SlideShare a Scribd company logo
Scaling Massive ElasticSearch
          Clusters

    Rafał Kuć – Sematext International
   @kucrafal @sematext sematext.com
Who Am I
•   „Solr 3.1 Cookbook” author
•   Sematext software engineer
•   Solr.pl co-founder
•   Father and husband :-)




                Copyright 2012 Sematext Int’l. All rights reserved
What Will I Talk About ?
•   ElasticSearch scaling
•   Indexing thousands of documents per second
•   Performing queries in tens of milliseconds
•   Controling shard and replica placement
•   Handling multilingual content
•   Performance testing
•   Cluster monitoring

                Copyright 2012 Sematext Int’l. All rights reserved
The Challenge
•   More than 50 millions of documents a day
•   Real time search
•   Less than 200ms average query latency
•   Throughput of at least 1000 QPS
•   Multilingual indexing
•   Multilingual querying



                Copyright 2012 Sematext Int’l. All rights reserved
Why ElasticSearch ?
• Written with NRT and cloud support in mind
• Uses Lucene and all its goodness
• Distributed indexing with document
  distribution control out of the box
• Easy index, shard and replicas creation on live
  cluster



               Copyright 2012 Sematext Int’l. All rights reserved
Index Design
• Several indices (at least one index for each day
  of data)
• Indices divided into multiple shards
• Multiple replicas of a single shard
• Real-time, synchronous replication
• Near-real-time index refresh (1 to 30 seconds)



               Copyright 2012 Sematext Int’l. All rights reserved
Shard Deployment Problems
•   Multiple shards per node
•   Replicas on the same nodes as shards
•   Not evenly distributed shards and replicas
•   Some nodes being hot, while others are cold




                Copyright 2012 Sematext Int’l. All rights reserved
Default Shard Deployment

 Shard 1       Shard 2                         Shard 3            Replica 1


              Replica 2
Node 1                                      Node 2




                    Replica 3



                  Node 3
ElasticSearch Cluster

                   Copyright 2012 Sematext Int’l. All rights reserved
What Can We Do With Shards Then ?
• Contol shard placement with node tags:
  – index.routing.allocation.include.tag
  – index.routing.allocation.exclude.tag
• Control shard placement with nodes IP
  addresses:
  – cluster.routing.allocation.include._ip
  – cluster.routing.allocation.exclude._ip
• Specified on index or cluster level
• Can be changed on live cluster !
                Copyright 2012 Sematext Int’l. All rights reserved
Shard Allocation Examples
• Cluster level:
curl -XPUT localhost:9200/_cluster/settings -d '{
   "persistent" : {
     "cluster.routing.allocation.exclude._ip" : "192.168.2.1"
   }
}'
• Index level:
curl -XPUT localhost:9200/sematext/ -d '{
   "index.routing.allocation.include.tag" : "nodeOne,nodeTwo"
}'

                    Copyright 2012 Sematext Int’l. All rights reserved
Number of Shards Per Node
• Allows one to specify number of shards per
  node
• Specified on index level
• Can be changed on live indices
• Example:
curl -XPUT localhost:9200/sematext -d '{
   "index.routing.allocation.total_shards_per_node" : 2
}'


                   Copyright 2012 Sematext Int’l. All rights reserved
Controlled Shard Deployment

 Shard 1     Replica 2                        Shard 3            Replica 1



Node 1                                     Node 2



                    Shard 2            Replica 3



                  Node 3
ElasticSearch Cluster

                  Copyright 2012 Sematext Int’l. All rights reserved
Does Routing Matters ?
• Controls target shard for each document
• Defaults to hash of a document identifier
• Can be specified explicitly (routing parameter) or
  as a field value (a bit less performant)
• Can take any value
• Example:
curl -XPUT localhost:9200/sematext/test/1?routing=1234 -d '{
  "title" : "Test routing document"
}'


                   Copyright 2012 Sematext Int’l. All rights reserved
Indexing the Data

  Shard       Replica                              Shard           Replica
    1           2                                    3               1


