SlideShare a Scribd company logo
Robust Adaptive Integral Backstepping
  Control and its Implementation on
       Motion Control System

                      Presented By
                  Shubhobrata Rudra
                   Assistant Professor
         Department of Electrical Engineering
  Calcutta Institute of Engineering and Management
Content

 State Model of the Motion Control System

 Control Objective

 Integral Backstepping Control Design

 Adaptation Scheme

 Robustification of the Adaptive Design

 Simulation Results and Discussion

 Conclusion
State Model of the Motion Control System

 Differential Equations of the Motion Control System

                             dθ
                                =ω
                             dt
                             dω
                         J      = Tq − TL
                             dt

 State model: state variables z1 = θ and z 2 = θ
                                 z1 = z 2
                                 
                               J ( z 2 + h ) = Tq
                                   
                                                          TL
                                                     h=
                                                           J
State Model of the Motion Control System




  Tq                   1            ω       θ
         +
             -         J        ∫       ∫

             TL
                  State Model
Objective of the Control Design:


i) The primary objective of the motion control system
   is to track a continuous bounded reference signal θref.


ii) Design a suitable parameter adaptation algorithm to
    estimate the variation of Inertia and Load Toque.

iii)Explore the concept of continuous switching function to
    design a robust adaptive law for parameter adaptation.
Integral Backstepping Control Design.

 Equation of Control Input :
                                  Tq = J ( z 2 + h)
                                           

 Definition of 1st error variable:
                                      e1 = θ - θ ref           ω is acting as a virtual
                                                                control input for the
 Modified Stabilizing Function
  Stabilizing Function:                                            first integrator
                              z refz ref c1 c1e1 + θref + λ 1 χ 1
                                      = = e + θ ref
                                                                                t
 Choice of 2nd error variable:
                                                                         χ 1 = ∫ e1 ( t ) dt
                                   e 2 = z ref - z 2
                                                                                0


 Control Lyapunov Function:
                                      1      2  1 2 1 2
                              V2 =      λ1 χ 1 + e1 + e2
                                      2         2    2
Contd.

 Derivative of the error variable e2:

                             de2                                            T
                                                             + λ χ − q + h
                                 = z ref − z 2 = c1e1 + θ ref
                                                                 1 1
                              dt                                             J

                               (
                             = c1 ( − c1e1 + e2 − λ 1 χ 1 ) + θ ref )
                                                               + λ e − q + h
                                                                        1 1
                                                                               T
                                                                                J

 Derivative of Lyapunov Function:
   = λ χ χ + e e + e e = λ χ e + e ( − c e + e − λ χ ) + e  c ( − c e + e − λ χ ) + θ + λ e − q + h
                                                               (                          )          T
 V2 1 1 1 1          1 2 2 1 1 1 1 1 1 2 1 1 2  1 1 1 2 1 1                            ref    1 1     
                                                                                                     J  
           2       2
                       (  
                          
                                 2
                                   )                                        + h − q 
    = − c1e1 − c2 e2 + e2  1 − c1 + λ 1 e1 + ( c1 + c2 ) e2 − c1λ 1 χ 1 + θ ref
                                                                                   T
                                                                                    J
                                                                                      
                                                                                              Incomplete
                                                                                                Design
                                                                                     

 Control Input:
                      ˆ      2
                              ((             )
                 Tq = J 1 − c1 + λ 1 e1 + ( c1 + c2 ) e2 − c1λ 1 χ 1 + θref + h
                                                                              ˆ         )
Adaptation Scheme

                                            2    2   1 2       1      1        1          1
     Augmented Lyapunov Function:Va = λ1 χ 1 + e1 + e 2 +        J2 +      h2
                                      2        2    2      2γ 1 J      2γ 2



     Derivative of the Lyapunov function:

                                                                                    ˆ
  = -c e 2 - c e 2 + J { e (( 1 − c 2 + λ )e − c λ χ + ( c + c )e + θ + h ) - 1 dJ } + h ( e - 1 dh )
Va                                                                        ˆ
       1 1     2 2         2        1     1 1    1 1 1     1   2 2     ref                    2
                      J                                                        γ 1 dt           γ 2 dt


     Parameter Update Law:

              ˆ
             dJ                 2                                           ˆ
                = γ 1e2 (( 1 − c1 + λ1 )e1 − c1λ1 χ1 + ( c1 + c2 )e2 + θref + h )
             dt

                                     ˆ
                                    dh
                                       = γ 2e2
                                    dt
Robust Adaptive Backstepping


 Difficulties for the designer of Adaptive Control

    Mathematical Models are not free from Un modeled
     Dynamics

    Parameter Drift may occur in the time of real world
     implementation

    Noises are unavoidable in real time application.

    Bounded disturbances may cause a high rate of
     adaptation which leads to an unstable/undesirable
     system performance .
Contd.

