SlideShare a Scribd company logo
Core Technologies for 4G: OFDM
Prof. Chung G. Kang
KOREA University
ccgkang@korea.ac.kr
4G Mobile (IMT Advanced) System and Applications
OFDM: Overview
• High-speed wireless transmission technology
• Implemented as a useful means of multiple access to
support the multi-user communication, as OFDMA
(Orthogonal Frequency Division Multiple Access)
• Adopted for the candidate radio interface technologies
for IMT-Advanced in ITU-R
• Rayleigh Fading Channel Model
• Time Dispersion due to Multi-path Fading
MOBILE Moving directionRoad
Buildings
i
2 ( cos )
1
( ) Re ( ) c d i i
n
j f f t
R i
i
s t As t e    

 
  
 

cd f
c
v
f where
RMS Delay Spread
(t)
t
t
( )t ( )t
Ideal
Channel
Non-ideal
Channel
Broadband Wireless Channel (1)
• Ideal Channel vs. Non-ideal Channel
+( )s t ( )s t
( )n t
( )h t
- Ideal channel
( )h t | ( ) |H f
- Non-ideal channel
ft
( )h t | ( ) |H f
ft
( )t ( )t
( )t
Broadband Wireless Channel (2)
• Delay Spread and Inter-Symbol Interference (ISI)
Symbol 1
Ts
s < Ts
0 1 2 3
Symbol 1
1
2
3
Symbol 2
s >> Ts
Ts
0 1 2 3
1
2
3
( ) 0 1 1 2 2 3 3, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h t t t t t= + - + - + -% % % % %t a d t a d t t a d t t a d t t
Broadband Wireless Channel (3)
Higher-speed
transmission suffers
from the more
multipath fading
(more ISI)!
• Delay Spread and Frequency Selectivity
( )h t | ( ) |H f
ft
1( )t ( )t
( )h t
t
1( )t ( )t 2( )t 
| ( ) |H f
f
Bc
Bc
~ s
~ s
Bs
- Frequency flat
- Frequency selective
Bs
Bs : Signal Bandwidth
Bc: Coherence Bandwidth
Broadband Wireless Channel (4)
Ts
Ts
( ) 1 2 2, ( ) ( ) ( ) ( )h t t tt a d t a d t t= + -% % %
• General Fading Channel
Broadband Wireless Channel (5)
Channel varies with
both frequency and
time, i.e., frequency
selectivity varies with
the times, depending
on the mobile speed
Equalizer
Channel Equalization
0 T
( )h t
{ }nx
{ }ny
0h 1h
2 0 2 1 1
3 0 3 1 2
y h x h x n
y h x h x n
  
  
• Optimum Channel Equalization
- Maximum likelihood sequence equalization (MLSE)
+
n
2 3 0 1
2 3
Given { , } and { , },
determine { , }
y y h h
x x
 2 3
2* * 2
2 3 2 0 2 1 1 3 0 3 1 2
( , )
ˆ ˆ( , ) min ( ) { ( )}
x x S
x x y h x h x y h x h x

      
 
- Illustrative example
{1, 1}nx  
ˆ{ }nx
where {(1,1),(1, 1),( 1,1),( 1, 1)}S      
2
| | 2 4S  
In general, | | L
S M where M is the number of symbols and
L is the number of multi-paths
Too
complex!
Discrete Fourier Transform (DFT)
2
( ) ( ) j ft
X f x t e dt


 
( )X f
( )x t
( )
n s
n
X f X f
T



 
  
 

( )X f
nx
sT
1/ sT
2
0
kN j n
N
k n
n
X x e


 
nx
N
N
kX
f
f
k
DFT:
Serial
to
Parallel
Conv.
x
x
x
+
Modulator
RF
• Transmitter
sT
0cos2 f t
1cos2 f t
1cos2 Nf t 
OFDM: Basic Concept (1)
sN T
1/s sR T
sN T
{ }nx
0x
1x
1Nx 
sN T
( )b t ( )s t
Orthogonality:
  0
cos2 cos2 0
sNT
i jf t f t dt  
for all i j
1
0
( ) cos2
N
n n
n
s t x f t


 
OFDM
symbol
• Receiver
OFDM: Basic Concept (2)
( )s t Down
Conv. x
0cos2 f t
sN T
x
x
1cos2 f t
1cos2 Nf t 
1x
1Nx 
Serial
to
Parallel
Conv.
De-
modulator
0x
0
0 0
1 1
2 ( )cos(2 )
2 cos(2 ) cos(2 )
2 cos(2 ) cos(2 )
2 cos(2 ) cos(2 )
sNT
n
n
n n n
N N n
n
s t f t dt
x f t f t
x f t f t
x f t f t
x

 
 
  
  
  
 







Too many carriers….
How to implement this?
0f
• OFDM = N Parallel Narrowband Channels
0x
OFDM: Basic Concept (3)
1f 3f2f
1x 2x
OFDM: Basic Concept (4)
0
• Time Domain: OFDM Symbol
• Frequency Domain: Subcarriers
( ) cos(2 ) (0, )n n ns t x f t rect T 
( ) ( )*sinc( )
sinc( ( ))
n n n
n n
S f x f f fT
x f f
 

 
 
(0, )rect T
T
sT N T 
0x 1x 1Nx 
0 t T 
1cos(2 )f t
2cos(2 )f t
3cos(2 )f t
OFDM: Implementation (1)
• Block Diagram
1
2 ( / )
0
N
j k N n
n k
k
x X e 


 
1 2 ( / )
0
1 2 ( / )
0
N j k N n
k nk
N j k N n
n kk
Y y e
a x e aX


 

 


 


{ }kX { }kY
0x
1x
1Nx 
- Illustration: single-path channel
ˆ/k kX Y a
• Block Diagram
kX kH kY
?k k kY H X
{ }kX { }kY
0x
1x
1Nx 
- Illustration: multi-path channel
OFDM: Implementation (2)
Cyclic Prefix (1)
1
0
2
exp
2
k n
n
H h jk n


 
  
 

0
1
2
0
H
H


2
0
2
exp
3
k n
n
X x jk n


 
  
 

0
1
2
3
0
0
X
X
X



2
0
2
exp
3
k n
n
Y y jk n


 
  
 

0
1
2
5
1 2 3
1- 2 3
Y
Y
Y

 

k k kY H X
• Effect of Multi-path Channel
- Illustrating example
1
0
2
exp
2
k n
n
H h jk n


 
  
 

0
1
2
0
H
H


2
0
2
exp
3
k n
n
X x jk n


 
  
 
 







2
0 3
2
exp][
n
n njkykY

0
1
2
6
0
0
Y
Y
Y



, 1,2k k kY H X k 
0
1
2
3
0
0
X
X
X



Cyclic Prefix (2)
• Effect of Multi-path Channel
- Illustrating example
Cyclic
prefix
• Guard Interval vs. Cyclic Prefix
- Inter-symbol Interference (ISI) & guard Interval
- Inter-carrier Interference & cyclic prefix

Zero-valued guard interval
FFT interval
Guard
interval
Cyclic prefix
Guard
interval