              Node 1                                                Node 2


                         Shard             Replica
                           2                 3


                                            Node 3
ElasticSearch Cluster

                        Indexing application
              Copyright 2012 Sematext Int’l. All rights reserved
How We Indexed Data

  Shard 1                                        Shard 2


Node 1                                        Node 2




                      Node 3

ElasticSearch Cluster



                  Indexing application

               Copyright 2012 Sematext Int’l. All rights reserved
Nodes Without Data
• Nodes used only to route data and queries to
  other nodes in the cluster
• Such nodes don’t suffer from I/O waits (of
  course Data Nodes don’t suffer from I/O waits
  all the time)
• Not default ElasticSearch behavior
• Setup by setting node.data to false


              Copyright 2012 Sematext Int’l. All rights reserved
Multilingual Indexing
• Detection of document's language before
  sending it for indexing
• With, e.g. Sematext LangID or Apache Tika
• Set known language analyzers in configuration
  or mappings
• Set analyzer during indexing (_analyzer field)



               Copyright 2012 Sematext Int’l. All rights reserved
Multilingual Indexing Example
{
 "test" : {
  "_analyzer" : { "path" : "langId" },
  "properties" : {
   "id" : { "type" : "long", "store" : "yes", "precision_step" : "0" },
   "title" : { "type" : "string", "store" : "yes", "index" : "analyzed" },
   "langId" : { "type" : "string", "store" : "yes", "index" : "not_analyzed" }
  }
 }
}

curl -XPUT localhost:9200/sematext/test/10 -d '{
  "title" : "Test document",
  "langId" : "english"
}'

                        Copyright 2012 Sematext Int’l. All rights reserved
Multilingual Queries
• Identify language of query before its execution
  (can be problematic)
• Query analyzer can be specified per query
  (analyzer parameter):
  curl -XGET
  localhost:9200/sematext/_search?q=let+AND+me&analyzer=english




                    Copyright 2012 Sematext Int’l. All rights reserved
Query Performance Factors – Lucene
               level
• Refresh interval
  – Defaults to 1 second
  – Can be specified on cluster or index level
  – curl -XPUT localhost:9200/_settings -d '{ "index" : {
    "refresh_interval" : "600s" } }'
• Merge factor
  – Defaults to 10
  – Can be specified on cluster or index level
  – curl -XPUT localhost:9200/_settings -d '{ "index" : {
    "merge.policy.merge_factor" : 30 } }'

                 Copyright 2012 Sematext Int’l. All rights reserved
Let’s Talk About Routing Once Again
• Routes a query to a particular shard
• Speeds up queries depending on number of
  shards for a given index
• Have to be specified manualy with routing
  parameter during query
• routing parameter can take any value:

curl -XGET
'localhost:9200/sematext/_search?q=test&routing=2012-02-16'


                  Copyright 2012 Sematext Int’l. All rights reserved
Querying ElasticSearch – No Routing

        Shard 1           Shard 2                 Shard 3               Shard 4



        Shard 5           Shard 6                 Shard 7               Shard 8


  ElasticSearch Index




                                     Application


                   Copyright 2012 Sematext Int’l. All rights reserved
Querying ElasticSearch – With Routing

         Shard 1           Shard 2                 Shard 3               Shard 4



         Shard 5           Shard 6                 Shard 7               Shard 8


   ElasticSearch Index




                                      Application


                    Copyright 2012 Sematext Int’l. All rights reserved
Performance Numbers
                  Queries without routing (200 shards, 1 replica)
#threads   Avg response time          Throughput             90% line           Median   CPU Utilization

   1          3169ms                  19,0/min              5214ms              2692ms    95 – 99%


                    Queries with routing (200 shards, 1 replica)
#threads   Avg response time          Throughput             90% line           Median   CPU Utilization

  10           196ms                   50,6/sec              642ms              29ms      25 – 40%
  20           218ms                   91,2/sec              718ms              11ms      10 – 15%




                           Copyright 2012 Sematext Int’l. All rights reserved
Scaling Query Throughput – What Else ?

