SlideShare a Scribd company logo
2
Most read
Terzaghi Bearing Capacity Estimation in simple
terms with Calculation HTML Code
By Dr. C. Sachpazis
May 31, 2024
Terzaghi's soil bearing capacity theory, developed by Karl Terzaghi, is a fundamental principle in
geotechnical engineering used to determine the bearing capacity of shallow foundations. This theory
provides a method to calculate the ultimate bearing capacity of soil, which is the maximum load per
unit area that the soil can support without undergoing shear failure.
Key Concepts
1. Ultimate Bearing Capacity (qu):
The ultimate bearing capacity is the maximum pressure that can be applied at the base of the
foundation before the soil fails in shear.
2. Net Ultimate Bearing Capacity(qnu):
This is the ultimate bearing capacity minus the overburden pressure at the foundation level.
3. Allowable Bearing Capacity {qa):
This is the ultimate bearing capacity divided by a factor of safety(FOS), to ensure the foundation's
safety and stability under load conditions.
Terzaghi's Bearing Capacity Equation
The ultimate bearing capacity for a strip footing can be expressed as:
Where:
• q,, = Ultimate bearing capacity
• c = Cohesion of the soil
• 1 = Unit weight of the soil
• DJ = Depth of the foundation
• B = Width of the foundation
• Ne, Nq, N1 = Bearing capacity factors, which depend on the internal friction angle(</>) of the soil
Bearing Capacity Factors
ThebearingcapacityfactorsNc,Nq,andNγaredimensionlesscoefficientsthatdependontheangleof
internal friction (¢) of thesoil. They can be derived from empirical formulas or charts based on
experimental data.
• Ne is related to the soil's cohesion.
• Nq accounts for the effect of the overburden pressure.
• N1 considers the effect of the soil weight.
The expressions for these factors are:
Assumptions in Terzaghi's Theory
1. Homogeneous and Isotropic Soil:
The soil is assumed to be homogeneous and isotropic, meaning its properties are consistent in all
directions.
2. Rigid Foundation:
The foundation is considered rigid and perfectly rough.
3. General Shear Failure:
The theory assumes that thesoil will fail in a general shear mode, characterized by well-defined
shear planes extending from the edges of the footing to the ground surface.
4. Semi-Infinite Soil Mass:
The soil mass is considered semi-infinite, meaning it extends infinitely in horizontal directions.
5. Shallow Foundation:
The depth of the foundation is assumed to be small compared to its width (shallow foundation).
Adjustments for Shape and Depth
For different foundation shapes (e.g., circular, square) and depths, Terzaghi's equation is modified by
introducing shape and depth factors:
Where sand dare shape and depth factors, respectively, which are determined based on the
foundation type and conditions.
Practical Considerations
When applying Terzaghi's theory in practice, geotechnical engineers must:
1. Conduct Soil Testing:
Perform site-specific soil tests to determine soil properties such as cohesion, internal friction angle,
and unit weight.
2. Factor of Safety:
Apply an appropriate factor of safety to account for uncertainties in soil properties and loading
conditions.
3. Settlement Analysis:
Consider the settlement behavior of the soil to ensure that the foundation will perform
satisfactorily under the expected loads.
4. Local Adjustments:
Adjust the theoretical values based on local experience and empirical correlations, if necessary.
Conclusion
Terzaghi's soil bearing capacity theory provides a robust framework for evaluating the load-carrying
capacity of shallow foundations. By understanding and applying this theory, geotechnical engineers can
design safe and efficient foundation systems that meet the demands of various construction projects.
By Dr. Costas Sachpazis
HTML code to calculate the bearing capacity of soil using Terzaghi's bearing capacity
theory
