SlideShare a Scribd company logo
2
Most read
4
Most read
7
Most read
Road Object Detection in Bangladesh using
Faster RCNN: A Deep learning Approach
Anik Datta, Tamara Islam Meghla, Tania Khatun, Mehedi Hasan
Bhuiya, Shakilur Rahman Shuvo and Md. Mahfujur Rahman
PAPER ID
282
WIECON-ECE 2020
2020 IEEE International Woman in Engineering (WIE)
Conference on Electrical & Computer Engineering
wiecon-ece.org
Outline
• Introduction
• Motivation
• Methodology
• Result and Discussion
• Conclusion
ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH • 2
WIECON-ECE 2020
2020 IEEE International Woman in Engineering (WIE)
Conference on Electrical & Computer Engineering
wiecon-ece.org
Introduction
• Object detection is a combination of computer vision and image
processing technology that can detect similar objects of a certain
class from images and videos.
• The role of object detection is very important for autonomous car,
intelligent driving assistance and advanced traffic analysis
nowadays.
•In the case of traffic analysis and intelligent driving assistance in
Bangladesh, it is very important to properly identify all the objects
from real time video.
•Our main objective is to accurately identify every object on the road
such as pedestrians, vehicles, traffic lights and traffic signs in a
populous country like Bangladesh and use them to better analyse
the traffic situation or use this information in automated driving.
3ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
WIECON-ECE 2020
2020 IEEE International Woman in Engineering (WIE)
Conference on Electrical & Computer Engineering
wiecon-ece.org
Motivation
• Road accident in Bangladesh has become an important issue.
•There has been an alarming rise in road accidents,
significantly highway accidents, in Bangladesh over the past
few years.
•Road accidents are mainly occurred for drivers carelessness
and violating traffic laws.
•To solve such problems we have done this research to save
some lives from accidents and to extract important traffic
information so that the traffic system can be further improved in
the future.
4ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
WIECON-ECE 2020
2020 IEEE International Woman in Engineering (WIE)
Conference on Electrical & Computer Engineering
wiecon-ece.org
Methodology
The reason why did we choose to use Faster R-CNN
Faster R-CNN is one of the most popular object detection
algorithm. We chose Faster R-CNN for object detection
because it is faster and it fixed the problem using Region
Proposals Network(RPN).Test time speed of Faster R-CNN for
per image 0.2 seconds.
Although YOLO is faster than Faster r-cnn. YOLO has some
drawbacks in object detection. It is difficult for YOLO in
detecting objects that are small and close to each other. Even
if the aspect ratio of the image changes, YOLO faces difficulty
in object detection.
5ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
WIECON-ECE 2020
2020 IEEE International Woman in Engineering (WIE)
Conference on Electrical & Computer Engineering
wiecon-ece.org
Methodology
Data Accumulation
We collect our findable image by clicking photographs and also
collect images for our dataset from google. After collecting the
images after that we label the desired objects in every image.
Faster RCNN
We use Faster R-CNN architecture for object detection. It is a
modified version of Fast R-CNN. At first Faster R-CNN extracts the
input image using convolution neural networks and passes those
maps through the region proposal network(RPN). Faster R-CNN
uses convolution neural network. It is very effective in image
recognition and classification. It can successfully identifying face,
object and traffic sign.
6ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
WIECON-ECE 2020
2020 IEEE International Woman in Engineering (WIE)
Conference on Electrical & Computer Engineering
wiecon-ece.org
Methodology
7
Fig. 1: Working procedure of RPN Fig. 2: Object detection with Faster R-CNN
ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
WIECON-ECE 2020
2020 IEEE International Woman in Engineering (WIE)
Conference on Electrical & Computer Engineering
wiecon-ece.org
Methodology
Training and Prediction
We have trained our Neural Network
through TensorFlow api by Faster R-CNN
in 19 object classes.
We used inception v2 coco architecture
utilize due to high accuracy among
convolution neural networks. That
inception v2 has the best learning rate for
faster RCNN.
Our neural network has completed
80,651 global steps during training and
has a loss value of 0.0122.
We have enlisted the help of Google
colab to complete the above process.
8ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
WIECON-ECE 2020
2020 IEEE International Woman in Engineering (WIE)
Conference on Electrical & Computer Engineering
wiecon-ece.org
Result and Discussion
Performance Analysis
We took a huge number of instances
from the data set to train and
observed them with precise needs.
For testing purposes, we select 199
instances with same label and
125images as different label.
After that, the prediction accuracy
jumped up to 86.42%.
9ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
WIECON-ECE 2020
2020 IEEE International Woman in Engineering (WIE)
Conference on Electrical & Computer Engineering
wiecon-ece.org
Result and Discussion
Real-time detection result
• We noticed some promising things while checking our results like we
were able to detect objects with almost equal efficiency in day and night
or in low light.
10
Fig. 3: Detection in day(Bright light) and night(low light)
ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
WIECON-ECE 2020
2020 IEEE International Woman in Engineering (WIE)
Conference on Electrical & Computer Engineering
wiecon-ece.org
Result and Discussion
• Our neural network has been able to detect objects efficiently
with moderate and low traffic on the road. And succeeds in
detecting all types of small-to-large-medium objects in all
situation.
11
Fig. 4: Detection in medium and low traffic
ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
WIECON-ECE 2020
2020 IEEE International Woman in Engineering (WIE)
Conference on Electrical & Computer Engineering
wiecon-ece.org
Result and Discussion
• Our purposed neural network can detect and analyze objects
well even when the objects are very close to each other and
even during high traffic on the road.
12
Fig. 5: Detection in high traffic
ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
WIECON-ECE 2020
2020 IEEE International Woman in Engineering (WIE)
Conference on Electrical & Computer Engineering
wiecon-ece.org
Result and Discussion
• But it only gets into trouble when the objects are too close
together and cling to each other in a crowded state.
•When detecting objects on high traffic or in close proximity to
the road, objects in the front make it difficult to detect the
objects behind because the objects in the front cover the
objects behind and therefore our proposed neural network can
only accurately detect objects in the front.
13ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
WIECON-ECE 2020
2020 IEEE International Woman in Engineering (WIE)
Conference on Electrical & Computer Engineering
wiecon-ece.org
Conclusion
• In this paper our proposed solution is able to analyse in different
situations like night, daylight or high traffic, medium traffic, low
traffic fairly efficiently.
• And our proposed solution is able to track multiple objects which
is possible due to its huge object class.
• When we test through this data set, some objects are mistakenly
detected and many times some objects are not detected.
• The reasons we have investigated are that if it is processed on a
low powered machine without a GPU, there is a possibility of
incorrect detection and another reason is that the images we
used to create the data set have different traffic situations.
• It could be further improved in the future to be used more
efficiently in real-time traffic analysis.
14ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
WIECON-ECE 2020
2020 IEEE International Woman in Engineering (WIE)
Conference on Electrical & Computer Engineering
wiecon-ece.org
Thanks
15ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH

More Related Content

PPTX
Vehicle Number Plate Recognition System
PPTX
Real Time Object Tracking
PPTX
Computer Vision
PDF
Parking Management System
PPTX
Sobel Edge Detection Using FPGA
PDF
Deep sort and sort paper introduce presentation
PPTX
Real time image processing ppt
Vehicle Number Plate Recognition System
Real Time Object Tracking
Computer Vision
Parking Management System
Sobel Edge Detection Using FPGA
Deep sort and sort paper introduce presentation
Real time image processing ppt

What's hot (20)

PPTX
Vehicle to vehicle communication
PPTX
Automatic number-plate-recognition
PPTX
project ppt.pptx
PPTX
Driver Drowsiness Detection Review
PPTX
Autonomous car
PPT
Face recognition ppt
PPTX
Object detection presentation
PPTX
Detection of retinal blood vessel
PPSX
Face recognition technology - BEST PPT
PDF
Object Detection and Ship Classification Using YOLOv5
PDF
Vehicle accident detection system (VAD)
PPTX
Object detection
PDF
camera-based Lane detection by deep learning
PPT
Video object tracking with classification and recognition of objects
PPTX
Intelligent Traffic monitoring System
PPTX
IoT in Health Care
PDF
FYP PRESENTATION - IOT GARBAGE MONITORING SYSTEM
PPTX
speed detection camera
PPTX
Automotive Telematics
PPTX
Image Recognition Using CIFAR 10
Vehicle to vehicle communication
Automatic number-plate-recognition
project ppt.pptx
Driver Drowsiness Detection Review
Autonomous car
Face recognition ppt
Object detection presentation
Detection of retinal blood vessel
Face recognition technology - BEST PPT
Object Detection and Ship Classification Using YOLOv5
Vehicle accident detection system (VAD)
Object detection
camera-based Lane detection by deep learning
Video object tracking with classification and recognition of objects
Intelligent Traffic monitoring System
IoT in Health Care
FYP PRESENTATION - IOT GARBAGE MONITORING SYSTEM
speed detection camera
Automotive Telematics
Image Recognition Using CIFAR 10
Ad

