SlideShare a Scribd company logo
RUNNING HEADER: Analytics Ecosystem 1
Analytics Ecosystem 4
Analytics Ecosystem
Lisa Garay
Rasmussen College
Authors Note
This paper is being submitted for Anastasia Rashtchian’s B288
Business Analytics Course.
This paper looks at the nine clusters of the ecosystem.
Clustering refers to a system of grouping functions that are
similar so as to set them out from others. It begins by
highlighting them before proceeding to defining them. It then
identifies clusters that represent technology developers and
technology users. Peer reviewed materials are used in this
endeavor.
They include executive sponsor cluster which contains
information that concerns administrators for directing the
system. Another one is end-user tools and dashboards cluster
that is made of functions that facilitate ability of persons to
ultimately engage the system. Data owners cluster is made up of
programs that are related to persons who have data in the
system. Business users’ cluster is made up of functions that are
related to clients of the system. Business applications and
systems cluster is made up programs related to features of a
given system. Developers cluster is made of programs that are
related to the development of programs in the system. Analyst
cluster is made up of materials that are related to analysis of
data in the system. SME cluster that is made up switches that
run SME applications in the system. Lastly, operational data
stores that are made up of programs that are concerned with
storage of data in a system (Pitelis, 2012).
While developers cluster is made up of technology developers
in the system, business users’ cluster is made up of technology
users in the system. In conclusion, clustering serves to bring
roles together as well as separating roles that are not related in
a system (Cameron, Gelbach & Miller, 2012).
They can be represented as follows:-
References
Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2012). Robust
inference with multiway clustering. Journal of Business &
Economic Statistics.
Pitelis, C. (2012). Clusters, entrepreneurial ecosystem co-
creation, and appropriability: a conceptual framework.
Industrial and Corporate Change, dts008.
Infrastructure
Executive Sponsor Cluster
End-user tools and dashboards cluster
operational data stores
Data Owners Cluster
Business users' cluster
Business systems and applications cluster
Developers Cluster
Analysts Cluster
SME cluster
4
Running head: Sentiment analysis
Sentiment Analysis
Lisa Garay
Rasmussen College
Authors Note
This paper is being submitted for Anastashia Rashtcian’s B288
Business Analytics course.
Sentiment analysis has played a significant role in the
concurrent marketing field, specifically in product marketing.
According to Somasundaran, Swapna, (2010), the process’
operational module is structured on a data mining sequence,
whereby the end users of given particulars the feedback
pertaining a used product, or any experience. The feedback
primarily comprises the feelings, attitudes, views, and
satisfactory compliments about the same implement at hand
(Wan, S. & Angryk, R. A., 2007).
The most common channel for obtaining this data is through the
use of online portals. These portals are deemed to be apt for the
task based on its diversity around the globe, extensive
connectivity among a wide number of users, easy access, and
fast transfer of information.
Sentiment analysis is necessary for evaluating the viability of
an asset, service or aspect based on the ideas and opinions of
other parties on the same implement (Wan, S. & Angryk, R. A.,
2007). The ideas can in turn influence different responses on the
recipients centered on the analysis made. The views can impact
the viability of the element at hand either positively or
negatively (T. Mullen and N. Collier, s., 2004). For example,
the data about the online based components can be collected
through online reviews and testimonies, along with the ratings
awarded.
Various tools are available to facilitate operation of sentiment
analysis. For instance, technological enhancements have led to
the unleashing of the Web 2.0, which is highly
compatible to various data mining widgets. The mining tools
include support for podcasting, tagging, blogging, RSS support,
social networking and social bookmarking. In line with the
tools, there are various computational strategies that can be
opted for as well. These include data-driven strategies among
them being Maximum Entropy, Naïve Byes, Voted perceptions,
and SVN. Another common technique is the use of Cognitive
Psychology (Wan, S. & Angryk, R. A., 2007).
A popular media in use today for Sentiment analysis is Twitter.
The online media allows sharing of short texts, media links and
videos. Steps used for its operation flow between the use of
POS-tagged n-gram components, hash tags, text normalization,
tackle spam and lastly entity specific sentiment analysis
(Somasundaran, Swapna., 2010).
Sentiment analysis is a potent assessing technique that is used
to gauge both the strengths and weaknesses of various tools by
the use of online platforms. In the end, it aids in coming up
with efficient output that can be used for either usability
decisions by end users or formation decisions by the producer
(T. Mullen and N. Collier, s., 2004).
References
1. T. Mullen and N. Collier, Sentiment analysis using support
vector machines with diverse information sources, In
Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 412–418, 2004.
2. Somasundaran, Swapna, Discourse-level relations for
Opinion Analysis, PhD Thesis, University of Pittsburgh, 2010.
3. Wan, S. & Angryk, R. A., Measuring semantic similarity
using worldnet-based context vectors., in ‘SMC’07’, pp. 908–
913, 2007
October 2014Sales System NumberDate of SaleExtract
DateSales Consultant IDOfficeRegion Tax TypeTotal
ContractsTotal SalesTotal Cancellations265801-
201411110/1/1411/1/1435353356MANHATTANNORTHW210$
30,291.001265801-
201411110/1/1411/1/1466464667ATLANTASOUTHW24$39,99
9.000315320-
201411110/3/1411/1/1457575758MIAMIFL/HI109911$92,829.0
01265980-
201411110/3/1411/1/1475265980MANHATTANNORTHW24$4
4,255.002329247-201411110/5/1411/1/1483748200EL
PASOSOUTH10990$0.000399053-
201411110/10/1411/1/1426354410MIAMIFL/HI10995$20,100.0
01407197-
201411110/11/1411/1/1433407197ArkansasSOUTHWEST10990
$7,881.000407886-
201411110/12/1411/1/1440278386ArkansasSOUTHWEST10991
$10,000.000410718-201411110/13/1411/1/1441107218Tri-
StateSOUTHWEST109911$83,641.005265005-
201411110/14/1411/1/1426150025MANHATTANNORTHW213
$0.0013265288-
201411110/20/1411/1/1426354410MIAMIFL/HI10990$0.00026
5440-
201411110/20/1411/1/1426354410MIAMIFL/HI10997$44,242.0
00265778-
201411110/20/1411/1/1426356778MIAMIFL/HIW21$555.00026
5758-
201411110/20/1411/1/1426457518MANHATTANNORTHW29$
80,000.000265068-
201411110/20/1411/1/1426520168MANHATTANNORTHW210
$45,000.000265609-
201411110/20/1411/1/1426526109MANHATTANNORTHW225
$54,535.000265862-
201411110/25/1411/1/1412658262MANHATTANNORTHW29$
24,222.000266104-
201411110/25/1411/1/1426161204MANHATTANNORTHW24$
14,344.000265823-
201411110/25/1411/1/1426531823CHICAGONORTHW21$6,56
6.000330618-
201411110/26/1411/1/1433011618LOUISVILLESOUTH10991$
250.000332509-
201411110/26/1411/1/1433255099MANHATTANNORTHW216
$50,000.001333704-
201411110/28/1411/1/1433233704BRONXNORTH10990$321.0
00407148-
201411110/28/1411/1/1443207148ArkansasSOUTHWEST10993
$600.000265752-
201411110/30/1411/1/1426325752MANHATTANNORTHW213
$72,990.000265848-201411110/30/1411/1/1426621106NEW
ORLEANSSOUTHW27$35,000.000266106-
201411110/30/1411/1/1426621106NEW
ORLEANSSOUTHW210$87,382.001331393-
201411110/31/1411/1/1433135393LOUISVILLESOUTH10999$
21,222.000
November 2014Sales System NumberDate of SaleExtract
DateSales Consultant IDOfficeRegion Tax TypeTotal
ContractsTotal SalesTotal Cancellations265005-
201411111/1/1412/1/1426354410MIAMIFL/HI10995$20,100.00
1265068-
201411111/2/1412/1/1433407197ArkansasSOUTHWEST10990$
0.000265288-
201411111/2/1412/1/1440278386ArkansasSOUTHWEST10991$
10,000.000265440-201411111/2/1412/1/1441107218Tri-
StateSOUTHWEST10994$4,000.000329247-
201411111/3/1412/1/1433011618LOUISVILLESOUTH10991$9
00.000399053-
201411111/4/1412/1/1433255099MANHATTANNORTHW29$3
0,000.001265609-
201411111/5/1412/1/1466464667ATLANTASOUTHW21$550.0
00265758-
201411111/5/1412/1/1435353356MANHATTANNORTHW23$1
0,300.000265778-
201411111/5/1412/1/1426520168MANHATTANNORTHW22$5,
000.000265823-
201411111/5/1412/1/1426152889MIAMIFL/HI109914$1,000.00
13265862-
201411111/6/1412/1/1426356778MIAMIFL/HIW21$5,000.0002
66104-
201411111/7/1412/1/1426354410MIAMIFL/HI10997$500.0003
30618-
201411111/8/1412/1/1426531823CHICAGONORTHW21$3,000.