Now, based on the provided document, we can develop an HTML code to calculate the bearing
capacity of soil using Terzaghi's bearing capacity theory. The following code includes user inputs for
cohesion (c), unit weight of soil (y), depth of foundation (Df), width of foundation (B), and the internal
angle of friction (cp). It also considers the depth of the water table (Dw).
Here's the HTML code to create the form and perform the calculation:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Bearing Capacity Calculator</title>
<style>
body {
font-family: Arial, sans-serif;
margin: 20px;
}
label, input {
display:
block;
margin:
10px 0;
}
input[type="text"], input[type="number"] {
width: 100%;
padding: 8px;
box-sizing: border-box;
}
button {
padding: 10px 20px;
background-color: #4CAF50;
color: white;
border: none;
cursor: pointer;
}
button:hover {
background-color: #45a049;
}
.result {
margin-top: 20px;
padding: 10px;
border: 1px solid #ccc;
}
.footer {
margin-top: 30px;
font-size: 0.9em;
color: #666;
}
</style>
</head>
<body>
<h1>Bearing Capacity Calculator</h1>
<form id="bearingCapacityForm">
<label for="c">Cohesion (c) [kN/m²]:</label>
<input type="number" id="c" name="c" required>
<label for="gamma">Unit Weight of Soil (γ) [kN/m³]:</label>
<input type="number" id="gamma" name="gamma" required>
<label for="Df">Depth of Foundation (Df) [m]:</label>
<input type="number" id="Df" name="Df" required>
<label for="B">Width of Foundation (B) [m]:</label>
<input type="number" id="B" name="B" required>
<label for="phi">Internal Angle of Friction (φ) [degrees]:</label>
<input type="number" id="phi" name="phi" required>
<label for="Dw">Depth of Water Table (Dw) [m]:</label>
<input type="number" id="Dw" name="Dw" required>
<button type="button" onclick="calculateBearingCapacity()">Calculate Bearing
Capacity</button>
</form>
<div class="result" id="result"></div>
<div class="footer">
Program written by Dr. Costas Sachpazis.
</div>
<script>
function calculateBearingCapacity() {
// Get the values from the form
const c = parseFloat(document.getElementById('c').value);
const gamma = parseFloat(document.getElementById('gamma').value);
const Df = parseFloat(document.getElementById('Df').value);
const B = parseFloat(document.getElementById('B').value);
const phi = parseFloat(document.getElementById('phi').value);
const Dw = parseFloat(document.getElementById('Dw').value);
// Convert phi from degrees to radians
const phiRad = phi * Math.PI / 180;
// Calculate Nq, Nc, and Ny using Terzaghi's bearing capacity factors
const Nq = Math.exp(Math.PI * Math.tan(phiRad)) * Math.tan(Math.PI / 4 +
phiRad / 2) ** 2;
const Nc = (Nq - 1) / Math.tan(phiRad);
const Ny = 2 * (Nq + 1) * Math.tan(phiRad);
// Calculate the correction factor for the water table
const DwB = Dw / B;
const DwDf = Dw / Df;
let gammaEffective = gamma;
if (DwDf < 1) {
gammaEffective = gamma * (1 - 0.5 * DwDf);
} else if (DwB < 1) {
gammaEffective = gamma * (1 - 0.5 * DwB);
}
// Calculate the ultimate bearing capacity
const qu = 1 / 2 * gammaEffective * B * Ny + gammaEffective * Df * Nq + c *
Nc;
// Calculate the allowable bearing capacity
const qa = qu / 3;
// Display the result
document.getElementById('result').innerHTML = `
<strong>Ultimate Bearing Capacity (qu):</strong> ${qu.toFixed(2)} kN/
m²<br>
`;
}
<strong>Allowable Bearing Capacity (qa):</strong> ${qa.toFixed(2)} kN/m²
</script>
</body>
</html>
This code provides a simple interface for users to input the required parameters and
calculates the ultimate and allowable bearing capacity based on Terzaghi's bearing
capacity theory. The form includes inputs for cohesion, unit weight of soil, depth of
foundation, width of foundation, internal angle of friction, and the depth of the water
table. The calculation considers the presence of the water table and adjusts the
effective unit weight accordingly.
By Dr. Costas Sachpazis

More Related Content

PDF
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
 
PPTX
Presentation (Pagkratios Chitas)
DOC
Bearing capacity shear_wave
PPTX
Civil pile
PPTX
Civil Pile Foundation ppt.pptx
PPTX
Sachpazis: Understanding Bearing Capacity Equations in Eurocode 7
PDF
Lecture 1. bearing capacity of soil
PDF
Cost optimization of using geogrids vs piles in the foundation of interchange...
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
 
Presentation (Pagkratios Chitas)
Bearing capacity shear_wave
Civil pile
Civil Pile Foundation ppt.pptx
Sachpazis: Understanding Bearing Capacity Equations in Eurocode 7
Lecture 1. bearing capacity of soil
Cost optimization of using geogrids vs piles in the foundation of interchange...

Similar to Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculation HTML Code Included (20)

PDF
Ijciet 10 01_049
PDF
Bearing-Capacity-part
PPT
CHAPTER 5 - FOUNDATION (Bearing Capacity)
PPTX
Bearing capacity of soil that reflects the strength of foundation.pptx
PDF
137518876 bearing-capacity-from-spt
PDF
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
PDF
IRJET - Effect of Local Scour on Foundation of Hydraulic Structure
PDF
Structural Design and Rehabilitation of Reinforced Concrete Structure
PPT
pilefoundation_16th aug.ppt
PPTX
Horizontal Vessel Loading Calculation
PPTX
Raft foundations
PPTX
Pile Foundation_Neeraj_RITES.pptx
PDF
Sachpazis_Consolidation Settlement Calculation Program-The Python Code and th...
PDF
Cimentaciones de torres
PDF
Group 2 , ce471
PPTX
BEARING CAPASITY OFSOIL.pptx
PDF
4.0 bearing capacity shallow foundations
PDF
An Approximate Analysis Procedure for Piled Raft subjected to Vertical Loading
PDF
Soil Bearing Capacity.pdf
PDF
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
Ijciet 10 01_049
Bearing-Capacity-part
CHAPTER 5 - FOUNDATION (Bearing Capacity)
Bearing capacity of soil that reflects the strength of foundation.pptx
137518876 bearing-capacity-from-spt
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
IRJET - Effect of Local Scour on Foundation of Hydraulic Structure
Structural Design and Rehabilitation of Reinforced Concrete Structure
pilefoundation_16th aug.ppt
Horizontal Vessel Loading Calculation
Raft foundations
Pile Foundation_Neeraj_RITES.pptx
Sachpazis_Consolidation Settlement Calculation Program-The Python Code and th...
Cimentaciones de torres
Group 2 , ce471
BEARING CAPASITY OFSOIL.pptx
4.0 bearing capacity shallow foundations
An Approximate Analysis Procedure for Piled Raft subjected to Vertical Loading
Soil Bearing Capacity.pdf
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
Ad

More from Dr.Costas Sachpazis (20)

