This document provides an overview of regression analysis, including linear regression, multiple regression, and assessing assumptions. It defines regression as a technique for investigating relationships between variables. Simple linear regression involves one predictor and one response variable, while multiple regression extends this to multiple predictors. Key steps are outlined such as assessing the fit of regression models using R-squared, testing the significance of individual predictors, and ensuring assumptions of normality, linearity and equal variance are met. Examples are provided demonstrating how to evaluate these assumptions and interpret regression results.
Related topics: