SlideShare a Scribd company logo
UNIT III
Searching and Sorting
Searching
• Given a collection and an element (key) to
find…
• Output
– Print a message (“Found”, “Not Found)
– Return a value (position of key )
Linear Search: A Simple Search
• A search traverses the collection until
– The desired element is found
– Or the collection is exhausted
• If the collection is ordered, I might not
have to look at all elements
– I can stop looking when I know the
element cannot be in the collection.
Iterative Array Search
procedure Search(my_array Array,
target Num)
i Num
i <- 1
loop for (i=0;i <MAX ;i++)
if(a[i]==target)
print(“Target data found”)
break;
endloop
if(i > MAX) then
print(“Target data not found”)
endif
endprocedure // Search
my_array
7 12 5 22 13 32
1 2 3 4 5 6
target = 13
procedure Search(my_array Array,
target Num)
i Num
i <- 1
loop for (i=0;i <MAX ;i++)
if(a[i]==target)
print(“Target data found”)
break;
endloop
if(i > MAX) then
print(“Target data not found”)
endif
endprocedure // Search
procedure Search(my_array isoftype in NumArrayType,
target isoftype in Num)
i isoftype Num
i <- 1
loop
exitif((i > MAX) OR (my_array[i] = target))
i <- i + 1
endloop
if(i > MAX) then
print(“Target data not found”)
else
print(“Target data found”)
endif
endprocedure // Search
my_array
7 12 5 22 13 32
1 2 3 4 5 6
target = 13
procedure Search(my_array isoftype in NumArrayType,
target isoftype in Num)
i isoftype Num
i <- 1
loop
exitif((i > MAX) OR (my_array[i] = target))
i <- i + 1
endloop
if(i > MAX) then
print(“Target data not found”)
else
print(“Target data found”)
endif
endprocedure // Search
my_array
7 12 5 22 13 32
1 2 3 4 5 6
target = 13
procedure Search(my_array isoftype in NumArrayType,
target isoftype in Num)
i isoftype Num
i <- 1
loop
exitif((i > MAX) OR (my_array[i] = target))
i <- i + 1
endloop
if(i > MAX) then
print(“Target data not found”)
else
print(“Target data found”)
endif
endprocedure // Search
my_array
7 12 5 22 13 32
1 2 3 4 5 6
target = 13
procedure Search(my_array isoftype in NumArrayType,
target isoftype in Num)
i isoftype Num
i <- 1
loop
exitif((i > MAX) OR (my_array[i] = target))
i <- i + 1
endloop
if(i > MAX) then
print(“Target data not found”)
else
print(“Target data found”)
endif
endprocedure // Search
my_array
7 12 5 22 13 32
1 2 3 4 5 6
target = 13
procedure Search(my_array isoftype in NumArrayType,
target isoftype in Num)
i isoftype Num
i <- 1
loop
exitif((i > MAX) OR (my_array[i] = target))
i <- i + 1
endloop
if(i > MAX) then
print(“Target data not found”)
else
print(“Target data found”)
endif
endprocedure // Search
my_array
7 12 5 22 13 32
1 2 3 4 5 6
target = 13
procedure Search(my_array isoftype in NumArrayType,
target isoftype in Num)
i isoftype Num
i <- 1
loop
exitif((i > MAX) OR (my_array[i] = target))
i <- i + 1
endloop
if(i > MAX) then
print(“Target data not found”)
else
print(“Target data found”)
endif
endprocedure // Search
my_array
7 12 5 22 13 32
1 2 3 4 5 6
target = 13
procedure Search(my_array isoftype in NumArrayType,
target isoftype in Num)
i isoftype Num
i <- 1
loop
exitif((i > MAX) OR (my_array[i] = target))
i <- i + 1
endloop
if(i > MAX) then
print(“Target data not found”)
else
print(“Target data found”)
endif
endprocedure // Search
my_array
7 12 5 22 13 32
1 2 3 4 5 6
target = 13
Target data found
procedure Search(my_array isoftype in NumArrayType,
target isoftype in Num)
i isoftype Num
i <- 1
loop
exitif((i > MAX) OR (my_array[i] = target))
i <- i + 1
endloop
if(i > MAX) then
print(“Target data not found”)
else
print(“Target data found”)
endif
endprocedure // Search
my_array
7 12 5 22 13 32
1 2 3 4 5 6
target = 13
Linear Search Analysis: Best Case
procedure Search(my_array Array,
target Num)
i Num
i <- 1
loop
exitif((i > MAX) OR (my_array[i] = target))
i <- i + 1
endloop
if(i > MAX) then
print(“Target data not found”)
else
print(“Target data found”)
endif
endprocedure // Search
Scan the array
Best Case: match with the first item
7 12 5 22 13 32
target = 7
Best Case:
1 comparison
Linear Search Analysis: Worst Case
procedure Search(my_array Array,
target Num)
i Num
i <- 1
loop
exitif((i > MAX) OR (my_array[i] = target))
i <- i + 1
endloop
if(i > MAX) then
print(“Target data not found”)
else
print(“Target data found”)
endif
endprocedure // Search
Scan the array
Worst Case: match with the last item (or no match)
7 12 5 22 13 32
target = 32
Worst Case:
N comparisons
Binary Search
The Scenario
• We have a sorted array
• We want to determine if a particular element is in the array
– Once found, print or return (index, boolean, etc.)
– If not found, indicate the element is not in the collection
7 12 42 59 71 86 104 212
A Better Search Algorithm
• Of course we could use our simpler search
and traverse the array
• But we can use the fact that the array is
sorted to our advantage
• This will allow us to reduce the number of
comparisons
Binary Search
• Requires a sorted array or a binary search tree.
• Cuts the “search space” in half each time.
• Keeps cutting the search space in half until the
target is found or has exhausted the all possible
locations.
Binary Search Algorithm
look at “middle” element
if no match then
look left (if need smaller) or
right (if need larger)
1 7 9 12 33 42 59 76 81 84 91 92 93 99
Look for 42
The Algorithm
look at “middle” element
if no match then
look left or right
1 7 9 12 33 42 59 76 81 84 91 92 93 99
Look for 42
The Algorithm
look at “middle” element
if no match then
look left or right
1 7 9 12 33 42 59 76 81 84 91 92 93 99
Look for 42
The Algorithm
look at “middle” element
if no match then
look left or right
1 7 9 12 33 42 59 76 81 84 91 92 93 99
Look for 42
The Binary Search Algorithm
• Return found or not found (true or false), so it should
be a function.
• When move left or right, change the array boundaries
– We’ll need a first and last
The Binary Search Algorithm
calculate middle position
if (first and last have “crossed”) then
“Item not found”
elseif (element at middle = to_find) then
“Item Found”
elseif to_find < element at middle then
Look to the left
else
Look to the right
Looking Left
• Use indices “first” and “last” to keep track of
where we are looking
• Move left by setting last = middle – 1
7 12 42 59 71 86 104 212
F L
M
L
Looking Right
• Use indices “first” and “last” to keep track of
where we are looking
• Move right by setting first = middle + 1
7 12 42 59 71 86 104 212
F L
M F
Binary Search Example – Found
7 12 42 59 71 86 104 212
Looking for 42
F L
M
Binary Search Example – Found
7 12 42 59 71 86 104 212
Looking for 42
F L
M
Binary Search Example – Found
7 12 42 59 71 86 104 212
42 found – in 3 comparisons
F
L
M
Binary Search Example – Not Found
7 12 42 59 71 86 104 212
Looking for 89
F L
M
Binary Search Example – Not Found
7 12 42 59 71 86 104 212
Looking for 89
F L
M
Binary Search Example – Not Found
7 12 42 59 71 86 104 212
Looking for 89
F L
M
Binary Search Example – Not Found
7 12 42 59 71 86 104 212
89 not found – 3 comparisons
F
L
Function Find return boolean (A Array, first, last, to_find)
middle <- (first + last) div 2
if (first > last) then
return false
elseif (A[middle] = to_find) then
return true
elseif (to_find < A[middle]) then
return Find(A, first, middle–1, to_find)
else
return Find(A, middle+1, last, to_find)
endfunction
Binary Search Function
Binary Search Analysis: Best Case
Function Find return boolean (A Array, first, last, to_find)
middle <- (first + last) div 2
if (first > last) then
return false
elseif (A[middle] = to_find) then
return true
elseif (to_find < A[middle]) then
return Find(A, first, middle–1, to_find)
else
return Find(A, middle+1, last, to_find)
endfunction
Best Case: match from the firs comparison
Best Case:
1 comparison
1 7 9 12 33 42 59 76 81 84 91 92 93 99
Target: 59
Binary Search Analysis: Worst Case
Function Find return boolean (A Array, first, last, to_find)
middle <- (first + last) div 2
if (first > last) then
return false
elseif (A[middle] = to_find) then
return true
elseif (to_find < A[middle]) then
return Find(A, first, middle–1, to_find)
else
return Find(A, middle+1, last, to_find)
endfunction
Worst Case: divide until reach one item, or no match.
1 7 9 12 33 42 59 76 81 84 91 92 93 99
How many
comparisons??