PDF
Σαχπάζης: Υπολογισμός σταθερών Winkler-Pasternak για Θεμελιώσεις με επίλυση Π...
PPTX
Sachpazis: Foundation Analysis and Design: Single Piles
PPTX
Δρ. Κώστας Σαχπάζης: Πλεονεκτήματα & Μειονεκτήματα της Μεταλλικής Κατασκευής
PPTX
Σαχπάζης: ΚΑΝΕΠΕ_3η Αναθεώρηση_Κανονισμός Επεμβάσεων (ΚΑΝ.ΕΠΕ.)
PDF
Πρωτοποριακό Εργαλείο για Σεισμική Ανάλυση και Αντισεισμικό Σχεδιασμό στην Ελ...
PPTX
Sachpazis-Σαχπάζης_Σεισμική Δραστηριότητα στη Σαντορίνη
PPTX
Sachpazis_Σεισμική Δραστηριότητα στο Αιγαίο: Έντονη Ανησυχία
PPTX
Sachpazis: The Future of Civil and Geotechnical Engineerin
PDF
The effect of footing shape on the bearing capacity of shallow foundations: A...
DOCX
Sachpazis: The Role of Geotechnical Engineers in Protection from Climate Change
PDF
Sachpazis: The Role of Geotechnical Engineers in the Optimal Design of Long-S...
PPTX
Sachpazis: Automating Business with AI Agents
PPTX
Sachpazis: OpenAI-Unveils-O3-The-Next-Frontier-in-AI
PPTX
Sachpazis_Σαχπάζης. Βαθιές Θεμελιώσεις και Πασσαλοθεμελιώσεις
PPTX
Σαχπάζης_Αντιστηρίξεις Υποστυλώσεις σε Επιχειρήσεις Κατάρρευσης Κτιρίων
PPTX
Sachpazis: Demystifying Neural Networks: A Comprehensive Guide
PPTX
Sachpazis: Slope Stability Analysis: Engineering Safety and Reliability
PPTX
Sachpazis_Σαχπάζης. Η Κίνα Ανοίγει τη Βαθύτερη Τρύπα στον Κόσμο. Μια Επιστημο...
PPTX
Σαχπάζης. Η Γεωπολιτική της Εξάρτησης και το Δημογραφικό της Ελλάδας
DOCX
Who is Dr. Costas Sachpazis? His Education, his Academic Path and his Profess...
Σαχπάζης: Υπολογισμός σταθερών Winkler-Pasternak για Θεμελιώσεις με επίλυση Π...
Sachpazis: Foundation Analysis and Design: Single Piles
Δρ. Κώστας Σαχπάζης: Πλεονεκτήματα & Μειονεκτήματα της Μεταλλικής Κατασκευής
Σαχπάζης: ΚΑΝΕΠΕ_3η Αναθεώρηση_Κανονισμός Επεμβάσεων (ΚΑΝ.ΕΠΕ.)
Πρωτοποριακό Εργαλείο για Σεισμική Ανάλυση και Αντισεισμικό Σχεδιασμό στην Ελ...
Sachpazis-Σαχπάζης_Σεισμική Δραστηριότητα στη Σαντορίνη
Sachpazis_Σεισμική Δραστηριότητα στο Αιγαίο: Έντονη Ανησυχία
Sachpazis: The Future of Civil and Geotechnical Engineerin
The effect of footing shape on the bearing capacity of shallow foundations: A...
Sachpazis: The Role of Geotechnical Engineers in Protection from Climate Change
Sachpazis: The Role of Geotechnical Engineers in the Optimal Design of Long-S...
Sachpazis: Automating Business with AI Agents
Sachpazis: OpenAI-Unveils-O3-The-Next-Frontier-in-AI
Sachpazis_Σαχπάζης. Βαθιές Θεμελιώσεις και Πασσαλοθεμελιώσεις
Σαχπάζης_Αντιστηρίξεις Υποστυλώσεις σε Επιχειρήσεις Κατάρρευσης Κτιρίων
Sachpazis: Demystifying Neural Networks: A Comprehensive Guide
Sachpazis: Slope Stability Analysis: Engineering Safety and Reliability
Sachpazis_Σαχπάζης. Η Κίνα Ανοίγει τη Βαθύτερη Τρύπα στον Κόσμο. Μια Επιστημο...
Σαχπάζης. Η Γεωπολιτική της Εξάρτησης και το Δημογραφικό της Ελλάδας
Who is Dr. Costas Sachpazis? His Education, his Academic Path and his Profess...
Ad

Recently uploaded (20)

PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PDF
PPT on Performance Review to get promotions
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
composite construction of structures.pdf
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPT
introduction to datamining and warehousing
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPT
Project quality management in manufacturing
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
Construction Project Organization Group 2.pptx
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
Foundation to blockchain - A guide to Blockchain Tech
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPT on Performance Review to get promotions
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Automation-in-Manufacturing-Chapter-Introduction.pdf
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
composite construction of structures.pdf
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
Embodied AI: Ushering in the Next Era of Intelligent Systems
introduction to datamining and warehousing
Model Code of Practice - Construction Work - 21102022 .pdf
R24 SURVEYING LAB MANUAL for civil enggi
Project quality management in manufacturing
OOP with Java - Java Introduction (Basics)
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Construction Project Organization Group 2.pptx
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
bas. eng. economics group 4 presentation 1.pptx
Foundation to blockchain - A guide to Blockchain Tech

Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculation HTML Code Included

  • 1. Terzaghi Bearing Capacity Estimation in simple terms with Calculation HTML Code By Dr. C. Sachpazis May 31, 2024 Terzaghi's soil bearing capacity theory, developed by Karl Terzaghi, is a fundamental principle in geotechnical engineering used to determine the bearing capacity of shallow foundations. This theory provides a method to calculate the ultimate bearing capacity of soil, which is the maximum load per unit area that the soil can support without undergoing shear failure. Key Concepts 1. Ultimate Bearing Capacity (qu): The ultimate bearing capacity is the maximum pressure that can be applied at the base of the foundation before the soil fails in shear. 2. Net Ultimate Bearing Capacity(qnu): This is the ultimate bearing capacity minus the overburden pressure at the foundation level. 3. Allowable Bearing Capacity {qa): This is the ultimate bearing capacity divided by a factor of safety(FOS), to ensure the foundation's safety and stability under load conditions. Terzaghi's Bearing Capacity Equation The ultimate bearing capacity for a strip footing can be expressed as: Where: • q,, = Ultimate bearing capacity • c = Cohesion of the soil • 1 = Unit weight of the soil • DJ = Depth of the foundation • B = Width of the foundation • Ne, Nq, N1 = Bearing capacity factors, which depend on the internal friction angle(</>) of the soil Bearing Capacity Factors
  • 2. ThebearingcapacityfactorsNc,Nq,andNγaredimensionlesscoefficientsthatdependontheangleof internal friction (¢) of thesoil. They can be derived from empirical formulas or charts based on experimental data. • Ne is related to the soil's cohesion. • Nq accounts for the effect of the overburden pressure. • N1 considers the effect of the soil weight. The expressions for these factors are: Assumptions in Terzaghi's Theory 1. Homogeneous and Isotropic Soil: The soil is assumed to be homogeneous and isotropic, meaning its properties are consistent in all directions. 2. Rigid Foundation: The foundation is considered rigid and perfectly rough. 3. General Shear Failure: The theory assumes that thesoil will fail in a general shear mode, characterized by well-defined shear planes extending from the edges of the footing to the ground surface. 4. Semi-Infinite Soil Mass: The soil mass is considered semi-infinite, meaning it extends infinitely in horizontal directions. 5. Shallow Foundation: The depth of the foundation is assumed to be small compared to its width (shallow foundation). Adjustments for Shape and Depth For different foundation shapes (e.g., circular, square) and depths, Terzaghi's equation is modified by introducing shape and depth factors: Where sand dare shape and depth factors, respectively, which are determined based on the foundation type and conditions. Practical Considerations When applying Terzaghi's theory in practice, geotechnical engineers must: 1. Conduct Soil Testing: Perform site-specific soil tests to determine soil properties such as cohesion, internal friction angle, and unit weight. 2. Factor of Safety:
  • 3. Apply an appropriate factor of safety to account for uncertainties in soil properties and loading conditions. 3. Settlement Analysis: Consider the settlement behavior of the soil to ensure that the foundation will perform satisfactorily under the expected loads. 4. Local Adjustments: Adjust the theoretical values based on local experience and empirical correlations, if necessary. Conclusion Terzaghi's soil bearing capacity theory provides a robust framework for evaluating the load-carrying capacity of shallow foundations. By understanding and applying this theory, geotechnical engineers can design safe and efficient foundation systems that meet the demands of various construction projects. By Dr. Costas Sachpazis HTML code to calculate the bearing capacity of soil using Terzaghi's bearing capacity theory Now, based on the provided document, we can develop an HTML code to calculate the bearing capacity of soil using Terzaghi's bearing capacity theory. The following code includes user inputs for cohesion (c), unit weight of soil (y), depth of foundation (Df), width of foundation (B), and the internal angle of friction (cp). It also considers the depth of the water table (Dw). Here's the HTML code to create the form and perform the calculation: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Bearing Capacity Calculator</title> <style> body { font-family: Arial, sans-serif; margin: 20px; } label, input { display: block; margin: 10px 0; } input[type="text"], input[type="number"] { width: 100%; padding: 8px; box-sizing: border-box; }
  • 4. button { padding: 10px 20px; background-color: #4CAF50; color: white; border: none; cursor: pointer; } button:hover { background-color: #45a049; } .result { margin-top: 20px; padding: 10px; border: 1px solid #ccc; } .footer { margin-top: 30px; font-size: 0.9em; color: #666; } </style> </head> <body> <h1>Bearing Capacity Calculator</h1> <form id="bearingCapacityForm"> <label for="c">Cohesion (c) [kN/m²]:</label> <input type="number" id="c" name="c" required> <label for="gamma">Unit Weight of Soil (γ) [kN/m³]:</label> <input type="number" id="gamma" name="gamma" required> <label for="Df">Depth of Foundation (Df) [m]:</label> <input type="number" id="Df" name="Df" required> <label for="B">Width of Foundation (B) [m]:</label> <input type="number" id="B" name="B" required> <label for="phi">Internal Angle of Friction (φ) [degrees]:</label> <input type="number" id="phi" name="phi" required> <label for="Dw">Depth of Water Table (Dw) [m]:</label> <input type="number" id="Dw" name="Dw" required> <button type="button" onclick="calculateBearingCapacity()">Calculate Bearing Capacity</button> </form>
  • 5. <div class="result" id="result"></div> <div class="footer"> Program written by Dr. Costas Sachpazis. </div> <script> function calculateBearingCapacity() { // Get the values from the form const c = parseFloat(document.getElementById('c').value); const gamma = parseFloat(document.getElementById('gamma').value); const Df = parseFloat(document.getElementById('Df').value); const B = parseFloat(document.getElementById('B').value); const phi = parseFloat(document.getElementById('phi').value); const Dw = parseFloat(document.getElementById('Dw').value); // Convert phi from degrees to radians const phiRad = phi * Math.PI / 180; // Calculate Nq, Nc, and Ny using Terzaghi's bearing capacity factors const Nq = Math.exp(Math.PI * Math.tan(phiRad)) * Math.tan(Math.PI / 4 + phiRad / 2) ** 2; const Nc = (Nq - 1) / Math.tan(phiRad); const Ny = 2 * (Nq + 1) * Math.tan(phiRad); // Calculate the correction factor for the water table const DwB = Dw / B; const DwDf = Dw / Df; let gammaEffective = gamma; if (DwDf < 1) { gammaEffective = gamma * (1 - 0.5 * DwDf); } else if (DwB < 1) { gammaEffective = gamma * (1 - 0.5 * DwB); } // Calculate the ultimate bearing capacity const qu = 1 / 2 * gammaEffective * B * Ny + gammaEffective * Df * Nq + c * Nc;
  • 6. // Calculate the allowable bearing capacity const qa = qu / 3; // Display the result document.getElementById('result').innerHTML = ` <strong>Ultimate Bearing Capacity (qu):</strong> ${qu.toFixed(2)} kN/ m²<br> `; } <strong>Allowable Bearing Capacity (qa):</strong> ${qa.toFixed(2)} kN/m² </script> </body> </html> This code provides a simple interface for users to input the required parameters and calculates the ultimate and allowable bearing capacity based on Terzaghi's bearing capacity theory. The form includes inputs for cohesion, unit weight of soil, depth of foundation, width of foundation, internal angle of friction, and the depth of the water table. The calculation considers the presence of the water table and adjusts the effective unit weight accordingly. By Dr. Costas Sachpazis