FFT interval
No ICI
and no ISI
No ISI
but ICI
Guard
interval
Cyclic Prefix (3)
subTGT
sym sub GT T T 
No guard interval
Orthogonality
maintained by
inserting CP
ISI can be avoided
by the guard
interval
Cyclic Prefix (4)
• Effect of CP: Illustration
FFT period FFT periodGI
Subcarrier #1
Subcarrier #2
CP
Delayed
Subcarrier #2
f
t
Effective
BW
FFT
size
Guard
interval
TG
Effective
symbol duration
Tsub
copy
1 1 0 1 2 1 1{ , , , , , , , , , }N L N N N L N L N NX X X X X X X X X X       
0x
1x
1Nx 
OFDM: Overall Picture
• OFDM Symbol in 3D
OFDM Symbol
OFDM: Performance
• Effect of Delay Spread
(b) Delay exceeds guard time by 3% of the FFT interval.
(c) Delay exceeds guard time by 10% of the FFT interval.
- What if delay exceeds the guard time (CP)?
Windowing
• Power Spectrum Density
- The side-lobe of spectrum decreases with the
larger number of subcarriers
- The out-of-band spectrum decreases slowly,
due to a sinc function
- Raised cosine windowing
Guard Band Guard BandData Subcarrier BandGuard Band Guard BandData Subcarrier Band
- Adjacent Channel Interference (ACI)
- Guard Band
Guard Band & ACI
• Illustrative Example: N = 1024 (IEEE 802.16e)
Channel 1 Channel 2 Channel 3
Adjacent channel
interference
Channel 2
Unused
Subcarriers for
guard band
SNR
Coded OFDM
- Some subcarriers suffered by frequency selective fading must be protected
by forward error correction (FEC) coding
• Why Coded OFDM?
OFDM: Block Diagram
• Overall Block Diagram
Water-filling (1)
{ }kX { }kY
0x
1x
1Nx 
• System Model
, 1,2, , 1n n n ny h x n N   
- The frequency selective channel transformed to a parallel channel
• AWGN Capacity
21
0 0
| |
log 1
N
n
n
P h
C
N


 
  
 

- Total capacity = sum capacity of each channel
where
2
{| | }, 0,1,2, , 1nP E x n N  
What if we allocate the
different power to each
subcarrier?
Water-filling (2)
• Power Allocation Problem for a Parallel Channel
- Assume that each subcarrier is allocated with power Pn.
- Problem statement
- Optimal power allocation:
where the Lagrange multiplier is chosen such that the power constraint is
met:
0 1
2
1
,...,
0 0
m ax log 1 ,
c
c
N c
N
n n
N
P P
n
P h
C
N


 
  
 
 


1,...,0,0,
1
0



cnc
N
n
n NnPPNP
c











 2
0*
~
1
n
n
h
N
P

.~
11 1
0
2
0
P
h
N
N
cN
n
n
c















 
subject to
Water-filling (3)
• Water-filling Interpretation
- If P units of water per sub-carrier are filled into the vessel, the depth of the
water at subcarrier n is the power allocated to that sub-carrier
Height of the water surface
- Optimal power allocation:
The better a channel,
the more power!
Inverse of
Channel gain











 2
0*
~
1
n
n
h
N
P

• Illustrative Example
x x
Rb bps/Wb Hz
Digital
Modulation
Base
Station
x x
Digital
Demodulation
Information bits
for User 1
Rc >> Rb bps
x
+
C1
C2
Rb bps/Wb Hz
User 1
User 2
Multiple Access: CDMA (1)
C1
• Processing Gain & Interference
0
b b
required required
EC R
I N W

  
   
   
1
b
b
R
T

1
c
W
T

Processing Gain =
b
b c
W T
R T

0
6
10 3
(dB) (dB)
1.2288 10
6 10 log 6 21.1 15.1dB
9.6 10
b
required brequired
EC W
I N R
  
   
   
 
      
 
- Example:  0
9,600Hz; 1.2288MHz; / 6dBb b required
R W E N  
Multiple Access: CDMA (2)
• Processing Gain & Data Rate
- Processing gain varies with the data rate for the fixed chip rate system
- Example: Rc = 1.2288Mcps
 The higher the data rate is, the lower the processing gain is!
 To maintain the processing gain, more bandwidth is required for higher data rate
Rb = 9.6kbps  PG = 128
Rb = 4.8kbps  PG = 256
- Example: For W = 20Mbps with PG = 128,
Rb = W/PG ~ 150kbps
 The maximum possible data is limited to
150kbps with CDMA!
Rc
Rb
2Rb
Multiple Access: CDMA (3)
• Illustrative Example
Chip
Serial to
Parallel
Converter
X
X
X
+
Modulator
RF
sT
0cos2 f t
1cos2 f t
1cos2 Nf t 
sNT
sNT
sNT
• Orthogonal Frequency Division Multiplexing (OFDM)
X
X
X
+ RF
)(ts
0cos2 f t
1cos2 f t
1cos2 Nf t 
sNT
• Orthogonal Frequency Division Multiple Access (OFDMA)
sNT
User 0
User 1
User N-1
Modulator
Modulator
Modulator
Multiple Access: OFDMA (1)
0x
1x
1Nx 
( )s t
0x
1x
1Nx 
User #2
User #1
• OFDMA Concept  Multiuser OFDM (OFDM + FDMA)
- Subchannel: a set of subcarrier as a basic resource allocation unit
- Why OFDMA?
Multiple Access: OFDMA (2)
• Multiple Access with OFDM
- Resource units: Subchannels or Resource Block
Frequency
Time OFDM symbol
Subchannel
Multiple Access: OFDMA (3)
Subframe
Subcarrier
User 1
User 2
User
3
User 4
By assigning different time/frequency slots to
users, they can be kept orthogonal, no matter
how much the delay spread is….
Cellular OFDMA (1)
0
max max 0 0
2
max
( )
( ) ( )
( ) ( )
( )u u k k
k k k
k
P d
N N d dC
PNI N d p d
d
N

 
  
 
  
• Co-channel Interference in OFDMA Network
max
uN
p
N

maxN
Cell F0 Cell F1
Fully loaded Loading factor = p
uN
0
bEC R
I N W
 
cf) CDMA 1/Processing Gain
0( )d
1( )d
2( )d
- C/I ratio for subcarrier
P
-500 0 500
-800
-600
-400
-200
0
200
400
600
800
in meter
inmeter
10
20
30
40
50
60
- Downlink
• Subcarrier Allocation for Interference Averaging
- Example
x1
x2
X1 X2
Without
frequency
hopping
With
frequency
hopping
- Interference averaging with frequency hopping
 interference diversity
Cellular OFDMA (2)
• Hopping Pattern for Subcarrier Allocation
- To design the hopping patterns with a period of Nc OFDM symbols
that are as apart as possible for neighbor BSs (Nc: prime number)
 Every user hops over all the sub-carriers in each period  frequency diversity
 Each user occupies different sub-carriers in any OFDM symbol time
- Latin square  Nc x Nc matrix
 Example: Nc = 5
Cellular OFDMA (3)
• Orthogonal Latin Squares
- Latin squares that gives exactly one time/sub-carrier collision for every pair
of virtual channels of two base stations
 Ra and Rb are orthogonal if a is not equal to b
- Generation rule:
 Example: a = 2 & Nc = 5
• Inter-BS Synchronization
- OFDM symbol-level synchronization required
Cellular OFDMA (4)
• OFDM Parameters: Numerology (TDD)
Nominal Channel Bandwidth (W) 8.75MHz
Over-sampling Factor (n) 8/7
Sampling Frequency (Fs) 10 MHz
FFT Size (Nfft) 1,024
Sub-Carrier Spacing ( f) 9.765625kHz
Useful Symbol Time (Tb ) 102.4 µs
Cyclic Prefix (CP)
Tg=1/8 Tb
Symbol Time (Ts ) 115.2 µs
TDD
Number of OFDM
symbols per Frame
42
TTG + RTG (µs) 161.6
Number of
Guard Sub-Carriers
Left 80
Right 79
Number of Used Sub-Carriers 865
IEEE 802.16e: PHY Parameters
Tg Tb
Ts
sF nW
1/bT f 
/s fftf F N 
1/ 9.765625 kHzbf T  
2 8.75MHz 9.765625kHz 896m
fftN    1024fftN 
 (9.765625)(1024) 10MHzs fftF f N   
/ 10/8.75 8/ 7sn F W  