000407197-
201411111/10/1412/1/1433233704BRONXNORTH10990$0.000
407886-
201411111/10/1412/1/1443207148ArkansasSOUTHWEST10993
$0.000265801-
201411111/11/1412/1/1426526109MANHATTANNORTHW216
$20,000.000265801-
201411111/12/1412/1/1426457518MANHATTANNORTHW22$
1,010.000265980-
201411111/13/1412/1/1412658262MANHATTANNORTHW22$
211.000332509-
201411111/15/1412/1/1475265980MANHATTANNORTHW24$
20,100.001333704-
201411111/16/1412/1/1457575758MIAMIFL/HI109911$500.00
10315320-
201411111/17/1412/1/1426161204MANHATTANNORTHW24$
10,000.000407148-201411111/23/1412/1/1483748200EL
PASOSOUTH10990$0.000410718-
201411111/27/1412/1/1426621106NEW
ORLEANSSOUTHW210$87,382.001265752-
201411111/29/1412/1/1426150025MANHATTANNORTHW25$
0.005265848-
201411111/29/1412/1/1433135393LOUISVILLESOUTH10997$
20,000.000266106-
201411111/30/1412/1/1426325752MANHATTANNORTHW25$
20,000.000331393-201411111/30/1412/1/1426621106NEW
ORLEANSSOUTHW22$1,000.000
265005-2014111 265068-2014111 265288-2014111
265440-2014111 329247-2014111 399053-2014111
265609-2014111 265758-2014111 265778-2014111
265823-2014111 265862-2014111 266104-2014111
330618-2014111 407197-2014111 407886-2014111
265801-2014111 265801-2014111 265980-2014111
332509-2014111 333704-2014111 315320-2014111
407148-2014111 410718-2014111 265752-2014111
265848-2014111 266106-2014111 331393-2014111
26354410 33407197 40278386 41107218 33011618
33255099 66464667 35353356 26520168 26152889
26356778 26354410 26531823 33233704 43207148
26526109 26457518 12658262 75265980 57575758
26161204 83748200 26621106 26150025 33135393
26325752 26621106 265005-2014111 265068-2014111
265288-2014111 265440-2014111 329247-2014111
399053-2014111 265609-2014111 265758-2014111
265778-2014111 265823-2014111 265862-2014111
266104-2014111 330618-2014111 407197-2014111
407886-2014111 265801-2014111 265801-2014111
265980-2014111 332509-2014111 333704-2014111
315320-2014111 407148-2014111 410718-2014111
265752-2014111 265848-2014111 266106-2014111
331393-2014111 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 265005-2014111
265068-2014111 265288-2014111 265440-2014111
329247-2014111 399053-2014111 265609-2014111
265758-2014111 265778-2014111 265823-2014111
265862-2014111 266104-2014111 330618-2014111
407197-2014111 407886-2014111 265801-2014111
265801-2014111 265980-2014111 332509-2014111
333704-2014111 315320-2014111 407148-2014111
410718-2014111 265752-2014111 265848-2014111
266106-2014111 331393-2014111 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
265005-2014111 265068-2014111 265288-2014111
265440-2014111 329247-2014111 399053-2014111
265609-2014111 265758-2014111 265778-2014111
265823-2014111 265862-2014111 266104-2014111
330618-2014111 407197-2014111 407886-2014111
265801-2014111 265801-2014111 265980-2014111
332509-2014111 333704-2014111 315320-2014111
407148-2014111 410718-2014111 265752-2014111
265848-2014111 266106-2014111 331393-2014111
1099 1099 1099 1099 1099 0 0 0 0 1099 0
1099 0 1099 1099 0 0 0 0 1099 0 1099 0
0 1099 0 0 265005-2014111 265068-2014111
265288-2014111 265440-2014111 329247-2014111
399053-2014111 265609-2014111 265758-2014111
265778-2014111 265823-2014111 265862-2014111
266104-2014111 330618-2014111 407197-2014111
407886-2014111 265801-2014111 265801-2014111
265980-2014111 332509-2014111 333704-2014111
315320-2014111 407148-2014111 410718-2014111
265752-2014111 265848-2014111 266106-2014111
331393-2014111 5 0 1 4 1 9 1 3
2 14 1 7 1 0 3 16 2 2 4 11
4 0 10 5 7 5 2 265005-2014111
265068-2014111 265288-2014111 265440-2014111
329247-2014111 399053-2014111 265609-2014111
265758-2014111 265778-2014111 265823-2014111
265862-2014111 266104-20 14111 330618-
2014111 407197-2014111 407886-2014111 265801-
2014111 265801-2014111 265980-2014111 332509-
2014111 333704-2014111 315320-2014111 407148-
2014111 410718-2014111 265752-2014111 265848-
2014111 266106-2014111 331393-2014111 20100 0
10000 4000 900 30000 550 10300 5000 1000
5000 500 3000 0 0 20000 1010 211 20100
500 10000 0 87382 0 20000 20000
1000 265005-2014111 265068-2014111 265288-
2014111 265440-2014111 329247-2014111 399053-
2014111 265609-2014111 265758-2014111 265778-
2014111 265823-2014111 265862-2014111 266104-
2014111 330618-2014111 407197-2014111 407886-
2014111 265801-2014111 265801-2014111 265980-
2014111 332509-2014111 333704-2014111 315320-
2014111 407148-2014111 410718-2014111 265752-
2014111 265848-2014111 266106-2014111 331393-
2014111 1 0 0 0 0 1 0 0 0 13 0
0 0 0 0 0 0 0 1 10 0 0 1
5 0 0 0 265005-2014111 265068-2014111
265288-2014111 265440-2014111 329247-2014111
399053-2014111 265609-2014111 265758-2014111
265778-2014111 265823-2014111 265862-2014111
266104-2014111 330618-2014111 407197-2014111
407886-2014111 265801-2014111 265801-2014111
265980-2014111 332509-2014111 333704-2014111
315320-2014111 407148-2014111 410718-2014111
265752-2014111 265848-2014111 266106-2014111
331393-2014111 265005-2014111 265068-2014111
265288-2014111 265440-2014111 329247-2014111
399053-2014111 265609-2014111 265758-2014111
265778-2014111 265823-2014111 265862-2014111
266104-2014111 330618-2014111 407197-2014111
407886-2014111 265801-2014111 265801-2014111
265980-2014111 332509-2014111 333704-2014111
315320-2014111 407148-2014111 410718-2014111
265752-2014111 265848-2014111 266106-2014111
331393-2014111
December 2014Sales System NumberDate of SaleExtract
DateSales Consultant IDOfficeRegion Tax TypeTotal
ContractsTotal SalesTotal Cancellations265005-
201411112/1/141/1/1526354410MIAMIFL/HI10990$0.0002652
88-
201411112/1/141/1/1540278386ArkansasSOUTHWEST10995$1
0,000.003410718-201411112/1/141/1/1526621106NEW
ORLEANSSOUTHW210$0.0010265609-
201411112/2/141/1/1566464667ATLANTASOUTHW29$7,000.0
03265440-201411112/3/141/1/1541107218Tri-