  A continuous Switching function is use to implement the Robustification
                                       Different type of switching
   measures :                           techniques can be used to

J    1 2      (
ˆ = γ e ( 1 − c 2 + λ )e − c λ χ + ( c + c )Adaptiveˆ − γ σ J
               1     1  1
                                  prevent the abnormal
                            1 1 1 Robust e2 + θref + h
                                      1
                                                    
                                            2 the rate of
                                  variation of            1 Js
                                                               ˆ                    )
              
              ˆ                     ˆ
              h = γ 2 e 2 − γ 2σ sh h
                                                          Control!!!!!
                                                           adaptation



 where

                   0             ˆ
                               if J < J 0                                        ˆ
                                                                     0        if h < h0
                                                            
             J −J  ˆ                                       h−h ˆ
                        0
                                        ˆ                               0
  σ Js   = σ J 0             if J 0 ≤ J ≤ 2J 0   σ hs   = σ h0                      ˆ
                                                                               if h 0 ≤ h ≤ 2h0
                 J  ˆ                                    h      ˆ 
                                                                       
            σ J0                  ˆ
                                if J ≥ 2J 0                        σ h0           ˆ
                                                                                if h ≥ 2h0
                                                           
Simulation Results and Discussion
   Reference Trajectory and Response of the System




                                       t        t 
Reference Signal   θ ref   = 10 sin( pi ) sin pi 
                                       2      50 
Simulation Results and Discussion

                   Estimation of Inertia Variation




Robust Adaptive Integral Backstepping   Adaptive Integral Backstepping
          Control Scheme                       Control Scheme
Simulation Results and Discussion

              Estimation of Load Torque Variation




Robust Adaptive Integral Backstepping   Adaptive Integral Backstepping
          Control Scheme                       Control Scheme
Conclusion

 The system response always closely follows the given
  reference signal, while the maximum tracking error is less
  than 0.1rad.

 Robust Adaptive Controller reduce the parameter
  estimation error.

 This robust adaptive controller offers a smart estimation of
  the parameters variation. Sudden variations in parameter is
  not able to affect the estimation of the other parameter.
Questions




Polygonia interrogationis known as Question Mark
References

 Y.Tan, J. Hu, J.Chang, H. Tan,”Adaptive Integral Backstepping
  Motion Control and Experiment Implementation”, IEEE
  Conference on Industry Applications, pp 1081-1088, vol-2,
  2000.
 M. Krstic, I. Kanellakopoulos, and P.V. Kokotovic, Nonlinear
  and Adaptive Control Design, New York : Wiley Interscience,
  1995.
 J. Jhou and C. Wen, Adaptive Backstepping Control of
  Uncertain System, Springer-verlag, Berlin, Heidelbarg 2008.
References

 H.Tan and J. Chang, “Adaptive Position Control of Induction
  Motor Systems under Mechanical Uncertainties”,
  Proceedings of the IEEE 1999 International Conference on
  Power Electronics and Drive Systems, pp 597-602 Hong
  Kong, July 1999.
 Y.Tan, J.Chang and H.Tan,” Adaptive backstepping control
  and friction compensation for AC servo with inertia and load
  uncertainties,” IEEE Transaction on Industrial Electronics,
  vol-50, pp944-952, 2003.
 Ioannou PA and Sun J, Robust Adaptive Control. Prentice
  Hall, Englewood Cliff, 1996.
Robust adaptive integral backstepping control and its implementation on
Robust adaptive integral backstepping control and its implementation on
List of Design Parameters

Name of the Parameters       Parameters Value
          C1                        4
          C2                        4
          Λ1                       1.25
          γ1                        6
          γ2                        6
          J0                       0.9
          h0                       0.25

More Related Content

PPSX
Pole placement by er. sanyam s. saini (me reg)
DOCX
Logics of the laplace transform
PPTX
Pole Placement in Digital Control
PDF
Case Study (All)
PDF
TR tabling presentation_2010_09
PDF
PPT
Digital fiiter
Pole placement by er. sanyam s. saini (me reg)
Logics of the laplace transform
Pole Placement in Digital Control
Case Study (All)
TR tabling presentation_2010_09
Digital fiiter

What's hot (18)