102.4 μsbT 
• TDD Frame Structure
115.2us
IEEE 802.16e: Frame Structure
24 symbols 12 symbols
• Downlink
Syntax Value Notes
Total # of subcarriers 768 768 = 24 bands * 4 bins/band * 8 subcarriers/bin
# of frames / sec 200 1 / 5 ms/frame = 200 (frames/sec)
OFDM symbols / frame 42 42 symbols = 27 DL symbols + 15 UL symbols
OFDM symbol rate 5400 200 (frames/sec) * 27 (symbols/frame) = 5400 (symbols/sec)
Data subcarrier rate 4.1472 5400 (symbols/sec)* 768 (subcarriers/symbol) = 4.1472 (Msubcarriers/sec)
Max. bits/subcarrier
Min. bits/subcarrier
5
5/36
MAX: R = 5/6 coding & 64 QAM  5/6 * log2(64) = 5 (bits/subcarrier)
MIN: R = 1/12 coding & QPSK  1/12 * log2(4) = 5/36 (bits/subcarrier)
Max. data rate (Mbps)
Min. data rate (Mbps)
20.736
0.576
4.1472 (Msubcarriers/sec) * 5 (bits/subcarrier) = 20.736 (Mbps)
4.1472 (Msubcarriers/sec) * 5/36 (bits/subcarrier) = 576 (kbps)
IEEE 802.16e: Data Rate
• Uplink
Syntax Value Notes
OFDM symbol rate 3000 200 (frames/sec) * 15 (symbols/frame) = 3000 (symbols/sec)
Data subcarrier rate 2.3040 3000 (symbols/sec)* 768 (subcarriers/symbol) = 2.304 (Msubcarriers/sec)
Max. bits/subcarrier
Min. bits/subcarrier
10/3
5/36
MAX: R = 5/6 coding & 16 QAM  5/6 * log2(16) = 10/3 (bits/subcarrier)
MIN: R = 1/12 coding & QPSK  1/12 * log2(4) = 5/36 (bits/subcarrier)
Max. data rate (Mbps)
Min. data rate (Mbps)
7.68
0.320
2.304 (Msubcarriers/sec) * 10/3 (bits/subcarrier) = 7.68 (Mbps)
2.304 (Msubcarriers/sec) * 5/36 = 320 (kbps)
IEEE 802.16m (1)
• Basic Frame Structure
- The number of OFDMA symbols varies
with the length of CP.
- Type-1, type-2, type-3, type-4 subframes
IEEE 802.16m (2)
• Frame Structure with Type-1 Subframe (FDD)
- 5MHz, 10MHz, 20MHz bandwidth
IEEE 802.16m (3)
• Frame Structure with Type-1 Subframe (TDD)
• OFDM Parameters: Numerology (FDD)
Nominal Channel Bandwidth (MHz) 5 7 8.75 10 20
Over-sampling Factor 28/25 8/7 8/7 28/25 28/25
Sampling Frequency (MHz) 5.6 8 10 11.2 22.4
FFT Size 512 1024 1024 1024 2048
Sub-Carrier Spacing (kHz) 10.937500 7.812500 9.765625 10.937500 10.937500
Useful Symbol Time Tu (µs) 91.429 128 102.4 91.429 91.429
Cyclic Prefix (CP)
Tg=1/8 Tu
Symbol Time Ts (µs) 102.857 144 115.2 102.857 102.857
FDD
Number of OFDM
symbols per Frame
48 34 43 48 48
Idle time (µs) 62.857 104 46.40 62.857 62.857
Cyclic Prefix (CP)
Tg=1/16 Tu
Symbol Time Ts (µs) 97.143 136 108.8 97.143 97.143
FDD
Number of OFDM
symbols per Frame
51 36 45 51 51
Idle time (µs) 45.71 104 104 45.71 45.71
Cyclic Prefix (CP)
Tg=1/4 Tu
Symbol Time Ts (µs) 114.286 160 128 114.286 114.286
FDD
Number of OFDM
symbols per Frame
43 31 39 43 43
Idle time (µs) 85.694 40 8 85.694 85.694
Number of
Guard Sub-Carriers
Left 40 80 80 80 160
Right 39 79 79 79 159
Number of Used Sub-Carriers 433 865 865 865 1729
Number of Physical Resource Unit (18x6)
in a type-1 sub-frame
24 48 48 48 96
IEEE 802.16m (4)
• OFDM Parameters: Numerology (TDD)
Nominal Channel Bandwidth (MHz) 5 7 8.75 10 20
Over-sampling Factor 28/25 8/7 8/7 28/25 28/25
Sampling Frequency (MHz) 5.6 8 10 11.2 22.4
FFT Size 512 1024 1024 1024 2048
Sub-Carrier Spacing (kHz) 10.937500 7.812500 9.765625 10.937500 10.937500
Useful Symbol Time Tu (µs) 91.429 128 102.4 91.429 91.429
Cyclic Prefix (CP)
Tg=1/8 Tu
Symbol Time Ts (µs) 102.857 144 115.2 102.857 102.857
TDD
Number of OFDM
symbols per Frame
47 33 42 47 47
TTG + RTG (µs) 165.714 248 161.6 165.714 165.714
Cyclic Prefix (CP)
Tg=1/16 Tu
Symbol Time Ts (µs) 97.143 136 108.8 97.143 97.143
TDD
Number of OFDM
symbols per Frame
50 35 44 50 50
TTG + RTG (µs) 142.853 240 212.8 142.853 142.853
Cyclic Prefix (CP)
Tg=1/4 Tu
Symbol Time Ts (µs) 114.286 160 128 114.286 114.286
TDD
Number of OFDM
symbols per Frame
42 30 38 42 42
TTG + RTG (µs) 199.98 200 136 199.98 199.98
Number of
Guard Sub-Carriers
Left 40 80 80 80 160
Right 39 79 79 79 159
Number of Used Sub-Carriers 433 865 865 865 1729
Number of Physical Resource Units (18x6)
in a type-1 sub-frame
24 48 48 48 96
IEEE 802.16m (5)
• Frame Structure
- FDD
- TDD
3GPP LTE (1)
Subframe
#0
DwPTS
Subframe
#2
Subframe
#3
Subframe
#4
Subframe
#5
Subframe
#7
Subframe
#8
Subframe
#9
GP
UwPTS
DwPTS
GP
UwPTS
Subframe
#0
DwPTS
Subframe
#2
Subframe
#3
Subframe
#4
Subframe
#5
Subframe
#7
Subframe
#8
Subframe
#9
GP
UwPTS
Subframe
#6
One radio frame (10 ms)
10 ms switch-point
periodicty
5 ms switch-point
periodicty
: DL subframe : UL subframe
DwPTS
GP
UwPTS
: Special subframe
Configuration
0
1
2
3
4
5
5
Switch-point periodicity
5 ms
5 ms
5 ms
10 ms
10 ms
10 ms
10 ms
Subframe number
0 1 2 3 4 5 6 7 8 9
D
D
D
D
D
D
D
S
S
S
S
S
S
S
U
U
U
U
U
U
U
U
U
D
U
U
D
U
U
D
D
U
D
D
U
D
D
D
D
D
D
D
S
S
S
D
D
D
S
U
U
U
D
D
D
U
U
U
D
D
D
D
U
U
D
D
D
D
D
D
Uplink-downlink allocations
• Periodic Switch-Point Operation for TDD Frame Structure
3GPP LTE (2)
DL
symbN
slotT
0l 1DL
symb  Nl
RB
sc
DL
RBNN
RB
scN
RB
sc
DL
symb NN 
),( lk
0k
1RB
sc
DL
RB  NNk
• Slot Structure
and Physical Resource Element: Downlink
( , )k l
RB
sc
DL
RB NN
- Resource grid
subcarriers and
DL
symbN OFDM symbols
- Resource element
Each element in the resource grid,
uniquely defined by the index pair
- Resource block
RB
scNDL
symbN
To describe the mapping of certain physical
channels to resource elements, in terms of
OFDM symbols and consecutive subcarriers
3GPP LTE (3)
Nominal Channel Bandwidth (MHz) 1.4 3 5 10 15 20
Over-sampling Factor 48/35 96/75 43/28 43/28 43/28 43/28
Sampling Frequency (MHz) 1.92 3.84 7.68 15.36 23.04 30.72
FFT Size 128 256 512 1024 1536 2048
Sub-Carrier Spacing (kHz) 15 15 15 15 15 15
Useful Symbol Time Tu (µs) 66.7 66.7 66.7 66.7 66.7 66.7
Normal
Cyclic Prefix (CP)
Tg=4.7us
Symbol Time Ts (µs) 71.4 71.4 71.4 71.4 71.4 71.4
FDD
Number of OFDM
symbols per
Half Frame
70 70 70 70 70 70
Idle time (µs) . . . . . .
Extended
Cyclic Prefix (CP)
Tg=16.7us
Symbol Time Ts (µs) 83.4 83.4 83.4 83.4 83.4 83.4
FDD
Number of OFDM
symbols per
Half Frame
60 60 60 60 60 60
Idle time (µs) . . . . . .
Number of
Guard Sub-Carriers
Left 28 38 106 212 318 424
Right 28 38 106 212 318 424
Number of Used Sub-Carriers 72 180 300 600 900 1200
Number of Physical Resource elements (12x7)
in a resource block
6 15 25 50 75 100
• OFDM Parameters: FDD
3GPP LTE (1)
Nominal Channel Bandwidth (MHz) 1.4 3 5 10 15 20
Over-sampling Factor 48/35 96/75 43/28 43/28 43/28 43/28
Sampling Frequency (MHz) 1.92 3.84 7.68 15.36 23.04 30.72
FFT Size 128 256 512 1024 1536 2048
Sub-Carrier Spacing (kHz) 15 15 15 15 15 15
Useful Symbol Time Tu (µs) 66.7 66.7 66.7 66.7 66.7 66.7
Normal
Cyclic Prefix (CP)
Tg=4.7us
Symbol Time Ts (µs) 71.4 71.4 71.4 71.4 71.4 71.4
TDD
Number of OFDM
symbols per
Half Frame
68 68 68 68 68 68
GP (µs) 142.8 142.8 142.8 142.8 142.8 142.8
Extended
Cyclic Prefix (CP)
Tg=16.7us
Symbol Time Ts (µs) 83.4 83.4 83.4 83.4 83.4 83.4
TDD
Number of OFDM
symbols per
Half Frame
59 59 59 59 59 59
GP (µs) 83.4 83.4 83.4 83.4 83.4 83.4
Number of
Guard Sub-Carriers
Left 28 38 106 212 318 424
Right 28 38 106 212 318 424
Number of Used Sub-Carriers 72 180 300 600 900 1200
Number of Physical Resource elements (12x7)
in a resource block
6 15 25 50 75 100
• OFDM Parameters: TDD
3GPP LTE (2)

