvious since observations and model counterparts should remain uncorrelated, Evensen 2009) 8 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 9. ALGORITHM ●●● Coupling PC and EnKF approaches! EnKF prediction Surrogate model Surrogate model Forward modelHermite quadrature Simulated fire fronts Hermite polynomials Surrogate model Forecast ! distribution! ➀! Monte-Carlo sampling Predicted fire front positions Posterior estimate of parameters Updated fire front positions ➁ ➂ EnKF update ('q)q = 1, · · · , Npc k = 1, · · · , Ne k = 1, · · · , Ne EnKF prediction k = 1, · · · , Ne k = 1, · · · , Ne FIREFLY j = 1, · · · , (Nquad)n j = 1, · · · , (Nquad)n ⇣ x f,(j) t , !j ⌘ ⇣ y f,(j) t ⌘ pf (xt) yf t = Gpc,t(xf t) ⇣ x f,(k) t ⌘ ⇣ x a,(k) t ⌘ ⇣ y a,(k) t ⌘ ⇣ y f,(k) t ⌘ ➙ Non-intrusive approach: PC used to build a surrogate model of the observation operator 9 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 10. WILDFIRE SPREAD APPLICATION ●●● Front-tracking problem! Experimental grassland fire (100m x 100m), N.S. Cheney, Annaburroo site (Australia)! ➙ Wildfires feature a front-like geometry at regional scales! FRONT! •  Scales ranging from meters up to several kilometers •  Thin flame zone propagating normal to itself towards unburnt vegetation •  Local propagation speed of the front called “rate of spread” (ROS) 10 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 11. WILDFIRE SPREAD APPLICATION ●●● Front-tracking problem! •  2-D state variable: reaction progress variable c •  Front marker: contour line c = 0.5 •  Submodel for the local ROS along the normal direction to the front •  Semi-empirical formulation (Rothermel) •  Function of the local environmental conditions ➙ Level-set-based front propagation simulator ROS = f(uw, ↵sl, Mv, v, ⌃v, ...) Simulated front c= 0.5 ! (x1 , y1 ) (x2 , y2 ) (x3 , y3 ) (x4 , y4 ) @c @t = ROS |rc| 11 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 12. WILDFIRE SPREAD APPLICATION ●●● Front-tracking problem! •  2-D state variable: reaction progress variable c •  Front marker: contour line c = 0.5 •  Submodel for the local ROS along the normal direction to the front •  Semi-empirical formulation (Rothermel) •  Function of the local environmental conditions ➙ Level-set-based front propagation simulator ROS = f(uw, ↵sl, Mv, v, ⌃v, ...) Simulated front c= 0.5 ! (x1 , y1 ) (x2 , y2 ) (x3 , y3 ) (x4 , y4 ) @c @t = ROS |rc|➙ Observation represented as a discretized fire front!! raw data: infrared imagery 12 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 13. WILDFIRE SPREAD APPLICATION ●●● Synthetic experiment! •  Estimation of a uniform proportionality coefficient P in the ROS formulation •  True parameter at the tail of the Gaussian distribution associated with the forecast estimates •  Reduced-cost approach: •  5 model integrations to build the surrogate model •  1000 members in the ensemble •  Observation error STD = 2 m ! 75 85 95 105 115 125 75 85 95 105 115 125 x [m] y[m] m 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 75 85 95 105 115 125 P [1/s]x−coordinate[m] 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 75 85 95 105 115 125 P [1/s] y−coordinate[m] forecast true trueforecast 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 75 85 95 105 115 125 P [1/s] x−coordinate[m] 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 75 85 95 105 115 125 y−coordinate[m] analysis analysis true true - forecast - analysis + observations quadrature points ▾ Response surface for the x-coordinate front marker m ◀ Fire front positions at time 50 s (analysis time) 13 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 14. WILDFIRE SPREAD APPLICATION ●●● Controlled fire experiment! •  Reduced scale fire experiment (4 m x 4 m) over quasi-homogeneous short grass ! 1min32s 50s 1min46s 1min04s 1min18s Wind 1m/s 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 x [m] y [m] •  Mid-Infrared imaging •  Quasi-homogeneous short grass (22% moisture content) •  Mean wind speed: 1m/s in northwestern direction •  Mean ROS = 2 cm/s •  Max. ROS = 5 cm/s ANALYSIS TIME FORECAST TIME 14 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 15. WILDFIRE SPREAD APPLICATION ●●● Controlled fire experiment! •  Reduced scale fire experiment (4 m x 4 m) over quasi-homogeneous short grass •  Estimation of 2 biomass fuel parameters: moisture content (Mv), geometrical parameter (Σv) •  Reduced-cost approach: •  25 model integrations to build the surrogate model •  1000 members in the ensemble •  Observation error STD = 5 cm ! 