StateSOUTHWEST10993$4,000.000266104-
201411112/3/141/1/1526354410MIAMIFL/HI10991$500.00033
3704-
201411112/4/141/1/1557575758MIAMIFL/HI10999$2,000.0053
31393-201411112/5/141/1/1526621106NEW
ORLEANSSOUTHW21$1,000.000407148-
201411112/6/141/1/1583748200EL
PASOSOUTH10990$0.000265752-
201411112/6/141/1/1526150025MANHATTANNORTHW218$7,
000.005265823-
201411112/7/141/1/1526152889MIAMIFL/HI109914$1,000.001
3407886-201411112/8/141/1/1526621106NEW
ORLEANSSOUTHW211$0.0011265801-
201411112/9/141/1/1526526109MANHATTANNORTHW216$2
0,000.000315320-
201411112/9/141/1/1526161204MANHATTANNORTHW24$10,
000.000399053-
201411112/10/141/1/1533255099MANHATTANNORTHW29$3
0,000.001265778-
201411112/11/141/1/1526520168MANHATTANNORTHW20$5,
000.000265758-
201411112/12/141/1/1535353356MANHATTANNORTHW23$1
0,300.000265801-
201411112/13/141/1/1526457518MANHATTANNORTHW218$
7,000.0010332509-
201411112/14/141/1/1575265980MANHATTANNORTHW216$
20,000.000265068-
201411112/15/141/1/1533407197ArkansasSOUTHWEST10990$
0.000329247-
201411112/19/141/1/1533011618LOUISVILLESOUTH10992$9
00.000266106-
201411112/20/141/1/1526325752MANHATTANNORTHW216$
20,000.000265862-
201411112/21/141/1/1526356778MIAMIFL/HIW21$5,000.0002
65848-
201411112/22/141/1/1533135393LOUISVILLESOUTH10997$2
0,000.000407197-
201411112/23/141/1/1533233704BRONXNORTH10991$0.0003
30618-201411112/24/141/1/1526621106NEW
ORLEANSSOUTHW22$0.002265980-
201411112/30/141/1/1512658262MANHATTANNORTHW216$
20,000.000
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 12/1/2014
12/2/2014 12/3/2014 12/3/2014 12/4/2014 12/5/2014
12/6/2014 12/6/2014 12/7/2014 12/8/2014 12/9/2014
12/9/2014 12/10/2014 12/11/2014 12/12/2014
12/13/2014 12/14/2014 12/15/2014 12/19/2014
12/20/2014 12/21/2014 12/22/2014 12/23/2014
12/24/2014 12/30/2014 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 12/1/2014 12/2/2014
12/3/2014 12/3/2014 12/4/2014 12/5/2014 12/6/2014
12/6/2014 12/7/2014 12/8/2014 12/9/2014 12/9/2014
12/10/2014 12/11/2014 12/12/2014 12/13/2014
12/14/2014 12/15/2014 12/19/2014 12/20/2014
12/21/2014 12/22/2014 12/23/2014 12/24/2014
12/30/2014 0 0 1099 1099 1099 0 1099 0
1099 0 0 0 0 0 0 0 0 1099 1099 0
0 1099 1099 0 0 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/201 5 1/1/2015
1/1/2015 1/1/2015 12/1/2014 12/2/2014 12/3/2014
12/3/2014 12/4/2014 12/5/2014 12/6/2014 12/6/2014
12/7/2014 12/8/2014 12/9/2014 12/9/2014 12/10/2014
12/11/2014 12/12/2014 12/13/2014 12/14/2014
12/15/2014 12/19/2014 12/20/2014 12/21/2014
12/22/2014 12/23/2014 12/24/2014 12/30/2014
10 9 3 1 9 1 0 18 14 11 16 4
9 0 3 18 16 0 2 16 1 7 1 2
16 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
12/1/2014 12/2/2014 12/3/2014 12/3/2014 12/4/2014
12/5/2014 12/6/2014 12/6/2014 12/7/2014 12/8/2014
12/9/2014 12/9/2014 12/10/2014 12/11/2014
12/12/2014 12/13/2014 12/14/2014 12/15/2014
12/19/2014 12/20/2014 12/21/2014 12/22/2014
12/23/2014 12/24/2014 12/30/2014 0 7000
4000 500 2000 1000 0 7000 1000 0 20000 10000
30000 5000 10300 7000 20000 0 900 20000
5000 20000 0 0 20000 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 12/1/2014 12/2/2014
12/3/2014 12/3/2014 12/4/2014 12/5/2014 12/6/2014
12/6/2014 12/7/2014 12/8/2014 12/9/2014 12/9/2014
12/10/2014 12/11/2014 12/12/2014 12/13/2014
12/14/2014 12/15/2014 12/19/2014 12/20/2014
12/21/2014 12/22/2014 12/23/2014 12/24/2014
12/30/2014 10 3 0 0 5 0 0 5 13
11 0 0 1 0 0 10 0 0 0 0 0
0 0 2 0 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 12/1/2014 12/2/2014 12/3/2014
12/3/2014 12/4/2014 12/5/2014 12/6/2014 12/6/2014
12/7/2014 12/8/2014 12/9/2014 12/9/2014 12/10/2014
12/11/2014 12/12/2014 12/13/2014 12/14/2014
12/15/2014 12/19/2014 12/20/2014 12/21/2014
12/22/2014 12/23/2014 12/24/2014 12/30/2014
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
12/1/2014 12/2/2014 12/3/2014 12/3/2014 12/4/2014
12/5/2014 12/6/2014 12/6/2014 12/7/2014 12/8/2014
12/9/2014 12/9/2014 12/10/2014 12/11/2014
12/12/2014 12/13/2014 12/14/2014 12/15/2014
12/19/2014 12/20/2014 12/21/2014 12/22/2014
12/23/2014 12/24/2014 12/30/2014 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 12/1/2014
12/2/2014 12/3/2014 12/3/2014 12/4/2014 12/5/2014
12/6/2014 12/6/2014 12/7/2014 12/8/2014 12/9/2014
12/9/2014 12/10/2014 12/11/2014 12/12/2014
12/13/2014 12/14/2014 12/15/2014 12/19/2014
12/ 20/2014 12/21/2014 12/22/2014 12/23/2014
12/24/2014 12/30/2014 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
1/1/2015 1/1/2015 1/1/2015 12/1/2014 12/2/2014
12/3/2014 12/3/2014 12/4/2014 12/5/2014 12/6/2014
12/6/2014 12/7/2014 12/8/2014 12/9/2014 12/9/2014
12/10/2014 12/11/2014 12/12/2014 12/13/2014
12/14/2014 12/15/2014 12/19/2014 12/20/2014
12/21/2014 12/22/2014 12/23/2014 12/24/2014
12/30/2014
Module 3 ExplantionsSales system numberThis value is unique
to each location. If we are including location in the analysis, the
sales system number is not required. It is easier to use the
name.nalysisExtract dateThe extract date does not addd any
value to the analysis.Last nameThe last name does not add any
value to the analyisFirst nameThe first name does not add any
value to the analysis.StateState is unique to each
location.TerritoryTerritory is unique to each location.Columns
to be keptDate of saleDate is important to keep track of sales
per month, weweek, day, and year.Sales consultant IDID is
unique to each consultant.OfficeThe office is unique to each
state.RegionThe region is unique to each state.Tax TypeTax
type is important to each state to be applied to each sale.Total
contractsImportant to know how many contracts per
consultant.Total salesImportant to know the total sales per
consultant.Total CancellationsImportant to know the number of
cancellations per consultant.