Binary Search Analysis: Worst Case
• With each comparison we throw away ½ of the list
N
N/2
N/4
N/8
1
………… 1 comparison
………… 1 comparison
………… 1 comparison
………… 1 comparison
………… 1 comparison
.
.
.
Number of steps is at
most Log2N
Summary
• Binary search reduces the work by half at each
comparison
• If array is not sorted  Linear Search
– Best Case O(1)
– Worst Case O(N)
• If array is sorted  Binary search
– Best Case O(1)
– Worst Case O(Log2N)

More Related Content

PPTX
3.Problem Solving Techniques and Data Structures.pptx
DOCX
PPS 5.5.BASIC ALGORITHMS SEARCHING (LINEAR SEARCH, BINARY SEARCH ETC.), BASI...
PDF
Searching
PPT
search_sort.ppt
PPTX
Binary search Algorithm
DOCX
UNIT V.docx
PDF
UNIT IV -Data Structures.pdf
PPTX
Searching Algorithms - Foundations of Algorithms
3.Problem Solving Techniques and Data Structures.pptx
PPS 5.5.BASIC ALGORITHMS SEARCHING (LINEAR SEARCH, BINARY SEARCH ETC.), BASI...
Searching
search_sort.ppt
Binary search Algorithm
UNIT V.docx
UNIT IV -Data Structures.pdf
Searching Algorithms - Foundations of Algorithms

Similar to Searching.ppt (20)

PPT
cs1311lecture15wdljjjjjjjjjjjjjjjjjjjjjjj.ppt
PPT
searching via traversal. binary search tree
PPTX
Searching and Sorting Algorithms in Data Structures
PPT
Chapter 4: basic search algorithms data structure
PPT
4.2 bst
PDF
PPTX
searching in data structure.pptx
PPTX
Algorithm & data structures lec4&5
PPTX
Chapter 3 - Data Structure and Algorithms.pptx
PDF
Linear and Binary Search
PPTX
Unit 7 sorting
PPTX
Unit 8 searching and hashing
PPTX
data structures and algorithms Unit 3
PPTX
Rahat &amp; juhith
PPTX
Searching and Sorting algorithms and working
PPT
Chapter 11 - Sorting and Searching
PPT
Chapter 11 ds
PPTX
AJisthewewrtyuiojhghfdfsgvhjhklopi87ytrytfghjk
PDF
Chapter 1 - Introduction to Searching and Sorting Algorithms - Student.pdf
PDF
advanced searching and sorting.pdf
cs1311lecture15wdljjjjjjjjjjjjjjjjjjjjjjj.ppt
searching via traversal. binary search tree
Searching and Sorting Algorithms in Data Structures
Chapter 4: basic search algorithms data structure
4.2 bst
searching in data structure.pptx
Algorithm & data structures lec4&5
Chapter 3 - Data Structure and Algorithms.pptx
Linear and Binary Search
Unit 7 sorting
Unit 8 searching and hashing
data structures and algorithms Unit 3
Rahat &amp; juhith
Searching and Sorting algorithms and working
Chapter 11 - Sorting and Searching
Chapter 11 ds
AJisthewewrtyuiojhghfdfsgvhjhklopi87ytrytfghjk
Chapter 1 - Introduction to Searching and Sorting Algorithms - Student.pdf
advanced searching and sorting.pdf
Ad

Recently uploaded (20)

PDF
TR - Agricultural Crops Production NC III.pdf
PDF
01-Introduction-to-Information-Management.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
Institutional Correction lecture only . . .
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Complications of Minimal Access Surgery at WLH
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
TR - Agricultural Crops Production NC III.pdf
01-Introduction-to-Information-Management.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Supply Chain Operations Speaking Notes -ICLT Program
Anesthesia in Laparoscopic Surgery in India
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Institutional Correction lecture only . . .
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Renaissance Architecture: A Journey from Faith to Humanism
2.FourierTransform-ShortQuestionswithAnswers.pdf
VCE English Exam - Section C Student Revision Booklet
Complications of Minimal Access Surgery at WLH
Module 4: Burden of Disease Tutorial Slides S2 2025
Microbial disease of the cardiovascular and lymphatic systems
human mycosis Human fungal infections are called human mycosis..pptx
Microbial diseases, their pathogenesis and prophylaxis
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Ad

Searching.ppt

  • 2. Searching • Given a collection and an element (key) to find… • Output – Print a message (“Found”, “Not Found) – Return a value (position of key )
  • 3. Linear Search: A Simple Search • A search traverses the collection until – The desired element is found – Or the collection is exhausted • If the collection is ordered, I might not have to look at all elements – I can stop looking when I know the element cannot be in the collection.