Similar to Road Object Detection (20)

PDF
A REVIEW ON IMPROVING TRAFFIC-SIGN DETECTION USING YOLO ALGORITHM FOR OBJECT ...
PDF
Object Detetcion using SSD-MobileNet
PDF
Sanjaya: A Blind Assistance System
PPTX
HOW TO WASTE YOUR TIME ON SIMPLE THINGS DONT JUST FEEL INSTEAD BLAME OTHERS A...
PPTX
Major PRC-1 ppt.pptx
PDF
DSNet Joint Semantic Learning for Object Detection in Inclement Weather Condi...
PDF
Vision-Based Motorcycle Crash Detection and Reporting Using Deep Learning
PDF
Deep-learning based single object tracker for night surveillance
PDF
Real Time Object Detection System with YOLO and CNN Models: A Review
PDF
ROAD POTHOLE DETECTION USING YOLOV4 DARKNET
PDF
information-11-00583-v3.pdf
PDF
INDOOR AND OUTDOOR NAVIGATION ASSISTANCE SYSTEM FOR VISUALLY IMPAIRED PEOPLE ...
PDF
Object Detection for Autonomous Cars using AI/ML
PPTX
ObjectDetection.pptx
PDF
Automatism System Using Faster R-CNN and SVM
PPTX
A Deep Learning algorithm for automatic detection of unexpected accidents und...
PDF
Electronic Circuit Assessment using Machine Learning (ML)
PDF
IRJET- Application of MCNN in Object Detection
PDF
IRJET- A Review Analysis to Detect an Object in Video Surveillance System
PDF
A SURVEY ON KIDNEY STONE DETECTION USING IMAGE PROCESSING AND DEEP LEARNING
A REVIEW ON IMPROVING TRAFFIC-SIGN DETECTION USING YOLO ALGORITHM FOR OBJECT ...
Object Detetcion using SSD-MobileNet
Sanjaya: A Blind Assistance System
HOW TO WASTE YOUR TIME ON SIMPLE THINGS DONT JUST FEEL INSTEAD BLAME OTHERS A...
Major PRC-1 ppt.pptx
DSNet Joint Semantic Learning for Object Detection in Inclement Weather Condi...
Vision-Based Motorcycle Crash Detection and Reporting Using Deep Learning
Deep-learning based single object tracker for night surveillance
Real Time Object Detection System with YOLO and CNN Models: A Review
ROAD POTHOLE DETECTION USING YOLOV4 DARKNET
information-11-00583-v3.pdf
INDOOR AND OUTDOOR NAVIGATION ASSISTANCE SYSTEM FOR VISUALLY IMPAIRED PEOPLE ...
Object Detection for Autonomous Cars using AI/ML
ObjectDetection.pptx
Automatism System Using Faster R-CNN and SVM
A Deep Learning algorithm for automatic detection of unexpected accidents und...
Electronic Circuit Assessment using Machine Learning (ML)
IRJET- Application of MCNN in Object Detection
IRJET- A Review Analysis to Detect an Object in Video Surveillance System
A SURVEY ON KIDNEY STONE DETECTION USING IMAGE PROCESSING AND DEEP LEARNING
Ad

More from Md. Mahfujur Rahman (13)