• Increasing the number of shards for data
  distribution
• Increasing the number of replicas
• Using routing
• Avoid always hitting the same node and
  hotspotting it



              Copyright 2012 Sematext Int’l. All rights reserved
FieldCache and OutOfMemory
• ElasticSearch default setup doesn’t limit field
  data cache size




               Copyright 2012 Sematext Int’l. All rights reserved
FieldCache – What We Can do With It ?
• Keep its default type and set:
   – Maximum size (index.cache.field.max_size)
   – Expiration time (index.cache.field.expire)
• Change its type:
   – soft (index.cache.field.type)
• Change your data:
   – Make your fields less precise (ie: dates)
   – If you sort or facet on fields think if you can reduce
     fields granularity
• Buy more servers :-)

                   Copyright 2012 Sematext Int’l. All rights reserved
FieldCache After Changes




     Copyright 2012 Sematext Int’l. All rights reserved
Additional Problems We Encountered
• Rebalancing after full cluster restarts
  – cluster.routing.allocation.disable_allocation
  – cluster.routing.allocation.disable_replica_allocation
• Long startup and initialization
• Faceting with strings vs faceting on numbers on
  high cardinality fields



                Copyright 2012 Sematext Int’l. All rights reserved
JVM Optimization
• Remember to leave enough memory to OS for
  cache
• Make GC frequent ans short vs. rare and long
  – -XX:+UseParNewGC
  – -XX:+UseConcMarkSweepGC
  – -XX:+CMSParallelRemarkEnabled
• -XX:+AlwaysPreTouch (for short performance
  tests)

              Copyright 2012 Sematext Int’l. All rights reserved
Performance Testing
• Data
  – How much data do I need ?
  – Choosing the right queries
• Make changes
  – One change at a time
  – Understand the impact of the change
• Monitor your cluster (jstat, dstat/vmstat,
  SPM)
• Analyze your results
               Copyright 2012 Sematext Int’l. All rights reserved
ElasticSearch Cluster Monitoring
•   Cluster health
•   Indexing statistics
•   Query rate
•   JVM memory and garbage collector work
•   Cache usage
•   Node memory and CPU usage



               Copyright 2012 Sematext Int’l. All rights reserved
Cluster Health




                Node restart




Copyright 2012 Sematext Int’l. All rights reserved
Indexing Statistics




  Copyright 2012 Sematext Int’l. All rights reserved
Query Rate




Copyright 2012 Sematext Int’l. All rights reserved
JVM Memory and GC




   Copyright 2012 Sematext Int’l. All rights reserved
Cache Usage




Copyright 2012 Sematext Int’l. All rights reserved
CPU and Memory




 Copyright 2012 Sematext Int’l. All rights reserved
Summary
• Controlling shard and replica placement
• Indexing and querying multilingual data
• How to use sharding and routing and not to
  tear your hair out
• How to test your cluster performance to find
  bottle-necks
• How to monitor your cluster and find
  problems right away
              Copyright 2012 Sematext Int’l. All rights reserved
We Are Hiring !
•   Dig Search ?
•   Dig Analytics ?
•   Dig Big Data ?
•   Dig Performance ?
•   Dig working with and in open – source ?
•   We’re hiring world – wide !
       http://sematext.com/about/jobs.html

                Copyright 2012 Sematext Int’l. All rights reserved
How to Reach Us
• Rafał Kuć
  – Twitter: @kucrafal
  – E-mail: rafal.kuc@sematext.com
• Sematext
  – Twitter: @sematext
  – Website: http://sematext.com
• Graphs used in the presentation are from:
  – SPM for ElasticSearch (http://sematext.com/spm)

               Copyright 2012 Sematext Int’l. All rights reserved
Thank You For Your Attention

More Related Content

PDF
Data ingestion and distribution with apache NiFi
PDF
golang profiling の基礎
PPTX
Hive + Tez: A Performance Deep Dive
PDF
Confluent Tech Talk Korea
PPTX
Apache Tez - A New Chapter in Hadoop Data Processing
PDF
Intro to Elasticsearch
PPTX
ORC File - Optimizing Your Big Data
PDF
Apache Hadoopの未来 3系になって何が変わるのか?
Data ingestion and distribution with apache NiFi
golang profiling の基礎
Hive + Tez: A Performance Deep Dive
Confluent Tech Talk Korea
Apache Tez - A New Chapter in Hadoop Data Processing
Intro to Elasticsearch
ORC File - Optimizing Your Big Data
Apache Hadoopの未来 3系になって何が変わるのか?

What's hot (20)

PDF
Kubernetes + Python = ❤ - Cloud Native Prague
PDF
アプリ開発者、DB 管理者視点での Cloud Spanner 活用方法 | 第 10 回 Google Cloud INSIDE Games & App...
PPTX
Multicastが出来ないならUnicastすればいいじゃない
PDF
次世代データ基盤としてのSnowflakeの可能性 SnowDay 20211208
PDF
왜 컨테이너인가? - OpenShift 구축 사례와 컨테이너로 환경 전환 시 고려사항
PPTX
Interactive Realtime Dashboards on Data Streams using Kafka, Druid and Superset
PDF
What's Coming in CloudStack 4.19
PPTX
LIFULL HOME'SでのSolrの構成と運用の変遷
PPTX
Baremetal openstackのご紹介
PDF
GitOpsでKubernetesのManifest管理
PPTX
SAP HANAのソースエンドポイントとしての利用
PDF
Azure Database for PostgreSQL 入門 (PostgreSQL Conference Japan 2021)
PPTX
Apache Tez: Accelerating Hadoop Query Processing
PPTX
Elastic stack Presentation
PDF
Distributed Databases Deconstructed: CockroachDB, TiDB and YugaByte DB
PDF
Kinesis Analyticsの適用できない用途と、Kinesis Firehoseの苦労話
PDF
Hyper-V ネットワークの基本
PPT
Oracle WebLogic Server Basic Concepts
PPTX
OCI GoldenGate Overview 2021年4月版
PDF
タイル型ウィンドウマネージャawesomeのススメ
Kubernetes + Python = ❤ - Cloud Native Prague
アプリ開発者、DB 管理者視点での Cloud Spanner 活用方法 | 第 10 回 Google Cloud INSIDE Games & App...
Multicastが出来ないならUnicastすればいいじゃない
次世代データ基盤としてのSnowflakeの可能性 SnowDay 20211208
왜 컨테이너인가? - OpenShift 구축 사례와 컨테이너로 환경 전환 시 고려사항
Interactive Realtime Dashboards on Data Streams using Kafka, Druid and Superset
What's Coming in CloudStack 4.19
LIFULL HOME'SでのSolrの構成と運用の変遷
Baremetal openstackのご紹介
GitOpsでKubernetesのManifest管理
SAP HANAのソースエンドポイントとしての利用
Azure Database for PostgreSQL 入門 (PostgreSQL Conference Japan 2021)
Apache Tez: Accelerating Hadoop Query Processing
Elastic stack Presentation
Distributed Databases Deconstructed: CockroachDB, TiDB and YugaByte DB
Kinesis Analyticsの適用できない用途と、Kinesis Firehoseの苦労話
Hyper-V ネットワークの基本
Oracle WebLogic Server Basic Concepts
OCI GoldenGate Overview 2021年4月版
タイル型ウィンドウマネージャawesomeのススメ
Ad

Viewers also liked (20)