lgaray_datacompliance_061216.docx
RUNNING HEADER: Data Compliance 1
RUNNING HEADER: Data Compliance
2
Data Compliance
Lisa Garay
Rasmussen College
Authors Note
This paper is being submitted for Anastasia Rashtachian’s B288
Business Analytics course.
The state of each of the clients in the analysis help trace where
we get more of our customers. Sales consultant identification
helps us track the specific individuals who facilitated the sales.
A total cancellation helps us indicate the total number of orders
that never matured and thus no payments were made. It helps
track the number of cancelled transactions for every consultant.
The total sales help us trace the sales a particular consultant
did.
Some states have kept their sheets clean with their consultants
since they make orders and honor their agreements. Manhattan
state have done incredible honor in their contracts with the
consultants since among more than 90 orders with the
consultants only 10 orders were cancelled. They have
maintained the best record with the consultants. Other states
who have maintained their records include Louisville, Bronx,
and El Paso.
New Orleans indicate one of the regions whereby the sales
noncompliance increase at an alarming rate. The cancelation of
10 orders should worry the progress of the consultant since out
of the 10 orders, cancellation of all of them was inappropriate.
During the same month, New Orleans also cancelled a total of
13 orders which saw a total cancellation of 23 orders out of 24
contracts. Later in the month, New Orleans cancels some other
two orders and the trend is now consistent.
Miami State has also a trend of cancelling their orders. The
sales consultants need to find the reasons behind the numerous
cancellations of orders after they gain the contract which
consequently reduces the sales of the consultants.
data - Shortcut.lnk
data - Shortcut.zip
data - Shortcut.lnk

More Related Content

PDF
TWITTER SENTIMENT ANALYSIS
PDF
TWITTER SENTIMENT ANALYSIS
PDF
Big Data Analytics
PDF
Semantic Web Based Sentiment Engine
PDF
Business intelligence analytics using sentiment analysis-a survey
DOC
Ieee format 5th nccci_a study on factors influencing as a best practice for...
PDF
A Novel Hybrid Classification Approach for Sentiment Analysis of Text Document
PDF
IRJET- Opinion Mining and Sentiment Analysis for Online Review
TWITTER SENTIMENT ANALYSIS
TWITTER SENTIMENT ANALYSIS
Big Data Analytics
Semantic Web Based Sentiment Engine
Business intelligence analytics using sentiment analysis-a survey
Ieee format 5th nccci_a study on factors influencing as a best practice for...
A Novel Hybrid Classification Approach for Sentiment Analysis of Text Document
IRJET- Opinion Mining and Sentiment Analysis for Online Review

Similar to RUNNING HEADER Analytics Ecosystem1Analytics Ecosystem4.docx (20)

PDF
IRJET- Improved Real-Time Twitter Sentiment Analysis using ML & Word2Vec
PDF
Knime social media_white_paper
PDF
Zoral Labs SENTRA presentation
PDF
SURVEY ON SENTIMENT ANALYSIS
PDF
Dictionary Based Approach to Sentiment Analysis - A Review
PDF
ASA conference Feb 2013
PDF
Combining Knowledge and Data Mining to Understand Sentiment
PDF
[IJET V2I4P9] Authors: Praveen Jayasankar , Prashanth Jayaraman ,Rachel Hannah
PDF
Best of Esomar Belgium 2010_Flores
PDF
Implementation of Sentimental Analysis of Social Media for Stock Prediction ...
PDF
Text Analytics 2009: User Perspectives on Solutions and Providers
PDF
Using NLP Approach for Analyzing Customer Reviews
PDF
USING NLP APPROACH FOR ANALYZING CUSTOMER REVIEWS
PDF
Framework to Analyze Customer’s Feedback in Smartphone Industry Using Opinion...
PDF
Introduction to Sentiment Analysis
PDF
Carnegie mellon sentiment analyses overview
PDF
IRJET- Sentimental Analysis of Product Reviews for E-Commerce Websites
PDF
Full Paper: Analytics: Key to go from generating big data to deriving busines...
DOCX
NLP journal paper
IRJET- Improved Real-Time Twitter Sentiment Analysis using ML & Word2Vec
Knime social media_white_paper
Zoral Labs SENTRA presentation
SURVEY ON SENTIMENT ANALYSIS
Dictionary Based Approach to Sentiment Analysis - A Review
ASA conference Feb 2013
Combining Knowledge and Data Mining to Understand Sentiment
[IJET V2I4P9] Authors: Praveen Jayasankar , Prashanth Jayaraman ,Rachel Hannah
Best of Esomar Belgium 2010_Flores
Implementation of Sentimental Analysis of Social Media for Stock Prediction ...
Text Analytics 2009: User Perspectives on Solutions and Providers
Using NLP Approach for Analyzing Customer Reviews
USING NLP APPROACH FOR ANALYZING CUSTOMER REVIEWS
Framework to Analyze Customer’s Feedback in Smartphone Industry Using Opinion...
Introduction to Sentiment Analysis
Carnegie mellon sentiment analyses overview
IRJET- Sentimental Analysis of Product Reviews for E-Commerce Websites
Full Paper: Analytics: Key to go from generating big data to deriving busines...
