2. Relational Query Languages
Query languages: Allow manipulation and retrieval
of data from a database.
Relational model supports simple, powerful QLs:
– Strong formal foundation based on logic.
– Allows for much optimization.
Query Languages != programming languages!
– QLs not expected to be “Turing complete”.
– QLs not intended to be used for complex calculations.
– QLs support easy, efficient access to large data sets.
3. Formal Relational Query Languages
Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:
Relational Algebra: More operational, very
useful for representing execution plans.
Relational Calculus: Lets users describe what
they want, rather than how to compute it.
(Non-operational, declarative.)
Understanding Algebra & Calculus is key to
understanding SQL, query processing!
4. Preliminaries
A query is applied to relation instances, and the
result of a query is also a relation instance.
– Schemas of input relations for a query are fixed (but
query will run regardless of instance!)
– The schema for the result of a given query is also
fixed! Determined by definition of query language
constructs.
Positional vs. named-field notation:
– Positional notation easier for formal definitions,
named-field notation more readable.
– Both used in Relational Algebra and SQL
5. Example Instances
sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0
sid bid day
22 101 10/10/96
58 103 11/12/96
R1
S1
S2
“Sailors” and “Reserves”
relations for our examples.
We’ll use positional or
named field notation,
assume that names of fields
in query results are
`inherited’ from names of
fields in query input
relations.
6. Relational Algebra
Basic operations:
– Selection ( ) Selects a subset of rows from relation.
– Projection ( ) Deletes unwanted columns from relation.
– Cross-product ( ) Allows us to combine two relations.
– Set-difference ( ) Tuples in reln. 1, but not in reln. 2.
– Union ( ) Tuples in reln. 1 and in reln. 2.
Additional operations:
– Intersection, join, division, renaming: Not essential, but (very!) useful.
Since each operation returns a relation, operations can be
composed! (Algebra is “closed”.)
7. Projection
sname rating
yuppy 9
lubber 8
guppy 5
rusty 10
sname rating
S
,
( )
2
age
35.0
55.5
age S
( )
2
Deletes attributes that are not in
projection list.
Schema of result contains exactly
the fields in the projection list,
with the same names that they
had in the (only) input relation.
Projection operator has to
eliminate duplicates! (Why??)
– Note: real systems typically
don’t do duplicate elimination
unless the user explicitly asks
for it. (Why not?)
8. Selection
rating
S
8
2
( )
sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0
sname rating
yuppy 9
rusty 10
sname rating rating
S
,
( ( ))
8
2
Selects rows that satisfy
selection condition.
No duplicates in result!
(Why?)
Schema of result identical
to schema of (only) input
relation.
Result relation can be the
input for another
relational algebra
operation! (Operator
composition.)
9. Union, Intersection, Set-Difference
All of these operations take
two input relations, which
must be union-compatible:
– Same number of fields.
– `Corresponding’ fields
have the same type.
What is the schema of result?
sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0
sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0
S S
1 2
S S
1 2
sid sname rating age
22 dustin 7 45.0
S S
1 2
10. 1
Cross-Product
Each row of S1 is paired with each row of R1.
Result schema has one field per field of S1 and R1,
with field names `inherited’ if possible.
– Conflict: Both S1 and R1 have a field called sid.
( ( , ), )
C sid sid S R
1 1 5 2 1 1
(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96
Renaming operator:
11. 1
Joins
Condition Join: R C S = C (R S)
S1 S1.sid < R1.sid R1
Result schema same as that of cross-product.
Fewer tuples than cross-product, might be able to compute
more efficiently
Sometimes called a theta-join.
(sid) sname rating age (sid) bid day
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96
12. 1
Joins
Equi-Join: A special case of condition join where
the condition c contains only equalities and ^.
S1 sid R1
Result schema similar to cross-product, but only
one copy of fields for which equality is specified.
Natural Join: Equijoin on all common fields.
sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96
14. 1
Find names of sailors who’ve reserved a red boat
Information about boat color only available in
Boats; so need an extra join:
sname color red
Boats serves Sailors
((
' '
) Re )
A more efficient solution:
sname sid bid color red
Boats s Sailors
( ((
' '
) Re ) )
A query optimizer can find this given the first solution!
15. 1
Find sailors who’ve reserved a red or a green boat
Can identify all red or green boats, then find
sailors who’ve reserved one of these boats:
( ,(
' ' ' '
))
Tempboats
color red color green
Boats
sname Tempboats serves Sailors
( Re )
Can also define Tempboats using union! (How?)
What happens if is replaced by in this query?
16. 1
Find sailors who’ve reserved a red and a green boat
Previous approach won’t work! Must identify
sailors who’ve reserved red boats, sailors
who’ve reserved green boats, then find the
intersection (note that sid is a key for Sailors):
( , ((
' '
) Re ))
Tempred
sid color red
Boats serves
sname Tempred Tempgreen Sailors
(( ) )
( , ((
' '
) Re ))
Tempgreen
sid color green
Boats serves
18. 1
Relational Calculus
Comes in two flavors: Tuple relational calculus (TRC)
and Domain relational calculus (DRC).
Calculus has variables, constants, comparison ops, logical
connectives, and quantifiers.
– TRC: Variables range over (i.e., get bound to) tuples.