KEY
You know, for search. Querying 24 Billion Documents in 900ms
PDF
Elasticsearch 101 - Cluster setup and tuning
PPTX
Tuning Elasticsearch Indexing Pipeline for Logs
PPTX
Battle of the giants: Apache Solr vs ElasticSearch
PDF
Side by Side with Elasticsearch & Solr, Part 2
PDF
From zero to hero - Easy log centralization with Logstash and Elasticsearch
PDF
03. ElasticSearch : Data In, Data Out
PDF
Elasticsearch Data Analyses
PDF
Benchmark slideshow
PDF
Introduction to Elasticsearch
PPT
Lucene Introduction
PPT
Lucene basics
PDF
Elasticsearch for Logs & Metrics - a deep dive
PPTX
ElasticSearch in Production: lessons learned
PPTX
ElasticSearch Basic Introduction
PDF
Elasticsearch in Zalando
PPTX
Administering and Monitoring SolrCloud Clusters
PPTX
Battle of the Giants round 2
PDF
Solr Anti - patterns
PDF
What is in a Lucene index?
You know, for search. Querying 24 Billion Documents in 900ms
Elasticsearch 101 - Cluster setup and tuning
Tuning Elasticsearch Indexing Pipeline for Logs
Battle of the giants: Apache Solr vs ElasticSearch
Side by Side with Elasticsearch & Solr, Part 2
From zero to hero - Easy log centralization with Logstash and Elasticsearch
03. ElasticSearch : Data In, Data Out
Elasticsearch Data Analyses
Benchmark slideshow
Introduction to Elasticsearch
Lucene Introduction
Lucene basics
Elasticsearch for Logs & Metrics - a deep dive
ElasticSearch in Production: lessons learned
ElasticSearch Basic Introduction
Elasticsearch in Zalando
Administering and Monitoring SolrCloud Clusters
Battle of the Giants round 2
Solr Anti - patterns
What is in a Lucene index?
Ad

Similar to Scaling massive elastic search clusters - Rafał Kuć - Sematext (20)

PPTX
Scaling Massive Elasticsearch Clusters
PPTX
BigData Faceted Search Comparison between Apache Solr vs. ElasticSearch
PPTX
Devnexus 2018
PPTX
Battle of the Giants - Apache Solr vs. Elasticsearch (ApacheCon)
PDF
RedisConf17 - Doing More With Redis - Ofer Bengal and Yiftach Shoolman
PPTX
Dictionary Based Annotation at Scale with Spark by Sujit Pal
PPTX
Dictionary based Annotation at Scale with Spark, SolrTextTagger and OpenNLP
PPTX
Dev nexus 2017
PPTX
Solr Exchange: Introduction to SolrCloud
PPTX
Intro to Solr Cloud, Presented by Tim Potter at SolrExchage DC
PDF
"Source Code Abstracts Classification Using CNN", Vadim Markovtsev, Lead Soft...
PDF
What's New in Apache Hive
PPTX
Containers orchestrators: Docker vs. Kubernetes
PDF
Introduction to Apache Geode (Cork, Ireland)
PPTX
Scality S3 Server: Node js Meetup Presentation
PDF
Apache Geode Meetup, Cork, Ireland at CIT
ODP
GIDS2014: SolrCloud: Searching Big Data
PPTX
About elasticsearch
PDF
Building a Database for the End of the World
PDF
[Hic2011] using hadoop lucene-solr-for-large-scale-search by systex
Scaling Massive Elasticsearch Clusters
BigData Faceted Search Comparison between Apache Solr vs. ElasticSearch
Devnexus 2018
Battle of the Giants - Apache Solr vs. Elasticsearch (ApacheCon)
RedisConf17 - Doing More With Redis - Ofer Bengal and Yiftach Shoolman
Dictionary Based Annotation at Scale with Spark by Sujit Pal
Dictionary based Annotation at Scale with Spark, SolrTextTagger and OpenNLP
Dev nexus 2017
Solr Exchange: Introduction to SolrCloud
Intro to Solr Cloud, Presented by Tim Potter at SolrExchage DC
"Source Code Abstracts Classification Using CNN", Vadim Markovtsev, Lead Soft...
What's New in Apache Hive
Containers orchestrators: Docker vs. Kubernetes
Introduction to Apache Geode (Cork, Ireland)
Scality S3 Server: Node js Meetup Presentation
Apache Geode Meetup, Cork, Ireland at CIT
GIDS2014: SolrCloud: Searching Big Data
About elasticsearch
Building a Database for the End of the World
[Hic2011] using hadoop lucene-solr-for-large-scale-search by systex

Recently uploaded (20)