More Related Content

PPTX
Day one ofdma and mimo
PPT
Lte tutorial
PPT
Ncc2004 ofdm tutorial part ii-apal
PDF
LTE Basics - II
PDF
LTE introduction part1
PDF
LTE Basics
PPSX
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
PDF
LTE Physical layer aspects
Day one ofdma and mimo
Lte tutorial
Ncc2004 ofdm tutorial part ii-apal
LTE Basics - II
LTE introduction part1
LTE Basics
Design Ofdm System And Remove Nonlinear Distortion In OFDM Signal At Transmit...
LTE Physical layer aspects

What's hot (20)

DOCX
OFDM based baseband Receiver
PDF
Performance and Analysis of OFDM Signal Using Matlab Simulink
PDF
Introduction to OFDM
PDF
What is the main difference between single carrier and ofdm yahoo! answers
PPTX
Tdd Versus Fdd
PPTX
LTE physical layer
PDF
3 gpp lte radio layer 2
PDF
Fdd vs tdd lte
PDF
Bit Error rate of QAM
PPTX
PDF
Lte tutorial april 2009 ver1.1
PDF
OFDM for LTE
PPT
PPTX
LTE Vs. 3G
PDF
2015 08-31 kofidis
PPTX
PDF
Ofdm tutorial fuyun_ling_rev1
PDF
03 6420 e-utra layer 1 key aspects and ofdm(a) principles_e05
PDF
Orthogonal Frequency Division Multiplexing (OFDM)
OFDM based baseband Receiver
Performance and Analysis of OFDM Signal Using Matlab Simulink
Introduction to OFDM
What is the main difference between single carrier and ofdm yahoo! answers
Tdd Versus Fdd
LTE physical layer
3 gpp lte radio layer 2
Fdd vs tdd lte
Bit Error rate of QAM
Lte tutorial april 2009 ver1.1
OFDM for LTE
LTE Vs. 3G
2015 08-31 kofidis
Ofdm tutorial fuyun_ling_rev1
03 6420 e-utra layer 1 key aspects and ofdm(a) principles_e05
Orthogonal Frequency Division Multiplexing (OFDM)
Ad

Viewers also liked (13)