  • 4. Iterative Array Search procedure Search(my_array Array, target Num) i Num i <- 1 loop for (i=0;i <MAX ;i++) if(a[i]==target) print(“Target data found”) break; endloop if(i > MAX) then print(“Target data not found”) endif endprocedure // Search
  • 5. my_array 7 12 5 22 13 32 1 2 3 4 5 6 target = 13 procedure Search(my_array Array, target Num) i Num i <- 1 loop for (i=0;i <MAX ;i++) if(a[i]==target) print(“Target data found”) break; endloop if(i > MAX) then print(“Target data not found”) endif endprocedure // Search
  • 6. procedure Search(my_array isoftype in NumArrayType, target isoftype in Num) i isoftype Num i <- 1 loop exitif((i > MAX) OR (my_array[i] = target)) i <- i + 1 endloop if(i > MAX) then print(“Target data not found”) else print(“Target data found”) endif endprocedure // Search my_array 7 12 5 22 13 32 1 2 3 4 5 6 target = 13
  • 7. procedure Search(my_array isoftype in NumArrayType, target isoftype in Num) i isoftype Num i <- 1 loop exitif((i > MAX) OR (my_array[i] = target)) i <- i + 1 endloop if(i > MAX) then print(“Target data not found”) else print(“Target data found”) endif endprocedure // Search my_array 7 12 5 22 13 32 1 2 3 4 5 6 target = 13
  • 8. procedure Search(my_array isoftype in NumArrayType, target isoftype in Num) i isoftype Num i <- 1 loop exitif((i > MAX) OR (my_array[i] = target)) i <- i + 1 endloop if(i > MAX) then print(“Target data not found”) else print(“Target data found”) endif endprocedure // Search my_array 7 12 5 22 13 32 1 2 3 4 5 6 target = 13
  • 9. procedure Search(my_array isoftype in NumArrayType, target isoftype in Num) i isoftype Num i <- 1 loop exitif((i > MAX) OR (my_array[i] = target)) i <- i + 1 endloop if(i > MAX) then print(“Target data not found”) else print(“Target data found”) endif endprocedure // Search my_array 7 12 5 22 13 32 1 2 3 4 5 6 target = 13
  • 10. procedure Search(my_array isoftype in NumArrayType, target isoftype in Num) i isoftype Num i <- 1 loop exitif((i > MAX) OR (my_array[i] = target)) i <- i + 1 endloop if(i > MAX) then print(“Target data not found”) else print(“Target data found”) endif endprocedure // Search my_array 7 12 5 22 13 32 1 2 3 4 5 6 target = 13
  • 11. procedure Search(my_array isoftype in NumArrayType, target isoftype in Num) i isoftype Num i <- 1 loop exitif((i > MAX) OR (my_array[i] = target)) i <- i + 1 endloop if(i > MAX) then print(“Target data not found”) else print(“Target data found”) endif endprocedure // Search my_array 7 12 5 22 13 32 1 2 3 4 5 6 target = 13
  • 12. procedure Search(my_array isoftype in NumArrayType, target isoftype in Num) i isoftype Num i <- 1 loop exitif((i > MAX) OR (my_array[i] = target)) i <- i + 1 endloop if(i > MAX) then print(“Target data not found”) else print(“Target data found”) endif endprocedure // Search my_array 7 12 5 22 13 32 1 2 3 4 5 6 target = 13 Target data found
  • 13. procedure Search(my_array isoftype in NumArrayType, target isoftype in Num) i isoftype Num i <- 1 loop exitif((i > MAX) OR (my_array[i] = target)) i <- i + 1 endloop if(i > MAX) then print(“Target data not found”) else print(“Target data found”) endif endprocedure // Search my_array 7 12 5 22 13 32 1 2 3 4 5 6 target = 13
  • 14. Linear Search Analysis: Best Case procedure Search(my_array Array, target Num) i Num i <- 1 loop exitif((i > MAX) OR (my_array[i] = target)) i <- i + 1 endloop if(i > MAX) then print(“Target data not found”) else print(“Target data found”) endif endprocedure // Search Scan the array Best Case: match with the first item 7 12 5 22 13 32 target = 7 Best Case: 1 comparison
  • 15. Linear Search Analysis: Worst Case procedure Search(my_array Array, target Num) i Num i <- 1 loop exitif((i > MAX) OR (my_array[i] = target)) i <- i + 1 endloop if(i > MAX) then print(“Target data not found”) else print(“Target data found”) endif endprocedure // Search Scan the array Worst Case: match with the last item (or no match) 7 12 5 22 13 32 target = 32 Worst Case: N comparisons
  • 17. The Scenario • We have a sorted array • We want to determine if a particular element is in the array – Once found, print or return (index, boolean, etc.) – If not found, indicate the element is not in the collection 7 12 42 59 71 86 104 212
  • 18. A Better Search Algorithm • Of course we could use our simpler search and traverse the array • But we can use the fact that the array is sorted to our advantage • This will allow us to reduce the number of comparisons
  • 19. Binary Search • Requires a sorted array or a binary search tree. • Cuts the “search space” in half each time. • Keeps cutting the search space in half until the target is found or has exhausted the all possible locations.
