SlideShare a Scribd company logo
useful formulas
name formula
Euler’s formula ej θ
= cos(θ) + j sin(θ)
. . . for cosine cos(θ) =
ejθ
+ e−jθ
2
. . . for sine sin(θ) =
ejθ
− e−jθ
2 j
sinc function sinc(θ) :=
sin(π θ)
π θ
formulas for continuous-time LTI signals and systems
name formula
area under impulse
Z
δ(t) dt = 1
multiplication by impulse f(t) δ(t) = f(0) δ(t)
. . . by shifted impulse f(t) δ(t − to) = f(to) δ(t − to)
convolution f(t) ∗ g(t) =
Z
f(τ) g(t − τ) dτ
. . . with an impulse f(t) ∗ δ(t) = f(t)
. . . with a shifted impulse f(t) ∗ δ(t − to) = f(t − to)
transfer function H(s) =
Z
h(t) e−st
dt
frequency response Hf
(ω) =
Z
h(t) e−jωt
dt
. . . their connection Hf
(ω) = H(jω)
provided jω-axis ⊂ ROC
selected Laplace transform pairs
x(t) X(s) ROC
x(t)
Z
x(t) e−st
dt (def.)
δ(t) 1 all s
u(t)
1
s
Re(s) > 0
e−a t
u(t)
1
s + a
Re(s) > −a
cos(ωot) u(t)
s
s2 + ω2
o
Re(s) > 0
sin(ωot) u(t)
ωo
s2 + ω2
o
Re(s) > 0
e−a t
cos(ωot) u(t)
s + a
(s + a)2 + ω2
o
Re(s) > −a
e−a t
sin(ωot) u(t)
ωo
(s + a)2 + ω2
o
Re(s) > −a
Note: a is assumed real.
Laplace transform properties
x(t) X(s)
a x(t) + b g(t) a X(s) + b G(s)
x(t) ∗ g(t) X(s) G(s)
dx(t)
dt
s X(s)
x(t − to) e−s to
X(s)
selected Fourier transform pairs
x(t) Xf
(ω)
x(t)
Z
x(t) e−jωt
dt (def.)
1
2π
Z
Xf
(ω) ejωt
dω Xf
(ω)
δ(t) 1
1 2 π δ(ω)
u(t) π δ(ω) +
1
jω
ejωot
2 π δ(ω − ωo)
cos(ωo t) π δ(ω + ωo) + π δ(ω − ωo)
sin(ωo t) j π δ(ω + ωo) − j π δ(ω − ωo)
ωo
π
sinc
“ωo
π
t
”
ideal LPF
cut-off frequency ωo
symmetric pulse
2
ω
sin
„
T
2
ω
«
width T, height 1
impulse train impulse train
period T, height 1 period, height ωo =
2π
T
Fourier transform properties
x(t) Xf
(ω)
a x(t) + b g(t) a Xf
(ω) + b Gf
(ω)
x(a t)
1
|a|
X
“ω
a
”
x(t) ∗ g(t) Xf
(ω) Gf
(ω)
x(t) g(t)
1
2π
Xf
(ω) ∗ Gf
(ω)
x(t − to) e−jtoω
X(ω)
x(t) ejωot
X(ω − ωo)
x(t) cos(ωot) 0.5 X(ω + ωo) + 0.5 X(ω − ωo)
x(t) sin(ωot) j 0.5 X(ω + ωo) − j 0.5 X(ω − ωo)
dx(t)
dt
j ω Xf
(ω)

More Related Content

PPT
fourier transforms
PPT
5. fourier properties
PPT
Fourier transform
PPT
PPTX
AEM Fourier series
PPTX
Fourier series Introduction
PPTX
Fourier series
PDF
Fourier transform
fourier transforms
5. fourier properties
Fourier transform
AEM Fourier series
Fourier series Introduction
Fourier series
Fourier transform

What's hot (18)