NLP journal paper
Ad

More from anhlodge (20)

DOCX
…if one of the primary purposes of education is to teach young .docx
DOCX
✍Report OverviewIn this assignment, you will Document an.docx
DOCX
☰Menu×NURS 6050 Policy and Advocacy for Improving Population H.docx
DOCX
▪ Learning Outcomes1.Understand the basic concepts and termin.docx
DOCX
●  What are some of the reasons that a MNE would choose internationa.docx
DOCX
■ Research PaperGeneral Systems Theory Its Past andPote.docx
DOCX
▶︎ Prompt 1 Think about whether you identify with either Blue or .docx
DOCX
⁞ InstructionsChoose only ONE  of the following options .docx
DOCX
⁞ InstructionsChoose only ONE of the following options below.docx
DOCX
⁞ InstructionsAfter reading  The Metamorphosis by Frank .docx
DOCX
⁞ InstructionsAfter reading all of Chapter 5, please se.docx
DOCX
⁞ InstructionsAfter reading all of Chapter 2, please select.docx
DOCX
⁞ Instructions After reading all of Chapter 9, please .docx
DOCX
…Multiple intelligences describe an individual’s strengths or capac.docx
DOCX
••• JONATHAN LETHEM CRITICS OFTEN USE the word prolifi.docx
DOCX
•••••iA National Profile ofthe Real Estate Industry and.docx
DOCX

Let us consider […] a pair of cases which I shall call Rescue .docx
DOCX
•  Enhanced eText—Keeps students engaged in learning on th.docx
DOCX
•    Here’s the approach you can take for this paperTitle.docx
DOCX
•Your team will select a big data analytics project that is intr.docx
…if one of the primary purposes of education is to teach young .docx
✍Report OverviewIn this assignment, you will Document an.docx
☰Menu×NURS 6050 Policy and Advocacy for Improving Population H.docx
▪ Learning Outcomes1.Understand the basic concepts and termin.docx
●  What are some of the reasons that a MNE would choose internationa.docx
■ Research PaperGeneral Systems Theory Its Past andPote.docx
▶︎ Prompt 1 Think about whether you identify with either Blue or .docx
⁞ InstructionsChoose only ONE  of the following options .docx
⁞ InstructionsChoose only ONE of the following options below.docx
⁞ InstructionsAfter reading  The Metamorphosis by Frank .docx
⁞ InstructionsAfter reading all of Chapter 5, please se.docx
⁞ InstructionsAfter reading all of Chapter 2, please select.docx
⁞ Instructions After reading all of Chapter 9, please .docx
…Multiple intelligences describe an individual’s strengths or capac.docx
••• JONATHAN LETHEM CRITICS OFTEN USE the word prolifi.docx
•••••iA National Profile ofthe Real Estate Industry and.docx

Let us consider […] a pair of cases which I shall call Rescue .docx
•  Enhanced eText—Keeps students engaged in learning on th.docx
•    Here’s the approach you can take for this paperTitle.docx
•Your team will select a big data analytics project that is intr.docx
Ad

Recently uploaded (20)

PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
RMMM.pdf make it easy to upload and study
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Complications of Minimal Access Surgery at WLH
PDF
A systematic review of self-coping strategies used by university students to ...
Chinmaya Tiranga quiz Grand Finale.pdf
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
O7-L3 Supply Chain Operations - ICLT Program
VCE English Exam - Section C Student Revision Booklet
Anesthesia in Laparoscopic Surgery in India
O5-L3 Freight Transport Ops (International) V1.pdf
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Microbial diseases, their pathogenesis and prophylaxis
Supply Chain Operations Speaking Notes -ICLT Program
2.FourierTransform-ShortQuestionswithAnswers.pdf
RMMM.pdf make it easy to upload and study
human mycosis Human fungal infections are called human mycosis..pptx
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Final Presentation General Medicine 03-08-2024.pptx
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
Complications of Minimal Access Surgery at WLH
A systematic review of self-coping strategies used by university students to ...

RUNNING HEADER Analytics Ecosystem1Analytics Ecosystem4.docx

  • 1. RUNNING HEADER: Analytics Ecosystem 1 Analytics Ecosystem 4 Analytics Ecosystem Lisa Garay Rasmussen College Authors Note This paper is being submitted for Anastasia Rashtchian’s B288 Business Analytics Course. This paper looks at the nine clusters of the ecosystem. Clustering refers to a system of grouping functions that are similar so as to set them out from others. It begins by highlighting them before proceeding to defining them. It then identifies clusters that represent technology developers and technology users. Peer reviewed materials are used in this endeavor. They include executive sponsor cluster which contains information that concerns administrators for directing the system. Another one is end-user tools and dashboards cluster that is made of functions that facilitate ability of persons to ultimately engage the system. Data owners cluster is made up of programs that are related to persons who have data in the
  • 2. system. Business users’ cluster is made up of functions that are related to clients of the system. Business applications and systems cluster is made up programs related to features of a given system. Developers cluster is made of programs that are related to the development of programs in the system. Analyst cluster is made up of materials that are related to analysis of data in the system. SME cluster that is made up switches that run SME applications in the system. Lastly, operational data stores that are made up of programs that are concerned with storage of data in a system (Pitelis, 2012). While developers cluster is made up of technology developers in the system, business users’ cluster is made up of technology users in the system. In conclusion, clustering serves to bring roles together as well as separating roles that are not related in a system (Cameron, Gelbach & Miller, 2012). They can be represented as follows:- References Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2012). Robust inference with multiway clustering. Journal of Business & Economic Statistics. Pitelis, C. (2012). Clusters, entrepreneurial ecosystem co-
  • 3. creation, and appropriability: a conceptual framework. Industrial and Corporate Change, dts008. Infrastructure Executive Sponsor Cluster End-user tools and dashboards cluster operational data stores Data Owners Cluster Business users' cluster Business systems and applications cluster Developers Cluster Analysts Cluster