PDF
Lte Tutorial
PPT
Wi max
PPT
9 16 05 Karim Hassib Wi Max
PPTX
Presentación 3gpp y lte
PPTX
Analysis Of Ofdm Parameters Using Cyclostationary Spectrum Sensing
PPT
Definiciones de mac, protocolo, ip, mascara
PDF
Ttalteoverview 100923032416 Phpapp01 (1)
PPT
5g technology UPDATED 21 FEB -ankush 19 feb 2014 WITH EFFECT
PPT
Lte presentation
PDF
AIRCOM LTE Webinar 2 - Air Interface
PPTX
OFDM Orthogonal Frequency Division Multiplexing
PDF
LTE Evolution: From Release 8 to Release 10
PPT
Lte mac presentation
Lte Tutorial
Wi max
9 16 05 Karim Hassib Wi Max
Presentación 3gpp y lte
Analysis Of Ofdm Parameters Using Cyclostationary Spectrum Sensing
Definiciones de mac, protocolo, ip, mascara
Ttalteoverview 100923032416 Phpapp01 (1)
5g technology UPDATED 21 FEB -ankush 19 feb 2014 WITH EFFECT
Lte presentation
AIRCOM LTE Webinar 2 - Air Interface
OFDM Orthogonal Frequency Division Multiplexing
LTE Evolution: From Release 8 to Release 10
Lte mac presentation
Ad

Similar to IMT Advanced (20)

PPTX
9-MC Modulation and OFDM.pptx9-MC Modulation and OFDM.pptx9-MC Modulation and...
PDF
Spread-Spectrum2.pdf hhjji ffhjifr jjjgff
PPT
Kỹ thuật Khử nhiễu tuần tự từng lớp (SIC) là phương pháp quan trọng trong NOMA
PDF
디지털통신 7
PDF
Lecture intro to_wcdma
PPT
Lec03_Wireless Channel Parameterization_full_std2.ppt
PPT
Introduction to OFDM.ppt
PDF
Chap2 ofdm basics
PPT
synthetic aperture radar
PPT
Spread spectrum Frequency-hopping spread spectrum (FHSS)
PPT
Multi-Carrier Transmission over Mobile Radio Channels.ppt
PPT
Lecture#5 21 4-2013
PPT
OFDM Basics.ppt
PPT
Digital communication
PDF
Course-Notes__Advanced-DSP.pdf
PDF
Advanced_DSP_J_G_Proakis.pdf
PDF
Channel Estimation In The STTC For OFDM Using MIMO With 4G System
PDF
I010125056
PPTX
Sistec ppt
9-MC Modulation and OFDM.pptx9-MC Modulation and OFDM.pptx9-MC Modulation and...
Spread-Spectrum2.pdf hhjji ffhjifr jjjgff
Kỹ thuật Khử nhiễu tuần tự từng lớp (SIC) là phương pháp quan trọng trong NOMA
디지털통신 7
Lecture intro to_wcdma
Lec03_Wireless Channel Parameterization_full_std2.ppt
Introduction to OFDM.ppt
Chap2 ofdm basics
synthetic aperture radar
Spread spectrum Frequency-hopping spread spectrum (FHSS)
Multi-Carrier Transmission over Mobile Radio Channels.ppt
Lecture#5 21 4-2013
OFDM Basics.ppt
Digital communication
Course-Notes__Advanced-DSP.pdf
Advanced_DSP_J_G_Proakis.pdf
Channel Estimation In The STTC For OFDM Using MIMO With 4G System
I010125056
Sistec ppt

Recently uploaded (20)

PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PPTX
Big Data Technologies - Introduction.pptx
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
NewMind AI Monthly Chronicles - July 2025
PPTX
Cloud computing and distributed systems.
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Machine learning based COVID-19 study performance prediction
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Review of recent advances in non-invasive hemoglobin estimation
PPTX
A Presentation on Artificial Intelligence
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
The Rise and Fall of 3GPP – Time for a Sabbatical?
Big Data Technologies - Introduction.pptx
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Advanced methodologies resolving dimensionality complications for autism neur...
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Digital-Transformation-Roadmap-for-Companies.pptx
NewMind AI Monthly Chronicles - July 2025
Cloud computing and distributed systems.
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Machine learning based COVID-19 study performance prediction
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Spectral efficient network and resource selection model in 5G networks
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Encapsulation_ Review paper, used for researhc scholars
Diabetes mellitus diagnosis method based random forest with bat algorithm
NewMind AI Weekly Chronicles - August'25 Week I
Chapter 3 Spatial Domain Image Processing.pdf
Review of recent advances in non-invasive hemoglobin estimation
A Presentation on Artificial Intelligence
Build a system with the filesystem maintained by OSTree @ COSCUP 2025