PPTX
Laplace periodic function
DOCX
Fourier series example
PPT
1531 fourier series- integrals and trans
PPT
07 periodic functions and fourier series
PPTX
Topic: Fourier Series ( Periodic Function to change of interval)
PPTX
Fourier series
PDF
脳の計算論 第3章「リズム活動と位相応答」
PDF
Fourier series of odd functions with period 2 l
PPT
Fourier series
DOCX
Simple harmonic motion
PDF
Fourier series
PPTX
PDF
Fourier series 1
PPTX
senior seminar
PPT
002 ray modeling dynamic systems
PPT
Fourier series
PPTX
Complex form fourier series
PPT
periodic functions and Fourier series
Laplace periodic function
Fourier series example
1531 fourier series- integrals and trans
07 periodic functions and fourier series
Topic: Fourier Series ( Periodic Function to change of interval)
Fourier series
脳の計算論 第3章「リズム活動と位相応答」
Fourier series of odd functions with period 2 l
Fourier series
Simple harmonic motion
Fourier series
Fourier series 1
senior seminar
002 ray modeling dynamic systems
Fourier series
Complex form fourier series
periodic functions and Fourier series
Ad

Similar to Sheet with useful_formulas (20)

PDF
unit 2: analysis of continues time signal
PPT
z transforms
PPTX
Fourier and Laplace Transform FOR SIGNAL AND SYSTEM
PPT
Lecture8 Signal and Systems
PDF
Analog Communication Chap 3-pages-2-41.pdf
PDF
Lect7-Fourier-Transform.pdf
PDF
SIGNALSnotes04.rev-A (1)rhrhrhrhrhhd.pdf
PDF
PROPERTIES OF THE FOURIER TRANSFORM.PDF
PPTX
Signals and Systems-Fourier Series and Transform
PDF
Signals and Systems Ch 4 5_Fourier Domain
PDF
summary.pdf
PPTX
Signal Processing Homework Help
PPT
signals and system
PPT
Fourier Transform
PPT
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
PPT
Fourier analysis of signals and systems
PDF
DEMO-TF-escalon.pdf
PPT
Lecturer 03. Digital imaging probability
PDF
3.Frequency Domain Representation of Signals and Systems
unit 2: analysis of continues time signal
z transforms
Fourier and Laplace Transform FOR SIGNAL AND SYSTEM
Lecture8 Signal and Systems
Analog Communication Chap 3-pages-2-41.pdf
Lect7-Fourier-Transform.pdf
SIGNALSnotes04.rev-A (1)rhrhrhrhrhhd.pdf
PROPERTIES OF THE FOURIER TRANSFORM.PDF
Signals and Systems-Fourier Series and Transform
Signals and Systems Ch 4 5_Fourier Domain
summary.pdf
Signal Processing Homework Help
signals and system
Fourier Transform
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier analysis of signals and systems
DEMO-TF-escalon.pdf
Lecturer 03. Digital imaging probability
3.Frequency Domain Representation of Signals and Systems
Ad

More from Hoopeer Hoopeer (20)

PDF
PDF
Gene's law
PPTX
Tektronix mdo3104 mixed domain oscilloscope
PDF
Low power sar ad cs presented by pieter harpe
PDF
Cadence tutorial lab_2_f16
PDF
Step by step process of uploading presentation videos
PDF
233466440 rg-major-project-final-complete upload
PDF
435601093 s-parameter LTtspice
DOCX
Influential and powerful professional electrical and electronics engineering ...
PDF
Ki0232 3 stage fm transmitter
PPTX
Teager energy operator (teo)
PPTX
Teager energy operator (teo)
PDF
En physics
DOCX
Beautiful lectures
PDF
Cadence tutorial lab_2_f16
DOCX
Performance of the classification algorithm
DOCX
Electronics i ii razavi
PDF
Bardeen brattain and shockley
PDF
978 1-4615-6311-2 fm
DOCX
William gilbert strange
Gene's law
Tektronix mdo3104 mixed domain oscilloscope
Low power sar ad cs presented by pieter harpe
Cadence tutorial lab_2_f16
Step by step process of uploading presentation videos
233466440 rg-major-project-final-complete upload
435601093 s-parameter LTtspice
Influential and powerful professional electrical and electronics engineering ...
Ki0232 3 stage fm transmitter
Teager energy operator (teo)
Teager energy operator (teo)
En physics
Beautiful lectures
Cadence tutorial lab_2_f16
Performance of the classification algorithm
Electronics i ii razavi
Bardeen brattain and shockley
978 1-4615-6311-2 fm
William gilbert strange

Recently uploaded (20)

PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPT
Total quality management ppt for engineering students
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PPTX
additive manufacturing of ss316l using mig welding
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Construction Project Organization Group 2.pptx
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Artificial Intelligence
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
III.4.1.2_The_Space_Environment.p pdffdf
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Total quality management ppt for engineering students
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
additive manufacturing of ss316l using mig welding
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
UNIT 4 Total Quality Management .pptx
Construction Project Organization Group 2.pptx
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
Fundamentals of safety and accident prevention -final (1).pptx
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Artificial Intelligence
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Internet of Things (IOT) - A guide to understanding
UNIT-1 - COAL BASED THERMAL POWER PLANTS
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
III.4.1.2_The_Space_Environment.p pdffdf

Sheet with useful_formulas

  • 1. useful formulas name formula Euler’s formula ej θ = cos(θ) + j sin(θ) . . . for cosine cos(θ) = ejθ + e−jθ 2 . . . for sine sin(θ) = ejθ − e−jθ 2 j sinc function sinc(θ) := sin(π θ) π θ formulas for continuous-time LTI signals and systems name formula area under impulse Z δ(t) dt = 1 multiplication by impulse f(t) δ(t) = f(0) δ(t) . . . by shifted impulse f(t) δ(t − to) = f(to) δ(t − to) convolution f(t) ∗ g(t) = Z f(τ) g(t − τ) dτ . . . with an impulse f(t) ∗ δ(t) = f(t) . . . with a shifted impulse f(t) ∗ δ(t − to) = f(t − to) transfer function H(s) = Z h(t) e−st dt frequency response Hf (ω) = Z h(t) e−jωt dt . . . their connection Hf (ω) = H(jω) provided jω-axis ⊂ ROC selected Laplace transform pairs x(t) X(s) ROC x(t) Z x(t) e−st dt (def.) δ(t) 1 all s u(t) 1 s Re(s) > 0 e−a t u(t) 1 s + a Re(s) > −a cos(ωot) u(t) s s2 + ω2 o Re(s) > 0 sin(ωot) u(t) ωo s2 + ω2 o Re(s) > 0 e−a t cos(ωot) u(t) s + a (s + a)2 + ω2 o Re(s) > −a e−a t sin(ωot) u(t) ωo (s + a)2 + ω2 o Re(s) > −a Note: a is assumed real. Laplace transform properties x(t) X(s) a x(t) + b g(t) a X(s) + b G(s) x(t) ∗ g(t) X(s) G(s) dx(t) dt s X(s) x(t − to) e−s to X(s)
  • 2. selected Fourier transform pairs x(t) Xf (ω) x(t) Z x(t) e−jωt dt (def.) 1 2π Z Xf (ω) ejωt dω Xf (ω) δ(t) 1 1 2 π δ(ω) u(t) π δ(ω) + 1 jω ejωot 2 π δ(ω − ωo) cos(ωo t) π δ(ω + ωo) + π δ(ω − ωo) sin(ωo t) j π δ(ω + ωo) − j π δ(ω − ωo) ωo π sinc “ωo π t ” ideal LPF cut-off frequency ωo symmetric pulse 2 ω sin „ T 2 ω « width T, height 1 impulse train impulse train period T, height 1 period, height ωo = 2π T Fourier transform properties x(t) Xf (ω) a x(t) + b g(t) a Xf (ω) + b Gf (ω) x(a t) 1 |a| X “ω a ” x(t) ∗ g(t) Xf (ω) Gf (ω) x(t) g(t) 1 2π Xf (ω) ∗ Gf (ω) x(t − to) e−jtoω X(ω) x(t) ejωot X(ω − ωo) x(t) cos(ωot) 0.5 X(ω + ωo) + 0.5 X(ω − ωo) x(t) sin(ωot) j 0.5 X(ω + ωo) − j 0.5 X(ω − ωo) dx(t) dt j ω Xf (ω)