PDF
cuic standard and advanced reporting.pdf
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PDF
Machine learning based COVID-19 study performance prediction
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PPTX
Cloud computing and distributed systems.
PDF
Modernizing your data center with Dell and AMD
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Electronic commerce courselecture one. Pdf
PDF
Encapsulation_ Review paper, used for researhc scholars
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
cuic standard and advanced reporting.pdf
Chapter 3 Spatial Domain Image Processing.pdf
Mobile App Security Testing_ A Comprehensive Guide.pdf
Diabetes mellitus diagnosis method based random forest with bat algorithm
Unlocking AI with Model Context Protocol (MCP)
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
NewMind AI Weekly Chronicles - August'25 Week I
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Review of recent advances in non-invasive hemoglobin estimation
CIFDAQ's Market Insight: SEC Turns Pro Crypto
Machine learning based COVID-19 study performance prediction
Digital-Transformation-Roadmap-for-Companies.pptx
Cloud computing and distributed systems.
Modernizing your data center with Dell and AMD
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Electronic commerce courselecture one. Pdf
Encapsulation_ Review paper, used for researhc scholars
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows

Scaling massive elastic search clusters - Rafał Kuć - Sematext

  • 1. Scaling Massive ElasticSearch Clusters Rafał Kuć – Sematext International @kucrafal @sematext sematext.com
  • 2. Who Am I • „Solr 3.1 Cookbook” author • Sematext software engineer • Solr.pl co-founder • Father and husband :-) Copyright 2012 Sematext Int’l. All rights reserved
  • 3. What Will I Talk About ? • ElasticSearch scaling • Indexing thousands of documents per second • Performing queries in tens of milliseconds • Controling shard and replica placement • Handling multilingual content • Performance testing • Cluster monitoring Copyright 2012 Sematext Int’l. All rights reserved
  • 4. The Challenge • More than 50 millions of documents a day • Real time search • Less than 200ms average query latency • Throughput of at least 1000 QPS • Multilingual indexing • Multilingual querying Copyright 2012 Sematext Int’l. All rights reserved
  • 5. Why ElasticSearch ? • Written with NRT and cloud support in mind • Uses Lucene and all its goodness • Distributed indexing with document distribution control out of the box • Easy index, shard and replicas creation on live cluster Copyright 2012 Sematext Int’l. All rights reserved
  • 6. Index Design • Several indices (at least one index for each day of data) • Indices divided into multiple shards • Multiple replicas of a single shard • Real-time, synchronous replication • Near-real-time index refresh (1 to 30 seconds) Copyright 2012 Sematext Int’l. All rights reserved
  • 7. Shard Deployment Problems • Multiple shards per node • Replicas on the same nodes as shards • Not evenly distributed shards and replicas • Some nodes being hot, while others are cold Copyright 2012 Sematext Int’l. All rights reserved
  • 8. Default Shard Deployment Shard 1 Shard 2 Shard 3 Replica 1 Replica 2 Node 1 Node 2 Replica 3 Node 3 ElasticSearch Cluster Copyright 2012 Sematext Int’l. All rights reserved
  • 9. What Can We Do With Shards Then ? • Contol shard placement with node tags: – index.routing.allocation.include.tag – index.routing.allocation.exclude.tag • Control shard placement with nodes IP addresses: – cluster.routing.allocation.include._ip – cluster.routing.allocation.exclude._ip • Specified on index or cluster level • Can be changed on live cluster ! Copyright 2012 Sematext Int’l. All rights reserved