IMT Advanced

  • 1. Core Technologies for 4G: OFDM Prof. Chung G. Kang KOREA University ccgkang@korea.ac.kr 4G Mobile (IMT Advanced) System and Applications
  • 2. OFDM: Overview • High-speed wireless transmission technology • Implemented as a useful means of multiple access to support the multi-user communication, as OFDMA (Orthogonal Frequency Division Multiple Access) • Adopted for the candidate radio interface technologies for IMT-Advanced in ITU-R
  • 3. • Rayleigh Fading Channel Model • Time Dispersion due to Multi-path Fading MOBILE Moving directionRoad Buildings i 2 ( cos ) 1 ( ) Re ( ) c d i i n j f f t R i i s t As t e              cd f c v f where RMS Delay Spread (t) t t ( )t ( )t Ideal Channel Non-ideal Channel Broadband Wireless Channel (1)
  • 4. • Ideal Channel vs. Non-ideal Channel +( )s t ( )s t ( )n t ( )h t - Ideal channel ( )h t | ( ) |H f - Non-ideal channel ft ( )h t | ( ) |H f ft ( )t ( )t ( )t Broadband Wireless Channel (2)
  • 5. • Delay Spread and Inter-Symbol Interference (ISI) Symbol 1 Ts s < Ts 0 1 2 3 Symbol 1 1 2 3 Symbol 2 s >> Ts Ts 0 1 2 3 1 2 3 ( ) 0 1 1 2 2 3 3, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h t t t t t= + - + - + -% % % % %t a d t a d t t a d t t a d t t Broadband Wireless Channel (3) Higher-speed transmission suffers from the more multipath fading (more ISI)!
  • 6. • Delay Spread and Frequency Selectivity ( )h t | ( ) |H f ft 1( )t ( )t ( )h t t 1( )t ( )t 2( )t  | ( ) |H f f Bc Bc ~ s ~ s Bs - Frequency flat - Frequency selective Bs Bs : Signal Bandwidth Bc: Coherence Bandwidth Broadband Wireless Channel (4) Ts Ts
  • 7. ( ) 1 2 2, ( ) ( ) ( ) ( )h t t tt a d t a d t t= + -% % % • General Fading Channel Broadband Wireless Channel (5) Channel varies with both frequency and time, i.e., frequency selectivity varies with the times, depending on the mobile speed
  • 8. Equalizer Channel Equalization 0 T ( )h t { }nx { }ny 0h 1h 2 0 2 1 1 3 0 3 1 2 y h x h x n y h x h x n       • Optimum Channel Equalization - Maximum likelihood sequence equalization (MLSE) + n 2 3 0 1 2 3 Given { , } and { , }, determine { , } y y h h x x  2 3 2* * 2 2 3 2 0 2 1 1 3 0 3 1 2 ( , ) ˆ ˆ( , ) min ( ) { ( )} x x S x x y h x h x y h x h x           - Illustrative example {1, 1}nx   ˆ{ }nx where {(1,1),(1, 1),( 1,1),( 1, 1)}S       2 | | 2 4S   In general, | | L S M where M is the number of symbols and L is the number of multi-paths Too complex!
  • 9. Discrete Fourier Transform (DFT) 2 ( ) ( ) j ft X f x t e dt     ( )X f ( )x t ( ) n s n X f X f T            ( )X f nx sT 1/ sT 2 0 kN j n N k n n X x e     nx N N kX f f k DFT:
  • 10. Serial to Parallel Conv. x x x + Modulator RF • Transmitter sT 0cos2 f t 1cos2 f t 1cos2 Nf t  OFDM: Basic Concept (1) sN T 1/s sR T sN T { }nx 0x 1x 1Nx  sN T ( )b t ( )s t Orthogonality:   0 cos2 cos2 0 sNT i jf t f t dt   for all i j 1 0 ( ) cos2 N n n n s t x f t     OFDM symbol
  • 11. • Receiver OFDM: Basic Concept (2) ( )s t Down Conv. x 0cos2 f t sN T x x 1cos2 f t 1cos2 Nf t  1x 1Nx  Serial to Parallel Conv. De- modulator 0x 0 0 0 1 1 2 ( )cos(2 ) 2 cos(2 ) cos(2 ) 2 cos(2 ) cos(2 ) 2 cos(2 ) cos(2 ) sNT n n n n n N N n n s t f t dt x f t f t x f t f t x f t f t x                        Too many carriers…. How to implement this?
  • 12. 0f • OFDM = N Parallel Narrowband Channels 0x OFDM: Basic Concept (3) 1f 3f2f 1x 2x
  • 13. OFDM: Basic Concept (4) 0 • Time Domain: OFDM Symbol • Frequency Domain: Subcarriers ( ) cos(2 ) (0, )n n ns t x f t rect T  ( ) ( )*sinc( ) sinc( ( )) n n n n n S f x f f fT x f f        (0, )rect T T sT N T  0x 1x 1Nx  0 t T  1cos(2 )f t 2cos(2 )f t 3cos(2 )f t
  • 14. OFDM: Implementation (1) • Block Diagram 1 2 ( / ) 0 N j k N n n k k x X e      1 2 ( / ) 0 1 2 ( / ) 0 N j k N n k nk N j k N n n kk Y y e a x e aX              { }kX { }kY 0x 1x 1Nx  - Illustration: single-path channel ˆ/k kX Y a
  • 15. • Block Diagram kX kH kY ?k k kY H X { }kX { }kY 0x 1x 1Nx  - Illustration: multi-path channel OFDM: Implementation (2)
  • 16. Cyclic Prefix (1) 1 0 2 exp 2 k n n H h jk n           0 1 2 0 H H   2 0 2 exp 3 k n n X x jk n           0 1 2 3 0 0 X X X    2 0 2 exp 3 k n n Y y jk n           0 1 2 5 1 2 3 1- 2 3 Y Y Y     k k kY H X • Effect of Multi-path Channel - Illustrating example
  • 17. 1 0 2 exp 2 k n n H h jk n           0 1 2 0 H H   2 0 2 exp 3 k n n X x jk n                   2 0 3 2 exp][ n n njkykY  0 1 2 6 0 0 Y Y Y    , 1,2k k kY H X k  0 1 2 3 0 0 X X X    Cyclic Prefix (2) • Effect of Multi-path Channel - Illustrating example Cyclic prefix
  • 18. • Guard Interval vs. Cyclic Prefix - Inter-symbol Interference (ISI) & guard Interval - Inter-carrier Interference & cyclic prefix  Zero-valued guard interval FFT interval Guard interval Cyclic prefix Guard interval  FFT interval No ICI and no ISI No ISI but ICI Guard interval Cyclic Prefix (3)
  • 19. subTGT sym sub GT T T  No guard interval Orthogonality maintained by inserting CP ISI can be avoided by the guard interval Cyclic Prefix (4) • Effect of CP: Illustration
  • 20. FFT period FFT periodGI Subcarrier #1 Subcarrier #2 CP Delayed Subcarrier #2
  • 21. f t Effective BW FFT size Guard interval TG Effective symbol duration Tsub copy 1 1 0 1 2 1 1{ , , , , , , , , , }N L N N N L N L N NX X X X X X X X X X        0x 1x 1Nx  OFDM: Overall Picture • OFDM Symbol in 3D OFDM Symbol
  • 22. OFDM: Performance • Effect of Delay Spread (b) Delay exceeds guard time by 3% of the FFT interval. (c) Delay exceeds guard time by 10% of the FFT interval. - What if delay exceeds the guard time (CP)?
  • 23. Windowing • Power Spectrum Density - The side-lobe of spectrum decreases with the larger number of subcarriers - The out-of-band spectrum decreases slowly, due to a sinc function - Raised cosine windowing
  • 24. Guard Band Guard BandData Subcarrier BandGuard Band Guard BandData Subcarrier Band - Adjacent Channel Interference (ACI) - Guard Band Guard Band & ACI • Illustrative Example: N = 1024 (IEEE 802.16e) Channel 1 Channel 2 Channel 3 Adjacent channel interference Channel 2 Unused Subcarriers for guard band
  • 25. SNR Coded OFDM - Some subcarriers suffered by frequency selective fading must be protected by forward error correction (FEC) coding • Why Coded OFDM?