  • 20. Binary Search Algorithm look at “middle” element if no match then look left (if need smaller) or right (if need larger) 1 7 9 12 33 42 59 76 81 84 91 92 93 99 Look for 42
  • 21. The Algorithm look at “middle” element if no match then look left or right 1 7 9 12 33 42 59 76 81 84 91 92 93 99 Look for 42
  • 22. The Algorithm look at “middle” element if no match then look left or right 1 7 9 12 33 42 59 76 81 84 91 92 93 99 Look for 42
  • 23. The Algorithm look at “middle” element if no match then look left or right 1 7 9 12 33 42 59 76 81 84 91 92 93 99 Look for 42
  • 24. The Binary Search Algorithm • Return found or not found (true or false), so it should be a function. • When move left or right, change the array boundaries – We’ll need a first and last
  • 25. The Binary Search Algorithm calculate middle position if (first and last have “crossed”) then “Item not found” elseif (element at middle = to_find) then “Item Found” elseif to_find < element at middle then Look to the left else Look to the right
  • 26. Looking Left • Use indices “first” and “last” to keep track of where we are looking • Move left by setting last = middle – 1 7 12 42 59 71 86 104 212 F L M L
  • 27. Looking Right • Use indices “first” and “last” to keep track of where we are looking • Move right by setting first = middle + 1 7 12 42 59 71 86 104 212 F L M F
  • 28. Binary Search Example – Found 7 12 42 59 71 86 104 212 Looking for 42 F L M
  • 29. Binary Search Example – Found 7 12 42 59 71 86 104 212 Looking for 42 F L M
  • 30. Binary Search Example – Found 7 12 42 59 71 86 104 212 42 found – in 3 comparisons F L M
  • 31. Binary Search Example – Not Found 7 12 42 59 71 86 104 212 Looking for 89 F L M
  • 32. Binary Search Example – Not Found 7 12 42 59 71 86 104 212 Looking for 89 F L M
  • 33. Binary Search Example – Not Found 7 12 42 59 71 86 104 212 Looking for 89 F L M
  • 34. Binary Search Example – Not Found 7 12 42 59 71 86 104 212 89 not found – 3 comparisons F L
  • 35. Function Find return boolean (A Array, first, last, to_find) middle <- (first + last) div 2 if (first > last) then return false elseif (A[middle] = to_find) then return true elseif (to_find < A[middle]) then return Find(A, first, middle–1, to_find) else return Find(A, middle+1, last, to_find) endfunction Binary Search Function
  • 36. Binary Search Analysis: Best Case Function Find return boolean (A Array, first, last, to_find) middle <- (first + last) div 2 if (first > last) then return false elseif (A[middle] = to_find) then return true elseif (to_find < A[middle]) then return Find(A, first, middle–1, to_find) else return Find(A, middle+1, last, to_find) endfunction Best Case: match from the firs comparison Best Case: 1 comparison 1 7 9 12 33 42 59 76 81 84 91 92 93 99 Target: 59
  • 37. Binary Search Analysis: Worst Case Function Find return boolean (A Array, first, last, to_find) middle <- (first + last) div 2 if (first > last) then return false elseif (A[middle] = to_find) then return true elseif (to_find < A[middle]) then return Find(A, first, middle–1, to_find) else return Find(A, middle+1, last, to_find) endfunction Worst Case: divide until reach one item, or no match. 1 7 9 12 33 42 59 76 81 84 91 92 93 99 How many comparisons??
  • 38. Binary Search Analysis: Worst Case • With each comparison we throw away ½ of the list N N/2 N/4 N/8 1 ………… 1 comparison ………… 1 comparison ………… 1 comparison ………… 1 comparison ………… 1 comparison . . . Number of steps is at most Log2N
  • 39. Summary • Binary search reduces the work by half at each comparison • If array is not sorted  Linear Search – Best Case O(1) – Worst Case O(N) • If array is sorted  Binary search – Best Case O(1) – Worst Case O(Log2N)