– DRC: Variables range over domain elements (= field values).
– Both TRC and DRC are simple subsets of first-order logic.
Expressions in the calculus are called formulas. An
answer tuple is essentially an assignment of constants
to variables that make the formula evaluate to true.
19. 1
Tuple Relational Calculus
Query has the form: { T | p(T)}
Answer includes all tuples T that
make the formula p(T) be true.
Formula is recursively defined, starting with
simple atomic formulas (getting tuples from
relations or making comparisons of values),
and building bigger and better formulas using
the logical connectives.
20. 2
TRC Formulas
Atomic formula:
– R Rel, or R.a op S.b, or R.a op constant
– op is one of
Formula:
– an atomic formula, or
– , where p and q are formulas, or
– , where variable X is free in p(X), or
– , where variable X is free in p(X)
, , , , ,
p p q p q
, ,
X p X
( ( ))
X p X
( ( ))
21. 2
Free and Bound Variables
The use of quantifiers X and X in a
formula is said to bind X.
– A variable that is not bound is free.
Let us revisit the definition of a query: {T|p(T)}
There is an important restriction: the variable
T that appears to the left of `|’ must be the only
free variable in the formula p(...).
22. 2
Find all sailors with a rating above 7
{S | S Sailors ^ S.rating > 7}
Query is evaluated on an instance of Sailors
Tuple variable S is instantiated to each tuple of this
instance in turn, and the condition “S.rating > 7” is
applied to each such tuple.
Answer contains all instances of S (which are tuples
of Sailors) satisfying the condition.
23. 2
Find sailors rated > 7 who’ve reserved boat #103
{S | (S Sailors) ^ (S.rating > 7) ^ ( R
Reserves (R.sid = S.sid ^ R.bid = 103))}
Note the use of to find a tuple in Reserves
that `joins with’ the Sailors tuple under
consideration.
R is bound, S is not
24. 2
Unsafe Queries, Expressive Power
It is possible to write syntactically correct calculus
queries that have an infinite number of answers!
Such queries are called unsafe.
– e.g.,
It is known that every query that can be expressed in
relational algebra can be expressed as a safe query in
DRC / TRC; the converse is also true.
Relational Completeness: Query language (e.g., SQL)
can express every query that is expressible in
relational algebra/calculus.
S S Sailors
|
25. 2
Summary
The relational model has rigorously defined query
languages that are simple and powerful.
Relational algebra is more operational; useful as
internal representation for query evaluation plans.
Relational calculus is non-operational, and users
define queries in terms of what they want, not in
terms of how to compute it. (Declarativeness.)
Several ways of expressing a given query; a query
optimizer should choose the most efficient version.
Algebra and safe calculus have same expressive power,
leading to the notion of relational completeness.
26. 2
Nested Relations
Attributes can be scalar (as before) or relation-
valued
Definition is recursive
Example:
create table Book (title: string,
author:string, copies: (publ: string,
pages: integer, date: integer))
“copies” is a relation-valued field
27. 2
Nested Relational Algebra
A spectrum of algebras can be defined
At one end:
– Relational algebra plus nest () and unnest ():
If B =
title author copies
Moby Dick Melville
Marmion Scott { }
publ pages date
Prentice Hall
McGraw Hill
613 1971
542 1942
28. 2
Nesting and Unnesting
… then (B, copies) =
title author publ pages date
Moby Dick Melville
Moby Dick Melville
Marmion Scott
Prentice Hall
McGraw Hill
613 1971
542 1942
null null null
Nulls must be supported in algebra
( (B, copies), copies (publ, pages, date)) = B
, inverses iff S N
– S is set of scalar fields
– N is set of non-scalar fields
– This is called PNF (partitioned normal form)
29. 2
Extending Relational Operators
At other end of spectrum:
– Selection allows set comparators and constants and use of select, project
inside the formula
– Projection allows arbitrary NF2 algebra expression in addition to simple field
names
– Union, difference: recursive definitions
– Cross product: usually just relational.
Example: retrieve title, number of pages of all books by Melville:
[title, [pages](copies)]([author=‘Melville’](B))
30. 3
Nested Relations Summary
An early step on the way to OODBMS
No products, only prototypes, but:
– Many ideas from NF2 relations have survived
– Collection types in SQL3 (nesting, unnesting)
– Algebra ideas useful for Object Database QP
Can provide a more natural model of data
Are a straightforward extension of relations:
– many solutions are thus also straightforward
– formal foundation of relational model remains
Editor's Notes
#1:The slides for this text are organized into several modules. Each lecture contains about enough material for a 1.25 hour class period. (The time estimate is very approximate--it will vary with the instructor, and lectures also differ in length; so use this as a rough guideline.) This covers Lecture 2 (of 6) in Module (3).
Module (1): Introduction (DBMS, Relational Model)
Module (2): Storage and File Organizations (Disks, Buffering, Indexes)
Module (3): Database Concepts (Relational Queries, DDL/ICs, Views and Security)
Module (4): Relational Implementation (Query Evaluation, Optimization)
Module (5): Database Design (ER Model, Normalization, Physical Design, Tuning)
Module (6): Transaction Processing (Concurrency Control, Recovery)
Module (7): Advanced Topics