  • 4. SME cluster 4 Running head: Sentiment analysis Sentiment Analysis Lisa Garay Rasmussen College Authors Note This paper is being submitted for Anastashia Rashtcian’s B288 Business Analytics course. Sentiment analysis has played a significant role in the concurrent marketing field, specifically in product marketing. According to Somasundaran, Swapna, (2010), the process’ operational module is structured on a data mining sequence,
  • 5. whereby the end users of given particulars the feedback pertaining a used product, or any experience. The feedback primarily comprises the feelings, attitudes, views, and satisfactory compliments about the same implement at hand (Wan, S. & Angryk, R. A., 2007). The most common channel for obtaining this data is through the use of online portals. These portals are deemed to be apt for the task based on its diversity around the globe, extensive connectivity among a wide number of users, easy access, and fast transfer of information. Sentiment analysis is necessary for evaluating the viability of an asset, service or aspect based on the ideas and opinions of other parties on the same implement (Wan, S. & Angryk, R. A., 2007). The ideas can in turn influence different responses on the recipients centered on the analysis made. The views can impact the viability of the element at hand either positively or negatively (T. Mullen and N. Collier, s., 2004). For example, the data about the online based components can be collected through online reviews and testimonies, along with the ratings awarded. Various tools are available to facilitate operation of sentiment analysis. For instance, technological enhancements have led to the unleashing of the Web 2.0, which is highly compatible to various data mining widgets. The mining tools include support for podcasting, tagging, blogging, RSS support, social networking and social bookmarking. In line with the tools, there are various computational strategies that can be opted for as well. These include data-driven strategies among them being Maximum Entropy, Naïve Byes, Voted perceptions, and SVN. Another common technique is the use of Cognitive Psychology (Wan, S. & Angryk, R. A., 2007). A popular media in use today for Sentiment analysis is Twitter. The online media allows sharing of short texts, media links and
  • 6. videos. Steps used for its operation flow between the use of POS-tagged n-gram components, hash tags, text normalization, tackle spam and lastly entity specific sentiment analysis (Somasundaran, Swapna., 2010). Sentiment analysis is a potent assessing technique that is used to gauge both the strengths and weaknesses of various tools by the use of online platforms. In the end, it aids in coming up with efficient output that can be used for either usability decisions by end users or formation decisions by the producer (T. Mullen and N. Collier, s., 2004). References 1. T. Mullen and N. Collier, Sentiment analysis using support vector machines with diverse information sources, In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 412–418, 2004. 2. Somasundaran, Swapna, Discourse-level relations for Opinion Analysis, PhD Thesis, University of Pittsburgh, 2010. 3. Wan, S. & Angryk, R. A., Measuring semantic similarity using worldnet-based context vectors., in ‘SMC’07’, pp. 908– 913, 2007
  • 7. October 2014Sales System NumberDate of SaleExtract DateSales Consultant IDOfficeRegion Tax TypeTotal ContractsTotal SalesTotal Cancellations265801- 201411110/1/1411/1/1435353356MANHATTANNORTHW210$ 30,291.001265801- 201411110/1/1411/1/1466464667ATLANTASOUTHW24$39,99 9.000315320- 201411110/3/1411/1/1457575758MIAMIFL/HI109911$92,829.0 01265980- 201411110/3/1411/1/1475265980MANHATTANNORTHW24$4 4,255.002329247-201411110/5/1411/1/1483748200EL PASOSOUTH10990$0.000399053- 201411110/10/1411/1/1426354410MIAMIFL/HI10995$20,100.0 01407197- 201411110/11/1411/1/1433407197ArkansasSOUTHWEST10990 $7,881.000407886- 201411110/12/1411/1/1440278386ArkansasSOUTHWEST10991 $10,000.000410718-201411110/13/1411/1/1441107218Tri- StateSOUTHWEST109911$83,641.005265005- 201411110/14/1411/1/1426150025MANHATTANNORTHW213 $0.0013265288- 201411110/20/1411/1/1426354410MIAMIFL/HI10990$0.00026 5440- 201411110/20/1411/1/1426354410MIAMIFL/HI10997$44,242.0 00265778- 201411110/20/1411/1/1426356778MIAMIFL/HIW21$555.00026 5758- 201411110/20/1411/1/1426457518MANHATTANNORTHW29$ 80,000.000265068- 201411110/20/1411/1/1426520168MANHATTANNORTHW210 $45,000.000265609- 201411110/20/1411/1/1426526109MANHATTANNORTHW225 $54,535.000265862- 201411110/25/1411/1/1412658262MANHATTANNORTHW29$ 24,222.000266104- 201411110/25/1411/1/1426161204MANHATTANNORTHW24$
  • 8. 14,344.000265823- 201411110/25/1411/1/1426531823CHICAGONORTHW21$6,56 6.000330618- 201411110/26/1411/1/1433011618LOUISVILLESOUTH10991$ 250.000332509- 201411110/26/1411/1/1433255099MANHATTANNORTHW216 $50,000.001333704- 201411110/28/1411/1/1433233704BRONXNORTH10990$321.0 00407148- 201411110/28/1411/1/1443207148ArkansasSOUTHWEST10993 $600.000265752- 201411110/30/1411/1/1426325752MANHATTANNORTHW213 $72,990.000265848-201411110/30/1411/1/1426621106NEW ORLEANSSOUTHW27$35,000.000266106- 201411110/30/1411/1/1426621106NEW ORLEANSSOUTHW210$87,382.001331393- 201411110/31/1411/1/1433135393LOUISVILLESOUTH10999$ 21,222.000 November 2014Sales System NumberDate of SaleExtract DateSales Consultant IDOfficeRegion Tax TypeTotal ContractsTotal SalesTotal Cancellations265005- 201411111/1/1412/1/1426354410MIAMIFL/HI10995$20,100.00 1265068- 201411111/2/1412/1/1433407197ArkansasSOUTHWEST10990$ 0.000265288- 201411111/2/1412/1/1440278386ArkansasSOUTHWEST10991$ 10,000.000265440-201411111/2/1412/1/1441107218Tri- StateSOUTHWEST10994$4,000.000329247- 201411111/3/1412/1/1433011618LOUISVILLESOUTH10991$9 00.000399053- 201411111/4/1412/1/1433255099MANHATTANNORTHW29$3 0,000.001265609- 201411111/5/1412/1/1466464667ATLANTASOUTHW21$550.0 00265758- 201411111/5/1412/1/1435353356MANHATTANNORTHW23$1 0,300.000265778-
  • 9. 201411111/5/1412/1/1426520168MANHATTANNORTHW22$5, 000.000265823- 201411111/5/1412/1/1426152889MIAMIFL/HI109914$1,000.00 13265862- 201411111/6/1412/1/1426356778MIAMIFL/HIW21$5,000.0002 66104- 201411111/7/1412/1/1426354410MIAMIFL/HI10997$500.0003 30618- 201411111/8/1412/1/1426531823CHICAGONORTHW21$3,000. 000407197- 201411111/10/1412/1/1433233704BRONXNORTH10990$0.000 407886- 201411111/10/1412/1/1443207148ArkansasSOUTHWEST10993 $0.000265801- 201411111/11/1412/1/1426526109MANHATTANNORTHW216 $20,000.000265801- 201411111/12/1412/1/1426457518MANHATTANNORTHW22$ 1,010.000265980- 201411111/13/1412/1/1412658262MANHATTANNORTHW22$ 211.000332509- 201411111/15/1412/1/1475265980MANHATTANNORTHW24$ 20,100.001333704- 201411111/16/1412/1/1457575758MIAMIFL/HI109911$500.00 10315320- 201411111/17/1412/1/1426161204MANHATTANNORTHW24$ 10,000.000407148-201411111/23/1412/1/1483748200EL PASOSOUTH10990$0.000410718- 201411111/27/1412/1/1426621106NEW ORLEANSSOUTHW210$87,382.001265752- 201411111/29/1412/1/1426150025MANHATTANNORTHW25$ 0.005265848- 201411111/29/1412/1/1433135393LOUISVILLESOUTH10997$ 20,000.000266106- 201411111/30/1412/1/1426325752MANHATTANNORTHW25$ 20,000.000331393-201411111/30/1412/1/1426621106NEW ORLEANSSOUTHW22$1,000.000