  • 10. Shard Allocation Examples • Cluster level: curl -XPUT localhost:9200/_cluster/settings -d '{ "persistent" : { "cluster.routing.allocation.exclude._ip" : "192.168.2.1" } }' • Index level: curl -XPUT localhost:9200/sematext/ -d '{ "index.routing.allocation.include.tag" : "nodeOne,nodeTwo" }' Copyright 2012 Sematext Int’l. All rights reserved
  • 11. Number of Shards Per Node • Allows one to specify number of shards per node • Specified on index level • Can be changed on live indices • Example: curl -XPUT localhost:9200/sematext -d '{ "index.routing.allocation.total_shards_per_node" : 2 }' Copyright 2012 Sematext Int’l. All rights reserved
  • 12. Controlled Shard Deployment Shard 1 Replica 2 Shard 3 Replica 1 Node 1 Node 2 Shard 2 Replica 3 Node 3 ElasticSearch Cluster Copyright 2012 Sematext Int’l. All rights reserved
  • 13. Does Routing Matters ? • Controls target shard for each document • Defaults to hash of a document identifier • Can be specified explicitly (routing parameter) or as a field value (a bit less performant) • Can take any value • Example: curl -XPUT localhost:9200/sematext/test/1?routing=1234 -d '{ "title" : "Test routing document" }' Copyright 2012 Sematext Int’l. All rights reserved
  • 14. Indexing the Data Shard Replica Shard Replica 1 2 3 1 Node 1 Node 2 Shard Replica 2 3 Node 3 ElasticSearch Cluster Indexing application Copyright 2012 Sematext Int’l. All rights reserved
  • 15. How We Indexed Data Shard 1 Shard 2 Node 1 Node 2 Node 3 ElasticSearch Cluster Indexing application Copyright 2012 Sematext Int’l. All rights reserved
  • 16. Nodes Without Data • Nodes used only to route data and queries to other nodes in the cluster • Such nodes don’t suffer from I/O waits (of course Data Nodes don’t suffer from I/O waits all the time) • Not default ElasticSearch behavior • Setup by setting node.data to false Copyright 2012 Sematext Int’l. All rights reserved
  • 17. Multilingual Indexing • Detection of document's language before sending it for indexing • With, e.g. Sematext LangID or Apache Tika • Set known language analyzers in configuration or mappings • Set analyzer during indexing (_analyzer field) Copyright 2012 Sematext Int’l. All rights reserved
  • 18. Multilingual Indexing Example { "test" : { "_analyzer" : { "path" : "langId" }, "properties" : { "id" : { "type" : "long", "store" : "yes", "precision_step" : "0" }, "title" : { "type" : "string", "store" : "yes", "index" : "analyzed" }, "langId" : { "type" : "string", "store" : "yes", "index" : "not_analyzed" } } } } curl -XPUT localhost:9200/sematext/test/10 -d '{ "title" : "Test document", "langId" : "english" }' Copyright 2012 Sematext Int’l. All rights reserved
  • 19. Multilingual Queries • Identify language of query before its execution (can be problematic) • Query analyzer can be specified per query (analyzer parameter): curl -XGET localhost:9200/sematext/_search?q=let+AND+me&analyzer=english Copyright 2012 Sematext Int’l. All rights reserved
  • 20. Query Performance Factors – Lucene level • Refresh interval – Defaults to 1 second – Can be specified on cluster or index level – curl -XPUT localhost:9200/_settings -d '{ "index" : { "refresh_interval" : "600s" } }' • Merge factor – Defaults to 10 – Can be specified on cluster or index level – curl -XPUT localhost:9200/_settings -d '{ "index" : { "merge.policy.merge_factor" : 30 } }' Copyright 2012 Sematext Int’l. All rights reserved
  • 21. Let’s Talk About Routing Once Again • Routes a query to a particular shard • Speeds up queries depending on number of shards for a given index • Have to be specified manualy with routing parameter during query • routing parameter can take any value: curl -XGET 'localhost:9200/sematext/_search?q=test&routing=2012-02-16' Copyright 2012 Sematext Int’l. All rights reserved
  • 22. Querying ElasticSearch – No Routing Shard 1 Shard 2 Shard 3 Shard 4 Shard 5 Shard 6 Shard 7 Shard 8 ElasticSearch Index Application Copyright 2012 Sematext Int’l. All rights reserved
  • 23. Querying ElasticSearch – With Routing Shard 1 Shard 2 Shard 3 Shard 4 Shard 5 Shard 6 Shard 7 Shard 8 ElasticSearch Index Application Copyright 2012 Sematext Int’l. All rights reserved