  • 26. OFDM: Block Diagram • Overall Block Diagram
  • 27. Water-filling (1) { }kX { }kY 0x 1x 1Nx  • System Model , 1,2, , 1n n n ny h x n N    - The frequency selective channel transformed to a parallel channel • AWGN Capacity 21 0 0 | | log 1 N n n P h C N           - Total capacity = sum capacity of each channel where 2 {| | }, 0,1,2, , 1nP E x n N   What if we allocate the different power to each subcarrier?
  • 28. Water-filling (2) • Power Allocation Problem for a Parallel Channel - Assume that each subcarrier is allocated with power Pn. - Problem statement - Optimal power allocation: where the Lagrange multiplier is chosen such that the power constraint is met: 0 1 2 1 ,..., 0 0 m ax log 1 , c c N c N n n N P P n P h C N              1,...,0,0, 1 0    cnc N n n NnPPNP c             2 0* ~ 1 n n h N P  .~ 11 1 0 2 0 P h N N cN n n c                  subject to
  • 29. Water-filling (3) • Water-filling Interpretation - If P units of water per sub-carrier are filled into the vessel, the depth of the water at subcarrier n is the power allocated to that sub-carrier Height of the water surface - Optimal power allocation: The better a channel, the more power! Inverse of Channel gain             2 0* ~ 1 n n h N P 
  • 30. • Illustrative Example x x Rb bps/Wb Hz Digital Modulation Base Station x x Digital Demodulation Information bits for User 1 Rc >> Rb bps x + C1 C2 Rb bps/Wb Hz User 1 User 2 Multiple Access: CDMA (1) C1
  • 31. • Processing Gain & Interference 0 b b required required EC R I N W             1 b b R T  1 c W T  Processing Gain = b b c W T R T  0 6 10 3 (dB) (dB) 1.2288 10 6 10 log 6 21.1 15.1dB 9.6 10 b required brequired EC W I N R                       - Example:  0 9,600Hz; 1.2288MHz; / 6dBb b required R W E N   Multiple Access: CDMA (2)
  • 32. • Processing Gain & Data Rate - Processing gain varies with the data rate for the fixed chip rate system - Example: Rc = 1.2288Mcps  The higher the data rate is, the lower the processing gain is!  To maintain the processing gain, more bandwidth is required for higher data rate Rb = 9.6kbps  PG = 128 Rb = 4.8kbps  PG = 256 - Example: For W = 20Mbps with PG = 128, Rb = W/PG ~ 150kbps  The maximum possible data is limited to 150kbps with CDMA! Rc Rb 2Rb Multiple Access: CDMA (3) • Illustrative Example Chip
  • 33. Serial to Parallel Converter X X X + Modulator RF sT 0cos2 f t 1cos2 f t 1cos2 Nf t  sNT sNT sNT • Orthogonal Frequency Division Multiplexing (OFDM) X X X + RF )(ts 0cos2 f t 1cos2 f t 1cos2 Nf t  sNT • Orthogonal Frequency Division Multiple Access (OFDMA) sNT User 0 User 1 User N-1 Modulator Modulator Modulator Multiple Access: OFDMA (1) 0x 1x 1Nx  ( )s t 0x 1x 1Nx 
  • 34. User #2 User #1 • OFDMA Concept  Multiuser OFDM (OFDM + FDMA) - Subchannel: a set of subcarrier as a basic resource allocation unit - Why OFDMA? Multiple Access: OFDMA (2)
  • 35. • Multiple Access with OFDM - Resource units: Subchannels or Resource Block Frequency Time OFDM symbol Subchannel Multiple Access: OFDMA (3) Subframe Subcarrier User 1 User 2 User 3 User 4 By assigning different time/frequency slots to users, they can be kept orthogonal, no matter how much the delay spread is….
  • 36. Cellular OFDMA (1) 0 max max 0 0 2 max ( ) ( ) ( ) ( ) ( ) ( )u u k k k k k k P d N N d dC PNI N d p d d N            • Co-channel Interference in OFDMA Network max uN p N  maxN Cell F0 Cell F1 Fully loaded Loading factor = p uN 0 bEC R I N W   cf) CDMA 1/Processing Gain 0( )d 1( )d 2( )d - C/I ratio for subcarrier P -500 0 500 -800 -600 -400 -200 0 200 400 600 800 in meter inmeter 10 20 30 40 50 60 - Downlink
  • 37. • Subcarrier Allocation for Interference Averaging - Example x1 x2 X1 X2 Without frequency hopping With frequency hopping - Interference averaging with frequency hopping  interference diversity Cellular OFDMA (2)
  • 38. • Hopping Pattern for Subcarrier Allocation - To design the hopping patterns with a period of Nc OFDM symbols that are as apart as possible for neighbor BSs (Nc: prime number)  Every user hops over all the sub-carriers in each period  frequency diversity  Each user occupies different sub-carriers in any OFDM symbol time - Latin square  Nc x Nc matrix  Example: Nc = 5 Cellular OFDMA (3)
  • 39. • Orthogonal Latin Squares - Latin squares that gives exactly one time/sub-carrier collision for every pair of virtual channels of two base stations  Ra and Rb are orthogonal if a is not equal to b - Generation rule:  Example: a = 2 & Nc = 5 • Inter-BS Synchronization - OFDM symbol-level synchronization required Cellular OFDMA (4)
  • 40. • OFDM Parameters: Numerology (TDD) Nominal Channel Bandwidth (W) 8.75MHz Over-sampling Factor (n) 8/7 Sampling Frequency (Fs) 10 MHz FFT Size (Nfft) 1,024 Sub-Carrier Spacing ( f) 9.765625kHz Useful Symbol Time (Tb ) 102.4 µs Cyclic Prefix (CP) Tg=1/8 Tb Symbol Time (Ts ) 115.2 µs TDD Number of OFDM symbols per Frame 42 TTG + RTG (µs) 161.6 Number of Guard Sub-Carriers Left 80 Right 79 Number of Used Sub-Carriers 865 IEEE 802.16e: PHY Parameters Tg Tb Ts sF nW 1/bT f  /s fftf F N  1/ 9.765625 kHzbf T   2 8.75MHz 9.765625kHz 896m fftN    1024fftN   (9.765625)(1024) 10MHzs fftF f N    / 10/8.75 8/ 7sn F W    102.4 μsbT 
  • 41. • TDD Frame Structure 115.2us IEEE 802.16e: Frame Structure 24 symbols 12 symbols
  • 42. • Downlink Syntax Value Notes Total # of subcarriers 768 768 = 24 bands * 4 bins/band * 8 subcarriers/bin # of frames / sec 200 1 / 5 ms/frame = 200 (frames/sec) OFDM symbols / frame 42 42 symbols = 27 DL symbols + 15 UL symbols OFDM symbol rate 5400 200 (frames/sec) * 27 (symbols/frame) = 5400 (symbols/sec) Data subcarrier rate 4.1472 5400 (symbols/sec)* 768 (subcarriers/symbol) = 4.1472 (Msubcarriers/sec) Max. bits/subcarrier Min. bits/subcarrier 5 5/36 MAX: R = 5/6 coding & 64 QAM  5/6 * log2(64) = 5 (bits/subcarrier) MIN: R = 1/12 coding & QPSK  1/12 * log2(4) = 5/36 (bits/subcarrier) Max. data rate (Mbps) Min. data rate (Mbps) 20.736 0.576 4.1472 (Msubcarriers/sec) * 5 (bits/subcarrier) = 20.736 (Mbps) 4.1472 (Msubcarriers/sec) * 5/36 (bits/subcarrier) = 576 (kbps) IEEE 802.16e: Data Rate • Uplink Syntax Value Notes OFDM symbol rate 3000 200 (frames/sec) * 15 (symbols/frame) = 3000 (symbols/sec) Data subcarrier rate 2.3040 3000 (symbols/sec)* 768 (subcarriers/symbol) = 2.304 (Msubcarriers/sec) Max. bits/subcarrier Min. bits/subcarrier 10/3 5/36 MAX: R = 5/6 coding & 16 QAM  5/6 * log2(16) = 10/3 (bits/subcarrier) MIN: R = 1/12 coding & QPSK  1/12 * log2(4) = 5/36 (bits/subcarrier) Max. data rate (Mbps) Min. data rate (Mbps) 7.68 0.320 2.304 (Msubcarriers/sec) * 10/3 (bits/subcarrier) = 7.68 (Mbps) 2.304 (Msubcarriers/sec) * 5/36 = 320 (kbps)