15 11500 Σv [1/m]Mv [%] Σv [1/m]Mv [%] 15 11500 x-coordinate[m]y-coordinate[m] 13.8 2234513.8 22345 13.8 22345 Σv [1/m]Mv [%] x-coordinate[m]y-coordinate[m] 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0 0.5 1 1.5 2 x [m] y[m] m ▾ Response surface for the x-coordinate front marker m ◀ Fire front positions at time 1min18 s quadrature points forecast! analysis! - Forecast (PC-EnKF) - Analysis (PC-EnKF) □ Analysis (standard EnKF) + observations ANALYSIS TIME 15 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 16. WILDFIRE SPREAD APPLICATION ●●● Controlled fire experiment! •  Reduced scale fire experiment (4 m x 4 m) over quasi-homogeneous short grass •  Estimation of 2 biomass fuel parameters: moisture content (Mv), geometrical parameter (Σv) •  Reduced-cost approach: •  25 model integrations to build the surrogate model •  1000 members in the ensemble •  Observation error STD = 5 cm ! 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0 0.5 1 1.5 2 x [m] y[m] m ANALYSIS TIME 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0 0.5 1 1.5 2 x [m] y[m] - Forecast (PC-EnKF) - Analysis (PC-EnKF) □ Analysis (standard EnKF) + observations FORECAST TIME Good behavior of the PC surrogate model! 16 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 17. CONCLUSION Key ideas! Rochoux et al (2014), NHESS! Rochoux et al (2012), CTR brief! ➙ Reduced-cost ensemble Kalman filter (PC-EnKF) for parameter estimation in front-tracking problems! •  Stand-alone parameter estimation ➙ forecast improvement! •  Prototype able to address multi-parameter sequential estimation at a reduced cost •  Spatially-uniform and constant parameters over the time window •  Application: Reduced-scale wildfire spread problem ➙ Need to extend the strategy at regional scales ➙ Need to combine parameter estimation and state estimation approaches to treat anisotropic uncertainties ! 17 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 18. CONCLUSION Key ideas! Rochoux et al (2014), NHESS! Rochoux et al (2012), CTR brief! ➙ Reduced-cost ensemble Kalman filter (PC-EnKF) for parameter estimation in front-tracking problems! •  Stand-alone parameter estimation ➙ forecast improvement! •  Prototype able to address multi-parameter sequential estimation at a reduced cost •  Spatially-uniform and constant parameters over the time window •  Application: Reduced-scale wildfire spread problem ➙ Need to extend the strategy at regional scales ➙ Need to combine parameter estimation and state estimation approaches to treat anisotropic uncertainties •  Front-tracking problem ➙ dynamically-evolving observation operator over time! •  Prototype able to track coherent features •  Unusual application of the EnKF algorithm ➙ Need to test the sensitivity of the hybrid data assimilation algorithm to different representations of the front ! 18 !Rochoux et al. – UNCECOMP 2015 – MS-10!
  • 19. *  Melanie.Rochoux@cerfacs.fr Thank you for your attention! Any question?
  • 20. Cxy = Pt f Gt T xt a,(k) = xt f,(k) +Cxy (Cyy + R)−1 (yt o +ξo,(k) − yt f,(k) ) Prior parameters Prior fire fronts Posterior parameters xt f,(1) xt f,(2) xt f,(Ne ) yt f,(1) yt f,(2) yt f,(Ne ) Covariance matrices EnKF update Cyy = GtPt f Gt T xt a,(1) xt a,(2) xt a,(Ne ) yt o +ξo,(1) Ke t Posterior fire fronts yt a,(1) yt a,(2) yt a,(Ne ) EnKF prediction FORECAST ANALYSIS EnKF prediction yt o +ξo,(Ne ) yt o +ξo,(2) Gt Gt ALGORITHM ●●● Standard EnKF! ➙ Key idea: 3D-Var approach with stochastically-based estimation of the error covariance matrices over the assimilation cycle [t-1, t] ! •  Local error (over one assimilation cycle) ! •  Global error (over all assimilation cycles) Specificities!! •  Random walk model for parameter evolution •  Data randomization ➙ Burgers et al. 1998 •  Limitations ➙ Slow convergence rate (large number of members) ➙ Sampling errors (Li 2008) – local & global 20 !Rochoux et al. – UNCECOMP 2015 – MS-10!