PPTX
Impact Prediction of Online Education during COVID-19 using Machine Learning_...
PPTX
HealthBlock: A Secured Healthcare Data using Blockchain
PPTX
Implementation of Automated Attendance System using Deep Learning
PPTX
Seminar on development based project
PPT
DIUcerts DApp: A Blockchain-Based Solution for Verification of Educational Ce...
PPTX
Supply Chain management with Demand Forecasting of Covid-19 Vaccine using Blo...
PPT
Blockchain based certificate verification
PPTX
Development Based Project- Step by Step Development Procedure
PPTX
Research Agility spring 2021
PPTX
ICT uses in Education
PPTX
Road to machine learning
PPTX
IoT for Digital Bangladesh
PPTX
Cascade Classification of Face Liveliness Detection using HeartBeat Measurement
Impact Prediction of Online Education during COVID-19 using Machine Learning_...
HealthBlock: A Secured Healthcare Data using Blockchain
Implementation of Automated Attendance System using Deep Learning
Seminar on development based project
DIUcerts DApp: A Blockchain-Based Solution for Verification of Educational Ce...
Supply Chain management with Demand Forecasting of Covid-19 Vaccine using Blo...
Blockchain based certificate verification
Development Based Project- Step by Step Development Procedure
Research Agility spring 2021
ICT uses in Education
Road to machine learning
IoT for Digital Bangladesh
Cascade Classification of Face Liveliness Detection using HeartBeat Measurement

Recently uploaded (20)

PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PDF
annual-report-2024-2025 original latest.
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PPTX
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PPTX
Business Ppt On Nestle.pptx huunnnhhgfvu
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PPT
ISS -ESG Data flows What is ESG and HowHow
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PDF
Business Analytics and business intelligence.pdf
PDF
Foundation of Data Science unit number two notes
PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PPTX
Introduction to machine learning and Linear Models
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PDF
.pdf is not working space design for the following data for the following dat...
PPTX
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
annual-report-2024-2025 original latest.
Galatica Smart Energy Infrastructure Startup Pitch Deck
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
Business Ppt On Nestle.pptx huunnnhhgfvu
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
ISS -ESG Data flows What is ESG and HowHow
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
Business Analytics and business intelligence.pdf
Foundation of Data Science unit number two notes
Acceptance and paychological effects of mandatory extra coach I classes.pptx
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
STUDY DESIGN details- Lt Col Maksud (21).pptx
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
Introduction to machine learning and Linear Models
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
.pdf is not working space design for the following data for the following dat...
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg

Road Object Detection

  • 1. Road Object Detection in Bangladesh using Faster RCNN: A Deep learning Approach Anik Datta, Tamara Islam Meghla, Tania Khatun, Mehedi Hasan Bhuiya, Shakilur Rahman Shuvo and Md. Mahfujur Rahman PAPER ID 282
  • 2. WIECON-ECE 2020 2020 IEEE International Woman in Engineering (WIE) Conference on Electrical & Computer Engineering wiecon-ece.org Outline • Introduction • Motivation • Methodology • Result and Discussion • Conclusion ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH • 2
  • 3. WIECON-ECE 2020 2020 IEEE International Woman in Engineering (WIE) Conference on Electrical & Computer Engineering wiecon-ece.org Introduction • Object detection is a combination of computer vision and image processing technology that can detect similar objects of a certain class from images and videos. • The role of object detection is very important for autonomous car, intelligent driving assistance and advanced traffic analysis nowadays. •In the case of traffic analysis and intelligent driving assistance in Bangladesh, it is very important to properly identify all the objects from real time video. •Our main objective is to accurately identify every object on the road such as pedestrians, vehicles, traffic lights and traffic signs in a populous country like Bangladesh and use them to better analyse the traffic situation or use this information in automated driving. 3ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
  • 4. WIECON-ECE 2020 2020 IEEE International Woman in Engineering (WIE) Conference on Electrical & Computer Engineering wiecon-ece.org Motivation • Road accident in Bangladesh has become an important issue. •There has been an alarming rise in road accidents, significantly highway accidents, in Bangladesh over the past few years. •Road accidents are mainly occurred for drivers carelessness and violating traffic laws. •To solve such problems we have done this research to save some lives from accidents and to extract important traffic information so that the traffic system can be further improved in the future. 4ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
  • 5. WIECON-ECE 2020 2020 IEEE International Woman in Engineering (WIE) Conference on Electrical & Computer Engineering wiecon-ece.org Methodology The reason why did we choose to use Faster R-CNN Faster R-CNN is one of the most popular object detection algorithm. We chose Faster R-CNN for object detection because it is faster and it fixed the problem using Region Proposals Network(RPN).Test time speed of Faster R-CNN for per image 0.2 seconds. Although YOLO is faster than Faster r-cnn. YOLO has some drawbacks in object detection. It is difficult for YOLO in detecting objects that are small and close to each other. Even if the aspect ratio of the image changes, YOLO faces difficulty in object detection. 5ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
  • 6. WIECON-ECE 2020 2020 IEEE International Woman in Engineering (WIE) Conference on Electrical & Computer Engineering wiecon-ece.org Methodology Data Accumulation We collect our findable image by clicking photographs and also collect images for our dataset from google. After collecting the images after that we label the desired objects in every image. Faster RCNN We use Faster R-CNN architecture for object detection. It is a modified version of Fast R-CNN. At first Faster R-CNN extracts the input image using convolution neural networks and passes those maps through the region proposal network(RPN). Faster R-CNN uses convolution neural network. It is very effective in image recognition and classification. It can successfully identifying face, object and traffic sign. 6ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
  • 7. WIECON-ECE 2020 2020 IEEE International Woman in Engineering (WIE) Conference on Electrical & Computer Engineering wiecon-ece.org Methodology 7 Fig. 1: Working procedure of RPN Fig. 2: Object detection with Faster R-CNN ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
  • 8. WIECON-ECE 2020 2020 IEEE International Woman in Engineering (WIE) Conference on Electrical & Computer Engineering wiecon-ece.org Methodology Training and Prediction We have trained our Neural Network through TensorFlow api by Faster R-CNN in 19 object classes. We used inception v2 coco architecture utilize due to high accuracy among convolution neural networks. That inception v2 has the best learning rate for faster RCNN. Our neural network has completed 80,651 global steps during training and has a loss value of 0.0122. We have enlisted the help of Google colab to complete the above process. 8ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
  • 9. WIECON-ECE 2020 2020 IEEE International Woman in Engineering (WIE) Conference on Electrical & Computer Engineering wiecon-ece.org Result and Discussion Performance Analysis We took a huge number of instances from the data set to train and observed them with precise needs. For testing purposes, we select 199 instances with same label and 125images as different label. After that, the prediction accuracy jumped up to 86.42%. 9ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
  • 10. WIECON-ECE 2020 2020 IEEE International Woman in Engineering (WIE) Conference on Electrical & Computer Engineering wiecon-ece.org Result and Discussion Real-time detection result • We noticed some promising things while checking our results like we were able to detect objects with almost equal efficiency in day and night or in low light. 10 Fig. 3: Detection in day(Bright light) and night(low light) ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
  • 11. WIECON-ECE 2020 2020 IEEE International Woman in Engineering (WIE) Conference on Electrical & Computer Engineering wiecon-ece.org Result and Discussion • Our neural network has been able to detect objects efficiently with moderate and low traffic on the road. And succeeds in detecting all types of small-to-large-medium objects in all situation. 11 Fig. 4: Detection in medium and low traffic ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
  • 12. WIECON-ECE 2020 2020 IEEE International Woman in Engineering (WIE) Conference on Electrical & Computer Engineering wiecon-ece.org Result and Discussion • Our purposed neural network can detect and analyze objects well even when the objects are very close to each other and even during high traffic on the road. 12 Fig. 5: Detection in high traffic ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
  • 13. WIECON-ECE 2020 2020 IEEE International Woman in Engineering (WIE) Conference on Electrical & Computer Engineering wiecon-ece.org Result and Discussion • But it only gets into trouble when the objects are too close together and cling to each other in a crowded state. •When detecting objects on high traffic or in close proximity to the road, objects in the front make it difficult to detect the objects behind because the objects in the front cover the objects behind and therefore our proposed neural network can only accurately detect objects in the front. 13ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
  • 14. WIECON-ECE 2020 2020 IEEE International Woman in Engineering (WIE) Conference on Electrical & Computer Engineering wiecon-ece.org Conclusion • In this paper our proposed solution is able to analyse in different situations like night, daylight or high traffic, medium traffic, low traffic fairly efficiently. • And our proposed solution is able to track multiple objects which is possible due to its huge object class. • When we test through this data set, some objects are mistakenly detected and many times some objects are not detected. • The reasons we have investigated are that if it is processed on a low powered machine without a GPU, there is a possibility of incorrect detection and another reason is that the images we used to create the data set have different traffic situations. • It could be further improved in the future to be used more efficiently in real-time traffic analysis. 14ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH
  • 15. WIECON-ECE 2020 2020 IEEE International Woman in Engineering (WIE) Conference on Electrical & Computer Engineering wiecon-ece.org Thanks 15ANIK DATTA, ROAD OBJECT DETECTION IN BANGLADESH USING FASTER RCNN: A DEEP LEARNING APPROACH