  • 10. 265005-2014111 265068-2014111 265288-2014111 265440-2014111 329247-2014111 399053-2014111 265609-2014111 265758-2014111 265778-2014111 265823-2014111 265862-2014111 266104-2014111 330618-2014111 407197-2014111 407886-2014111 265801-2014111 265801-2014111 265980-2014111 332509-2014111 333704-2014111 315320-2014111 407148-2014111 410718-2014111 265752-2014111 265848-2014111 266106-2014111 331393-2014111 26354410 33407197 40278386 41107218 33011618 33255099 66464667 35353356 26520168 26152889 26356778 26354410 26531823 33233704 43207148 26526109 26457518 12658262 75265980 57575758 26161204 83748200 26621106 26150025 33135393 26325752 26621106 265005-2014111 265068-2014111 265288-2014111 265440-2014111 329247-2014111 399053-2014111 265609-2014111 265758-2014111 265778-2014111 265823-2014111 265862-2014111 266104-2014111 330618-2014111 407197-2014111 407886-2014111 265801-2014111 265801-2014111 265980-2014111 332509-2014111 333704-2014111 315320-2014111 407148-2014111 410718-2014111 265752-2014111 265848-2014111 266106-2014111 331393-2014111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 265005-2014111 265068-2014111 265288-2014111 265440-2014111 329247-2014111 399053-2014111 265609-2014111 265758-2014111 265778-2014111 265823-2014111 265862-2014111 266104-2014111 330618-2014111 407197-2014111 407886-2014111 265801-2014111 265801-2014111 265980-2014111 332509-2014111 333704-2014111 315320-2014111 407148-2014111 410718-2014111 265752-2014111 265848-2014111 266106-2014111 331393-2014111 0 0 0 0
  • 11. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 265005-2014111 265068-2014111 265288-2014111 265440-2014111 329247-2014111 399053-2014111 265609-2014111 265758-2014111 265778-2014111 265823-2014111 265862-2014111 266104-2014111 330618-2014111 407197-2014111 407886-2014111 265801-2014111 265801-2014111 265980-2014111 332509-2014111 333704-2014111 315320-2014111 407148-2014111 410718-2014111 265752-2014111 265848-2014111 266106-2014111 331393-2014111 1099 1099 1099 1099 1099 0 0 0 0 1099 0 1099 0 1099 1099 0 0 0 0 1099 0 1099 0 0 1099 0 0 265005-2014111 265068-2014111 265288-2014111 265440-2014111 329247-2014111 399053-2014111 265609-2014111 265758-2014111 265778-2014111 265823-2014111 265862-2014111 266104-2014111 330618-2014111 407197-2014111 407886-2014111 265801-2014111 265801-2014111 265980-2014111 332509-2014111 333704-2014111 315320-2014111 407148-2014111 410718-2014111 265752-2014111 265848-2014111 266106-2014111 331393-2014111 5 0 1 4 1 9 1 3 2 14 1 7 1 0 3 16 2 2 4 11 4 0 10 5 7 5 2 265005-2014111 265068-2014111 265288-2014111 265440-2014111 329247-2014111 399053-2014111 265609-2014111 265758-2014111 265778-2014111 265823-2014111 265862-2014111 266104-20 14111 330618- 2014111 407197-2014111 407886-2014111 265801- 2014111 265801-2014111 265980-2014111 332509- 2014111 333704-2014111 315320-2014111 407148- 2014111 410718-2014111 265752-2014111 265848- 2014111 266106-2014111 331393-2014111 20100 0 10000 4000 900 30000 550 10300 5000 1000 5000 500 3000 0 0 20000 1010 211 20100
  • 12. 500 10000 0 87382 0 20000 20000 1000 265005-2014111 265068-2014111 265288- 2014111 265440-2014111 329247-2014111 399053- 2014111 265609-2014111 265758-2014111 265778- 2014111 265823-2014111 265862-2014111 266104- 2014111 330618-2014111 407197-2014111 407886- 2014111 265801-2014111 265801-2014111 265980- 2014111 332509-2014111 333704-2014111 315320- 2014111 407148-2014111 410718-2014111 265752- 2014111 265848-2014111 266106-2014111 331393- 2014111 1 0 0 0 0 1 0 0 0 13 0 0 0 0 0 0 0 0 1 10 0 0 1 5 0 0 0 265005-2014111 265068-2014111 265288-2014111 265440-2014111 329247-2014111 399053-2014111 265609-2014111 265758-2014111 265778-2014111 265823-2014111 265862-2014111 266104-2014111 330618-2014111 407197-2014111 407886-2014111 265801-2014111 265801-2014111 265980-2014111 332509-2014111 333704-2014111 315320-2014111 407148-2014111 410718-2014111 265752-2014111 265848-2014111 266106-2014111 331393-2014111 265005-2014111 265068-2014111 265288-2014111 265440-2014111 329247-2014111 399053-2014111 265609-2014111 265758-2014111 265778-2014111 265823-2014111 265862-2014111 266104-2014111 330618-2014111 407197-2014111 407886-2014111 265801-2014111 265801-2014111 265980-2014111 332509-2014111 333704-2014111 315320-2014111 407148-2014111 410718-2014111 265752-2014111 265848-2014111 266106-2014111 331393-2014111 December 2014Sales System NumberDate of SaleExtract
  • 13. DateSales Consultant IDOfficeRegion Tax TypeTotal ContractsTotal SalesTotal Cancellations265005- 201411112/1/141/1/1526354410MIAMIFL/HI10990$0.0002652 88- 201411112/1/141/1/1540278386ArkansasSOUTHWEST10995$1 0,000.003410718-201411112/1/141/1/1526621106NEW ORLEANSSOUTHW210$0.0010265609- 201411112/2/141/1/1566464667ATLANTASOUTHW29$7,000.0 03265440-201411112/3/141/1/1541107218Tri- StateSOUTHWEST10993$4,000.000266104- 201411112/3/141/1/1526354410MIAMIFL/HI10991$500.00033 3704- 201411112/4/141/1/1557575758MIAMIFL/HI10999$2,000.0053 31393-201411112/5/141/1/1526621106NEW ORLEANSSOUTHW21$1,000.000407148- 201411112/6/141/1/1583748200EL PASOSOUTH10990$0.000265752- 201411112/6/141/1/1526150025MANHATTANNORTHW218$7, 000.005265823- 201411112/7/141/1/1526152889MIAMIFL/HI109914$1,000.001 3407886-201411112/8/141/1/1526621106NEW ORLEANSSOUTHW211$0.0011265801- 201411112/9/141/1/1526526109MANHATTANNORTHW216$2 0,000.000315320- 201411112/9/141/1/1526161204MANHATTANNORTHW24$10, 000.000399053- 201411112/10/141/1/1533255099MANHATTANNORTHW29$3 0,000.001265778- 201411112/11/141/1/1526520168MANHATTANNORTHW20$5, 000.000265758- 201411112/12/141/1/1535353356MANHATTANNORTHW23$1 0,300.000265801- 201411112/13/141/1/1526457518MANHATTANNORTHW218$ 7,000.0010332509- 201411112/14/141/1/1575265980MANHATTANNORTHW216$ 20,000.000265068-