  • 43. IEEE 802.16m (1) • Basic Frame Structure - The number of OFDMA symbols varies with the length of CP. - Type-1, type-2, type-3, type-4 subframes
  • 44. IEEE 802.16m (2) • Frame Structure with Type-1 Subframe (FDD) - 5MHz, 10MHz, 20MHz bandwidth
  • 45. IEEE 802.16m (3) • Frame Structure with Type-1 Subframe (TDD)
  • 46. • OFDM Parameters: Numerology (FDD) Nominal Channel Bandwidth (MHz) 5 7 8.75 10 20 Over-sampling Factor 28/25 8/7 8/7 28/25 28/25 Sampling Frequency (MHz) 5.6 8 10 11.2 22.4 FFT Size 512 1024 1024 1024 2048 Sub-Carrier Spacing (kHz) 10.937500 7.812500 9.765625 10.937500 10.937500 Useful Symbol Time Tu (µs) 91.429 128 102.4 91.429 91.429 Cyclic Prefix (CP) Tg=1/8 Tu Symbol Time Ts (µs) 102.857 144 115.2 102.857 102.857 FDD Number of OFDM symbols per Frame 48 34 43 48 48 Idle time (µs) 62.857 104 46.40 62.857 62.857 Cyclic Prefix (CP) Tg=1/16 Tu Symbol Time Ts (µs) 97.143 136 108.8 97.143 97.143 FDD Number of OFDM symbols per Frame 51 36 45 51 51 Idle time (µs) 45.71 104 104 45.71 45.71 Cyclic Prefix (CP) Tg=1/4 Tu Symbol Time Ts (µs) 114.286 160 128 114.286 114.286 FDD Number of OFDM symbols per Frame 43 31 39 43 43 Idle time (µs) 85.694 40 8 85.694 85.694 Number of Guard Sub-Carriers Left 40 80 80 80 160 Right 39 79 79 79 159 Number of Used Sub-Carriers 433 865 865 865 1729 Number of Physical Resource Unit (18x6) in a type-1 sub-frame 24 48 48 48 96 IEEE 802.16m (4)
  • 47. • OFDM Parameters: Numerology (TDD) Nominal Channel Bandwidth (MHz) 5 7 8.75 10 20 Over-sampling Factor 28/25 8/7 8/7 28/25 28/25 Sampling Frequency (MHz) 5.6 8 10 11.2 22.4 FFT Size 512 1024 1024 1024 2048 Sub-Carrier Spacing (kHz) 10.937500 7.812500 9.765625 10.937500 10.937500 Useful Symbol Time Tu (µs) 91.429 128 102.4 91.429 91.429 Cyclic Prefix (CP) Tg=1/8 Tu Symbol Time Ts (µs) 102.857 144 115.2 102.857 102.857 TDD Number of OFDM symbols per Frame 47 33 42 47 47 TTG + RTG (µs) 165.714 248 161.6 165.714 165.714 Cyclic Prefix (CP) Tg=1/16 Tu Symbol Time Ts (µs) 97.143 136 108.8 97.143 97.143 TDD Number of OFDM symbols per Frame 50 35 44 50 50 TTG + RTG (µs) 142.853 240 212.8 142.853 142.853 Cyclic Prefix (CP) Tg=1/4 Tu Symbol Time Ts (µs) 114.286 160 128 114.286 114.286 TDD Number of OFDM symbols per Frame 42 30 38 42 42 TTG + RTG (µs) 199.98 200 136 199.98 199.98 Number of Guard Sub-Carriers Left 40 80 80 80 160 Right 39 79 79 79 159 Number of Used Sub-Carriers 433 865 865 865 1729 Number of Physical Resource Units (18x6) in a type-1 sub-frame 24 48 48 48 96 IEEE 802.16m (5)
  • 48. • Frame Structure - FDD - TDD 3GPP LTE (1)
  • 49. Subframe #0 DwPTS Subframe #2 Subframe #3 Subframe #4 Subframe #5 Subframe #7 Subframe #8 Subframe #9 GP UwPTS DwPTS GP UwPTS Subframe #0 DwPTS Subframe #2 Subframe #3 Subframe #4 Subframe #5 Subframe #7 Subframe #8 Subframe #9 GP UwPTS Subframe #6 One radio frame (10 ms) 10 ms switch-point periodicty 5 ms switch-point periodicty : DL subframe : UL subframe DwPTS GP UwPTS : Special subframe Configuration 0 1 2 3 4 5 5 Switch-point periodicity 5 ms 5 ms 5 ms 10 ms 10 ms 10 ms 10 ms Subframe number 0 1 2 3 4 5 6 7 8 9 D D D D D D D S S S S S S S U U U U U U U U U D U U D U U D D U D D U D D D D D D D S S S D D D S U U U D D D U U U D D D D U U D D D D D D Uplink-downlink allocations • Periodic Switch-Point Operation for TDD Frame Structure 3GPP LTE (2)
  • 50. DL symbN slotT 0l 1DL symb  Nl RB sc DL RBNN RB scN RB sc DL symb NN  ),( lk 0k 1RB sc DL RB  NNk • Slot Structure and Physical Resource Element: Downlink ( , )k l RB sc DL RB NN - Resource grid subcarriers and DL symbN OFDM symbols - Resource element Each element in the resource grid, uniquely defined by the index pair - Resource block RB scNDL symbN To describe the mapping of certain physical channels to resource elements, in terms of OFDM symbols and consecutive subcarriers 3GPP LTE (3)
  • 51. Nominal Channel Bandwidth (MHz) 1.4 3 5 10 15 20 Over-sampling Factor 48/35 96/75 43/28 43/28 43/28 43/28 Sampling Frequency (MHz) 1.92 3.84 7.68 15.36 23.04 30.72 FFT Size 128 256 512 1024 1536 2048 Sub-Carrier Spacing (kHz) 15 15 15 15 15 15 Useful Symbol Time Tu (µs) 66.7 66.7 66.7 66.7 66.7 66.7 Normal Cyclic Prefix (CP) Tg=4.7us Symbol Time Ts (µs) 71.4 71.4 71.4 71.4 71.4 71.4 FDD Number of OFDM symbols per Half Frame 70 70 70 70 70 70 Idle time (µs) . . . . . . Extended Cyclic Prefix (CP) Tg=16.7us Symbol Time Ts (µs) 83.4 83.4 83.4 83.4 83.4 83.4 FDD Number of OFDM symbols per Half Frame 60 60 60 60 60 60 Idle time (µs) . . . . . . Number of Guard Sub-Carriers Left 28 38 106 212 318 424 Right 28 38 106 212 318 424 Number of Used Sub-Carriers 72 180 300 600 900 1200 Number of Physical Resource elements (12x7) in a resource block 6 15 25 50 75 100 • OFDM Parameters: FDD 3GPP LTE (1)
  • 52. Nominal Channel Bandwidth (MHz) 1.4 3 5 10 15 20 Over-sampling Factor 48/35 96/75 43/28 43/28 43/28 43/28 Sampling Frequency (MHz) 1.92 3.84 7.68 15.36 23.04 30.72 FFT Size 128 256 512 1024 1536 2048 Sub-Carrier Spacing (kHz) 15 15 15 15 15 15 Useful Symbol Time Tu (µs) 66.7 66.7 66.7 66.7 66.7 66.7 Normal Cyclic Prefix (CP) Tg=4.7us Symbol Time Ts (µs) 71.4 71.4 71.4 71.4 71.4 71.4 TDD Number of OFDM symbols per Half Frame 68 68 68 68 68 68 GP (µs) 142.8 142.8 142.8 142.8 142.8 142.8 Extended Cyclic Prefix (CP) Tg=16.7us Symbol Time Ts (µs) 83.4 83.4 83.4 83.4 83.4 83.4 TDD Number of OFDM symbols per Half Frame 59 59 59 59 59 59 GP (µs) 83.4 83.4 83.4 83.4 83.4 83.4 Number of Guard Sub-Carriers Left 28 38 106 212 318 424 Right 28 38 106 212 318 424 Number of Used Sub-Carriers 72 180 300 600 900 1200 Number of Physical Resource elements (12x7) in a resource block 6 15 25 50 75 100 • OFDM Parameters: TDD 3GPP LTE (2)