PDF
Computation of the marginal likelihood
PPT
"Modern Tracking" Short Course Taught at University of Hawaii
PDF
Cheat Sheet
PDF
Table 7a,7b kft 131
PDF
State Space Model
PPTX
Classification of systems : Part 2
PDF
Paris2012 session2
PPTX
Classification of Systems: Part 1
PDF
Financial mgt
PDF
Dsp U Lec07 Realization Of Discrete Time Systems
PDF
PDF
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...
PDF
Signals and Systems Formula Sheet
PDF
Asymptotic Notation
PDF
Paris2012 session1
PDF
Signal fundamentals
PDF
Kinematika rotasi
PPTX
Steveliz
Computation of the marginal likelihood
"Modern Tracking" Short Course Taught at University of Hawaii
Cheat Sheet
Table 7a,7b kft 131
State Space Model
Classification of systems : Part 2
Paris2012 session2
Classification of Systems: Part 1
Financial mgt
Dsp U Lec07 Realization Of Discrete Time Systems
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...
Signals and Systems Formula Sheet
Asymptotic Notation
Paris2012 session1
Signal fundamentals
Kinematika rotasi
Steveliz
Ad

Similar to Robust adaptive integral backstepping control and its implementation on (20)

PPTX
Stabilization of Furuta Pendulum: A Backstepping Based Hierarchical Sliding M...
PPTX
Stabilization of TORA System: A Backstepping Based Hierarchical Sliding Mode ...
PDF
PDF
Robust model reference adaptive control for a second order system 2
PDF
Robust model reference adaptive control for a second order system 2
PDF
Control Techniques for Complex Systems
PDF
Optimal control of coupled PDE networks with automated code generation
PDF
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
PDF
www.ijerd.com
PDF
Adaptive dynamic programming for control
PDF
Performance analysis of a second order system using mrac
PDF
Performance analysis of a second order system using mrac
PDF
How to design a linear control system
PDF
Introduction to inverse problems
PDF
Linear and discrete systems analysis Jntu Model Paper{Www.Studentyogi.Com}
PDF
Sbe final exam jan17 - solved-converted
PDF
Answers to Problems for Digital Control System Analysis & Design 4th Edition ...
PDF
Biomathematics
PPSX
Backstepping control of cart pole system
PDF
Design of a novel controller to increase the frequency response of an aerospace
Stabilization of Furuta Pendulum: A Backstepping Based Hierarchical Sliding M...
Stabilization of TORA System: A Backstepping Based Hierarchical Sliding Mode ...
Robust model reference adaptive control for a second order system 2
Robust model reference adaptive control for a second order system 2
Control Techniques for Complex Systems
Optimal control of coupled PDE networks with automated code generation
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
www.ijerd.com
Adaptive dynamic programming for control
Performance analysis of a second order system using mrac
Performance analysis of a second order system using mrac
How to design a linear control system
Introduction to inverse problems
Linear and discrete systems analysis Jntu Model Paper{Www.Studentyogi.Com}
Sbe final exam jan17 - solved-converted
Answers to Problems for Digital Control System Analysis & Design 4th Edition ...
Biomathematics
Backstepping control of cart pole system
Design of a novel controller to increase the frequency response of an aerospace
Ad

Robust adaptive integral backstepping control and its implementation on

  • 1. Robust Adaptive Integral Backstepping Control and its Implementation on Motion Control System Presented By Shubhobrata Rudra Assistant Professor Department of Electrical Engineering Calcutta Institute of Engineering and Management
  • 2. Content  State Model of the Motion Control System  Control Objective  Integral Backstepping Control Design  Adaptation Scheme  Robustification of the Adaptive Design  Simulation Results and Discussion  Conclusion
  • 3. State Model of the Motion Control System  Differential Equations of the Motion Control System dθ =ω dt dω J = Tq − TL dt  State model: state variables z1 = θ and z 2 = θ z1 = z 2  J ( z 2 + h ) = Tq  TL h= J
  • 4. State Model of the Motion Control System Tq 1 ω θ + - J ∫ ∫ TL State Model
  • 5. Objective of the Control Design: i) The primary objective of the motion control system is to track a continuous bounded reference signal θref. ii) Design a suitable parameter adaptation algorithm to estimate the variation of Inertia and Load Toque. iii)Explore the concept of continuous switching function to design a robust adaptive law for parameter adaptation.
  • 6. Integral Backstepping Control Design.  Equation of Control Input : Tq = J ( z 2 + h)   Definition of 1st error variable: e1 = θ - θ ref ω is acting as a virtual control input for the  Modified Stabilizing Function Stabilizing Function: first integrator z refz ref c1 c1e1 + θref + λ 1 χ 1 = = e + θ ref t  Choice of 2nd error variable: χ 1 = ∫ e1 ( t ) dt e 2 = z ref - z 2 0  Control Lyapunov Function: 1 2 1 2 1 2 V2 = λ1 χ 1 + e1 + e2 2 2 2
  • 7. Contd.  Derivative of the error variable e2: de2 T  + λ χ − q + h = z ref − z 2 = c1e1 + θ ref    1 1 dt J ( = c1 ( − c1e1 + e2 − λ 1 χ 1 ) + θ ref )  + λ e − q + h 1 1 T J  Derivative of Lyapunov Function:  = λ χ χ + e e + e e = λ χ e + e ( − c e + e − λ χ ) + e  c ( − c e + e − λ χ ) + θ + λ e − q + h ( ) T V2 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 2  1 1 1 2 1 1 ref 1 1   J  2 2 (   2 )  + h − q  = − c1e1 − c2 e2 + e2  1 − c1 + λ 1 e1 + ( c1 + c2 ) e2 − c1λ 1 χ 1 + θ ref T J  Incomplete Design    Control Input: ˆ 2 (( ) Tq = J 1 − c1 + λ 1 e1 + ( c1 + c2 ) e2 − c1λ 1 χ 1 + θref + h  ˆ )
  • 8. Adaptation Scheme 2 2 1 2 1 1 1 1  Augmented Lyapunov Function:Va = λ1 χ 1 + e1 + e 2 + J2 + h2 2 2 2 2γ 1 J 2γ 2  Derivative of the Lyapunov function: ˆ  = -c e 2 - c e 2 + J { e (( 1 − c 2 + λ )e − c λ χ + ( c + c )e + θ + h ) - 1 dJ } + h ( e - 1 dh ) Va  ˆ 1 1 2 2 2 1 1 1 1 1 1 1 2 2 ref 2 J γ 1 dt γ 2 dt  Parameter Update Law: ˆ dJ 2  ˆ = γ 1e2 (( 1 − c1 + λ1 )e1 − c1λ1 χ1 + ( c1 + c2 )e2 + θref + h ) dt ˆ dh = γ 2e2 dt
  • 9. Robust Adaptive Backstepping  Difficulties for the designer of Adaptive Control  Mathematical Models are not free from Un modeled Dynamics  Parameter Drift may occur in the time of real world implementation  Noises are unavoidable in real time application.  Bounded disturbances may cause a high rate of adaptation which leads to an unstable/undesirable system performance .
  • 10. Contd.  A continuous Switching function is use to implement the Robustification Different type of switching measures : techniques can be used to  J 1 2 ( ˆ = γ e ( 1 − c 2 + λ )e − c λ χ + ( c + c )Adaptiveˆ − γ σ J 1 1 1 prevent the abnormal 1 1 1 Robust e2 + θref + h 1  2 the rate of variation of 1 Js ˆ )  ˆ ˆ h = γ 2 e 2 − γ 2σ sh h Control!!!!! adaptation where  0 ˆ if J < J 0  ˆ  0 if h < h0    J −J  ˆ   h−h ˆ   0 ˆ   0 σ Js = σ J 0  if J 0 ≤ J ≤ 2J 0 σ hs = σ h0  ˆ if h 0 ≤ h ≤ 2h0    J  ˆ    h  ˆ        σ J0 ˆ if J ≥ 2J 0  σ h0 ˆ if h ≥ 2h0  
  • 11. Simulation Results and Discussion Reference Trajectory and Response of the System t  t  Reference Signal θ ref = 10 sin( pi ) sin pi  2  50 
  • 12. Simulation Results and Discussion Estimation of Inertia Variation Robust Adaptive Integral Backstepping Adaptive Integral Backstepping Control Scheme Control Scheme
  • 13. Simulation Results and Discussion Estimation of Load Torque Variation Robust Adaptive Integral Backstepping Adaptive Integral Backstepping Control Scheme Control Scheme
  • 14. Conclusion  The system response always closely follows the given reference signal, while the maximum tracking error is less than 0.1rad.  Robust Adaptive Controller reduce the parameter estimation error.  This robust adaptive controller offers a smart estimation of the parameters variation. Sudden variations in parameter is not able to affect the estimation of the other parameter.
  • 16. References  Y.Tan, J. Hu, J.Chang, H. Tan,”Adaptive Integral Backstepping Motion Control and Experiment Implementation”, IEEE Conference on Industry Applications, pp 1081-1088, vol-2, 2000.  M. Krstic, I. Kanellakopoulos, and P.V. Kokotovic, Nonlinear and Adaptive Control Design, New York : Wiley Interscience, 1995.  J. Jhou and C. Wen, Adaptive Backstepping Control of Uncertain System, Springer-verlag, Berlin, Heidelbarg 2008.
  • 17. References  H.Tan and J. Chang, “Adaptive Position Control of Induction Motor Systems under Mechanical Uncertainties”, Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems, pp 597-602 Hong Kong, July 1999.  Y.Tan, J.Chang and H.Tan,” Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties,” IEEE Transaction on Industrial Electronics, vol-50, pp944-952, 2003.  Ioannou PA and Sun J, Robust Adaptive Control. Prentice Hall, Englewood Cliff, 1996.
  • 20. List of Design Parameters Name of the Parameters Parameters Value C1 4 C2 4 Λ1 1.25 γ1 6 γ2 6 J0 0.9 h0 0.25