  • 24. Performance Numbers Queries without routing (200 shards, 1 replica) #threads Avg response time Throughput 90% line Median CPU Utilization 1 3169ms 19,0/min 5214ms 2692ms 95 – 99% Queries with routing (200 shards, 1 replica) #threads Avg response time Throughput 90% line Median CPU Utilization 10 196ms 50,6/sec 642ms 29ms 25 – 40% 20 218ms 91,2/sec 718ms 11ms 10 – 15% Copyright 2012 Sematext Int’l. All rights reserved
  • 25. Scaling Query Throughput – What Else ? • Increasing the number of shards for data distribution • Increasing the number of replicas • Using routing • Avoid always hitting the same node and hotspotting it Copyright 2012 Sematext Int’l. All rights reserved
  • 26. FieldCache and OutOfMemory • ElasticSearch default setup doesn’t limit field data cache size Copyright 2012 Sematext Int’l. All rights reserved
  • 27. FieldCache – What We Can do With It ? • Keep its default type and set: – Maximum size (index.cache.field.max_size) – Expiration time (index.cache.field.expire) • Change its type: – soft (index.cache.field.type) • Change your data: – Make your fields less precise (ie: dates) – If you sort or facet on fields think if you can reduce fields granularity • Buy more servers :-) Copyright 2012 Sematext Int’l. All rights reserved
  • 28. FieldCache After Changes Copyright 2012 Sematext Int’l. All rights reserved
  • 29. Additional Problems We Encountered • Rebalancing after full cluster restarts – cluster.routing.allocation.disable_allocation – cluster.routing.allocation.disable_replica_allocation • Long startup and initialization • Faceting with strings vs faceting on numbers on high cardinality fields Copyright 2012 Sematext Int’l. All rights reserved
  • 30. JVM Optimization • Remember to leave enough memory to OS for cache • Make GC frequent ans short vs. rare and long – -XX:+UseParNewGC – -XX:+UseConcMarkSweepGC – -XX:+CMSParallelRemarkEnabled • -XX:+AlwaysPreTouch (for short performance tests) Copyright 2012 Sematext Int’l. All rights reserved
  • 31. Performance Testing • Data – How much data do I need ? – Choosing the right queries • Make changes – One change at a time – Understand the impact of the change • Monitor your cluster (jstat, dstat/vmstat, SPM) • Analyze your results Copyright 2012 Sematext Int’l. All rights reserved
  • 32. ElasticSearch Cluster Monitoring • Cluster health • Indexing statistics • Query rate • JVM memory and garbage collector work • Cache usage • Node memory and CPU usage Copyright 2012 Sematext Int’l. All rights reserved
  • 33. Cluster Health Node restart Copyright 2012 Sematext Int’l. All rights reserved
  • 34. Indexing Statistics Copyright 2012 Sematext Int’l. All rights reserved
  • 35. Query Rate Copyright 2012 Sematext Int’l. All rights reserved
  • 36. JVM Memory and GC Copyright 2012 Sematext Int’l. All rights reserved
  • 37. Cache Usage Copyright 2012 Sematext Int’l. All rights reserved
  • 38. CPU and Memory Copyright 2012 Sematext Int’l. All rights reserved
  • 39. Summary • Controlling shard and replica placement • Indexing and querying multilingual data • How to use sharding and routing and not to tear your hair out • How to test your cluster performance to find bottle-necks • How to monitor your cluster and find problems right away Copyright 2012 Sematext Int’l. All rights reserved
  • 40. We Are Hiring ! • Dig Search ? • Dig Analytics ? • Dig Big Data ? • Dig Performance ? • Dig working with and in open – source ? • We’re hiring world – wide ! http://sematext.com/about/jobs.html Copyright 2012 Sematext Int’l. All rights reserved
  • 41. How to Reach Us • Rafał Kuć – Twitter: @kucrafal – E-mail: rafal.kuc@sematext.com • Sematext – Twitter: @sematext – Website: http://sematext.com • Graphs used in the presentation are from: – SPM for ElasticSearch (http://sematext.com/spm) Copyright 2012 Sematext Int’l. All rights reserved
  • 42. Thank You For Your Attention