  • 14. 201411112/15/141/1/1533407197ArkansasSOUTHWEST10990$ 0.000329247- 201411112/19/141/1/1533011618LOUISVILLESOUTH10992$9 00.000266106- 201411112/20/141/1/1526325752MANHATTANNORTHW216$ 20,000.000265862- 201411112/21/141/1/1526356778MIAMIFL/HIW21$5,000.0002 65848- 201411112/22/141/1/1533135393LOUISVILLESOUTH10997$2 0,000.000407197- 201411112/23/141/1/1533233704BRONXNORTH10991$0.0003 30618-201411112/24/141/1/1526621106NEW ORLEANSSOUTHW22$0.002265980- 201411112/30/141/1/1512658262MANHATTANNORTHW216$ 20,000.000 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 12/1/2014 12/2/2014 12/3/2014 12/3/2014 12/4/2014 12/5/2014 12/6/2014 12/6/2014 12/7/2014 12/8/2014 12/9/2014 12/9/2014 12/10/2014 12/11/2014 12/12/2014 12/13/2014 12/14/2014 12/15/2014 12/19/2014 12/20/2014 12/21/2014 12/22/2014 12/23/2014 12/24/2014 12/30/2014 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 12/1/2014 12/2/2014 12/3/2014 12/3/2014 12/4/2014 12/5/2014 12/6/2014 12/6/2014 12/7/2014 12/8/2014 12/9/2014 12/9/2014
  • 15. 12/10/2014 12/11/2014 12/12/2014 12/13/2014 12/14/2014 12/15/2014 12/19/2014 12/20/2014 12/21/2014 12/22/2014 12/23/2014 12/24/2014 12/30/2014 0 0 1099 1099 1099 0 1099 0 1099 0 0 0 0 0 0 0 0 1099 1099 0 0 1099 1099 0 0 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/201 5 1/1/2015 1/1/2015 1/1/2015 12/1/2014 12/2/2014 12/3/2014 12/3/2014 12/4/2014 12/5/2014 12/6/2014 12/6/2014 12/7/2014 12/8/2014 12/9/2014 12/9/2014 12/10/2014 12/11/2014 12/12/2014 12/13/2014 12/14/2014 12/15/2014 12/19/2014 12/20/2014 12/21/2014 12/22/2014 12/23/2014 12/24/2014 12/30/2014 10 9 3 1 9 1 0 18 14 11 16 4 9 0 3 18 16 0 2 16 1 7 1 2 16 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 12/1/2014 12/2/2014 12/3/2014 12/3/2014 12/4/2014 12/5/2014 12/6/2014 12/6/2014 12/7/2014 12/8/2014 12/9/2014 12/9/2014 12/10/2014 12/11/2014 12/12/2014 12/13/2014 12/14/2014 12/15/2014 12/19/2014 12/20/2014 12/21/2014 12/22/2014 12/23/2014 12/24/2014 12/30/2014 0 7000 4000 500 2000 1000 0 7000 1000 0 20000 10000 30000 5000 10300 7000 20000 0 900 20000 5000 20000 0 0 20000 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015
  • 16. 1/1/2015 1/1/2015 1/1/2015 12/1/2014 12/2/2014 12/3/2014 12/3/2014 12/4/2014 12/5/2014 12/6/2014 12/6/2014 12/7/2014 12/8/2014 12/9/2014 12/9/2014 12/10/2014 12/11/2014 12/12/2014 12/13/2014 12/14/2014 12/15/2014 12/19/2014 12/20/2014 12/21/2014 12/22/2014 12/23/2014 12/24/2014 12/30/2014 10 3 0 0 5 0 0 5 13 11 0 0 1 0 0 10 0 0 0 0 0 0 0 2 0 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 12/1/2014 12/2/2014 12/3/2014 12/3/2014 12/4/2014 12/5/2014 12/6/2014 12/6/2014 12/7/2014 12/8/2014 12/9/2014 12/9/2014 12/10/2014 12/11/2014 12/12/2014 12/13/2014 12/14/2014 12/15/2014 12/19/2014 12/20/2014 12/21/2014 12/22/2014 12/23/2014 12/24/2014 12/30/2014 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 12/1/2014 12/2/2014 12/3/2014 12/3/2014 12/4/2014 12/5/2014 12/6/2014 12/6/2014 12/7/2014 12/8/2014 12/9/2014 12/9/2014 12/10/2014 12/11/2014 12/12/2014 12/13/2014 12/14/2014 12/15/2014 12/19/2014 12/20/2014 12/21/2014 12/22/2014 12/23/2014 12/24/2014 12/30/2014 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 12/1/2014 12/2/2014 12/3/2014 12/3/2014 12/4/2014 12/5/2014
  • 17. 12/6/2014 12/6/2014 12/7/2014 12/8/2014 12/9/2014 12/9/2014 12/10/2014 12/11/2014 12/12/2014 12/13/2014 12/14/2014 12/15/2014 12/19/2014 12/ 20/2014 12/21/2014 12/22/2014 12/23/2014 12/24/2014 12/30/2014 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 12/1/2014 12/2/2014 12/3/2014 12/3/2014 12/4/2014 12/5/2014 12/6/2014 12/6/2014 12/7/2014 12/8/2014 12/9/2014 12/9/2014 12/10/2014 12/11/2014 12/12/2014 12/13/2014 12/14/2014 12/15/2014 12/19/2014 12/20/2014 12/21/2014 12/22/2014 12/23/2014 12/24/2014 12/30/2014 Module 3 ExplantionsSales system numberThis value is unique to each location. If we are including location in the analysis, the sales system number is not required. It is easier to use the name.nalysisExtract dateThe extract date does not addd any value to the analysis.Last nameThe last name does not add any value to the analyisFirst nameThe first name does not add any value to the analysis.StateState is unique to each location.TerritoryTerritory is unique to each location.Columns to be keptDate of saleDate is important to keep track of sales per month, weweek, day, and year.Sales consultant IDID is unique to each consultant.OfficeThe office is unique to each state.RegionThe region is unique to each state.Tax TypeTax type is important to each state to be applied to each sale.Total contractsImportant to know how many contracts per consultant.Total salesImportant to know the total sales per consultant.Total CancellationsImportant to know the number of
  • 18. cancellations per consultant. lgaray_datacompliance_061216.docx RUNNING HEADER: Data Compliance 1 RUNNING HEADER: Data Compliance 2 Data Compliance Lisa Garay Rasmussen College Authors Note This paper is being submitted for Anastasia Rashtachian’s B288 Business Analytics course. The state of each of the clients in the analysis help trace where we get more of our customers. Sales consultant identification helps us track the specific individuals who facilitated the sales. A total cancellation helps us indicate the total number of orders that never matured and thus no payments were made. It helps
  • 19. track the number of cancelled transactions for every consultant. The total sales help us trace the sales a particular consultant did. Some states have kept their sheets clean with their consultants since they make orders and honor their agreements. Manhattan state have done incredible honor in their contracts with the consultants since among more than 90 orders with the consultants only 10 orders were cancelled. They have maintained the best record with the consultants. Other states who have maintained their records include Louisville, Bronx, and El Paso. New Orleans indicate one of the regions whereby the sales noncompliance increase at an alarming rate. The cancelation of 10 orders should worry the progress of the consultant since out of the 10 orders, cancellation of all of them was inappropriate. During the same month, New Orleans also cancelled a total of 13 orders which saw a total cancellation of 23 orders out of 24 contracts. Later in the month, New Orleans cancels some other two orders and the trend is now consistent. Miami State has also a trend of cancelling their orders. The sales consultants need to find the reasons behind the numerous cancellations of orders after they gain the contract which consequently reduces the sales of the consultants. data - Shortcut.lnk data - Shortcut.zip data - Shortcut.lnk