This document discusses building resilient predictive data pipelines. It begins by distinguishing between ETL and predictive data pipelines, noting that predictive pipelines require high availability with downtimes of less than an hour. The document then outlines design goals for resilient data pipelines, including being scalable, available, instrumented/monitored/alert-enabled, and quickly recoverable. It proposes using AWS services like SQS, SNS, S3, and Auto Scaling Groups to build such pipelines. The document also recommends using Apache Airflow for workflow automation and scheduling to reliably manage pipelines as directed acyclic graphs. It presents an architecture using these techniques and assesses how well it meets the outlined design goals.
Related topics: