Chris&an	
  D.	
  O-	
  	
  
TAPIR,	
  California	
  Ins&tute	
  of	
  Technology	
  
Simula&ng	
  eXtreme	
  Space&mes	
  (SXS)	
  Collabora&on	
  
Sherman	
  	
  
Fairchild	
  
Founda0on	
  
Simula0on	
  and	
  Modeling	
  of	
  
Gravita0onal	
  Wave	
  Sources	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   2	
  
Gravita&onal	
  Wave	
  Emission	
  
•  GWs	
  (in	
  GR!)	
  are	
  to	
  lowest-­‐order	
  quadrupole	
  waves.	
  
•  Emi-ed	
  by	
  accelerated	
  aspherical	
  bulk	
  mass-­‐energy	
  mo&ons.	
  	
  
•  “Slow-­‐mo&on”	
  “weak-­‐field”	
  quadrupole	
  approxima&on:	
  
mass	
  quadrupole	
  moment	
  
dimensionless	
  GW	
  
“strain”	
  (displacement)	
  
G
c4
⇡ 10 49
s2
g 1
cm 1
First	
  Numerical	
  Es&mate:	
  
Ijk =
Z
⇢xjxkd3
x
d2
dt2
I ⇠ O(Mv2
) h ⇠
2G
c4D
Mv2
M = 1M
D = 10 kpc
v = 0.1c
h ⇠ 10 19
M ⌘ ”aspherical mass”
(adv.	
  LIGO:	
  	
  
	
  	
  ~4	
  x	
  10-­‐24	
  @	
  200	
  Hz)	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   3	
  
GW	
  Emission	
  
•  GWs	
  are	
  very	
  weak	
  and	
  interact	
  weakly	
  with	
  ma-er.	
  
•  No	
  human-­‐made	
  sources	
  (of	
  detectable	
  GWs):	
  
M = 1000 kgExample:	
   ~⌦
R = 10 m
⌦ = 100 Hz
D = 100 m
(detector	
  distance)	
  
h ⇠ 10 37-­‐>	
  GW	
  strain	
  amplitude:	
  
(adv.	
  LIGO:	
  ~4	
  x	
  10-­‐24	
  @	
  200	
  Hz)	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   4	
  
GW	
  Emission	
  
•  GWs	
  are	
  very	
  weak	
  and	
  interact	
  weakly	
  with	
  ma-er.	
  
•  No	
  human-­‐made	
  sources.	
  
GW	
  generator,	
  
TAPIR	
  group,	
  
Caltech	
  
Simulation and Modeling of Gravitational Wave Sources
Simulation and Modeling of Gravitational Wave Sources
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   7	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
GW	
  data	
  stream	
  
+	
  mock	
  signal	
  at	
  	
  
SNR	
  10	
  
mock	
  GW	
  signal	
  
Need	
  signal	
  predic&ons	
  for:	
  
	
  -­‐>	
  Detec&on	
  of	
  weak	
  signals	
  (matched	
  filtering).	
  
	
  -­‐>	
  Es&ma&on	
  of	
  source	
  parameters	
  &	
  physics.	
  
	
  -­‐>	
  Tests	
  of	
  General	
  Rela&vity.	
  
Why	
  Simula&on	
  and	
  Modeling?	
  
8	
  
Simula0on	
  vs.	
  Modeling	
  of	
  GWs	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
Simula0on	
  
•  From	
  first	
  principles.	
  
•  Is	
  self-­‐consistent	
  and	
  depends	
  
on	
  few	
  free	
  parameters.	
  
•  Makes	
  as	
  few	
  approxima&ons	
  
as	
  possible.	
  
•  Typically	
  involves	
  PDEs.	
  
•  Extremely	
  computa&onally	
  
expensive.	
  Some&mes	
  
prohibi&vely	
  expensive.	
  
•  Yields	
  reliable	
  predic&ons	
  
(modulo	
  systema&cs).	
  
Modeling	
  
•  From	
  phenomenological,	
  
approx.	
  /	
  perturba&ve	
  model.	
  
•  Depends	
  on	
  many	
  free	
  
parameters.	
  
•  Ohen	
  tuned	
  /	
  calibrated	
  based	
  
on	
  simula&ons.	
  
•  Typically	
  involves	
  ODEs.	
  
•  Computa&onally	
  inexpensive.	
  
•  Yields	
  predic&ons	
  whose	
  
reliability	
  must	
  be	
  tested	
  with	
  
simula&ons.	
  
(both	
  are	
  needed)	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   9	
  
GW	
  Signal	
  Types,	
  Simula&on	
  &	
  Modeling	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
Coalescence	
  Signals	
  (Compact	
  Binary	
  Coalescence	
  [CBC])	
  
(Ohme	
  2012)	
  
•  (Rela&vely)	
  simple	
  signal	
  morphology.	
  
•  Can	
  be	
  well	
  modeled	
  /	
  simulated;	
  	
  
ideal	
  for	
  matched	
  filtering.	
  
•  BH+BH	
  (BBH),	
  NS+NS,	
  NS+BH.	
  
	
  
(J.	
  Blackman)	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   10	
  
GW	
  Signal	
  Types,	
  Simula&on	
  &	
  Modeling	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
Coalescence	
  Signals	
  (Compact	
  Binary	
  Coalescence	
  [CBC])	
  
Bursts	
  
•  Complex	
  signal	
  morphology.	
  
•  Hard	
  or	
  impossible	
  to	
  model,	
  difficult	
  to	
  simulate.	
  
•  Chao&c	
  signal	
  components	
  (e.g.,	
  due	
  to	
  turbulence).	
  
•  Matched	
  filtering	
  generally	
  not	
  applicable.	
  
(O-	
  2009)	
  
Examples:	
  
Core-­‐collapse	
  
supernovae	
  
	
  
Postmerger	
  NS+NS	
  
	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   11	
  
GW	
  Signal	
  Types,	
  Simula&on	
  &	
  Modeling	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
Coalescence	
  Signals	
  (Compact	
  Binary	
  Coalescence	
  [CBC])	
  
Bursts	
  
Con0nuous	
  Waves	
  
•  Well	
  modeled,	
  highly	
  periodic	
  signals	
  due	
  to	
  
small	
  deforma&ons	
  of	
  spinning	
  NSs.	
  
	
  
(A.	
  Stuver)	
  
(M.	
  Kramer)	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   12	
  
GW	
  Signal	
  Types,	
  Simula&on	
  &	
  Modeling	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
Coalescence	
  Signals	
  (Compact	
  Binary	
  Coalescence	
  [CBC])	
  
Bursts	
   Con&nuous	
  Waves	
  
•  Cosmological:	
  Big	
  Bang,	
  infla&on	
  
•  Astrophysical:	
  superposi&on	
  of	
  cosmol.	
  popula&on	
  of	
  CBC/burst	
  events.	
  
•  Stochas&c	
  –	
  no	
  detailed	
  h(t)	
  predic&on	
  possible.	
  
	
  
Stochas0c	
  Backgrounds	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   13	
  
Example	
  1:	
  Coalescing	
  BH+BH	
  Pairs	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
Parameter	
  space	
  
(J.	
  Blackman)	
  
The Binary Black Hole Parameter Space
Black hole masses m1, m2
Spin vectors ~1 and ~2, k~i k = k~Si k/m2
i < 1
Total mass M = m1 + m2 can be scaled out, leaving 7 parameters
A moderately dense covering of the parameter space would require
⇠ 107 waveforms!
Pure	
  gravity!	
   Gµ⌫
= 0
(K.	
  Thorne)	
  
<-­‐	
  this	
  is	
  why	
  modeling	
  is	
  needed!	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   14	
  
Binary	
  Black	
  Hole	
  Coalescence	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
Ohme	
  2012	
   Strong	
  field	
  limit	
  
•  Modeling:	
  	
  
– Post-­‐Newtonian	
  (PN)	
  approximants	
  (expansion	
  in	
  v/c).	
  	
  
Only	
  inspiral.	
  Fails	
  in	
  strong-­‐field	
  regime.	
  
– Effec&ve-­‐one-­‐body	
  (EOB)	
  and	
  “Phenom”-­‐type	
  PN	
  models:	
  
Fits	
  of	
  PN	
  inspiral,	
  merger,	
  ringdown.	
  Calibrated	
  on	
  NR	
  simula&ons.	
  
– NR	
  “surrogate	
  models”	
  via	
  reduced-­‐order	
  modeling.	
  
•  Simula&on:	
  Numerical	
  Rela&vity	
  	
  −	
  direct	
  integra&on	
  of	
  field	
  eqns.	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   15	
  
Binary	
  Black	
  Hole	
  Coalescence	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
Buonanno	
  &	
  Sathyaprakash	
  14	
  
Validity	
  of	
  methods	
  
Extreme	
  
Mass	
  Ra&o	
  	
  
(EMRI)	
  
mass	
  ra&o	
  
strength	
  
of	
  rela&vis&c	
  
dynamics/	
  
gravity.	
  
c2
v2
⇠
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   16	
  
Numerical	
  Rela&vity	
  Simula&ons	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
Proceedings	
  of	
  the	
  GR1	
  Conference	
  on	
  the	
  role	
  of	
  gravita&on	
  in	
  physics	
  
University	
  of	
  North	
  Carolina,	
  Chapel	
  Hill	
  [January	
  18-­‐23,	
  1957]	
  	
  (via	
  P.	
  Laguna	
  &	
  D.	
  Shoemaker)	
  
(K.	
  Thorne)	
  
-­‐>	
  It	
  took	
  un&l	
  2005	
  (Pretorius,	
  Campanelli+,	
  Baker+)	
  	
  
	
  to	
  simulate	
  first	
  BBH	
  merger!	
  	
  
Figure:	
  C.	
  Reisswig	
  
Folia0on	
  of	
  space0me	
  
3-­‐hypersurface	
  
•  12	
  first-­‐order	
  hyperbolic	
  evolu&on	
  equa&ons.	
  
•  4	
  ellip&c	
  constraint	
  equa&ons	
  
•  4	
  coordinate	
  gauge	
  degrees	
  of	
  freedom:	
  α,	
  βi.	
  	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   17	
  
Numerical	
  Rela0vity	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   18	
  
Numerical	
  Rela0vity	
  Key	
  issues	
  	
  
•  Ini&al	
  condi&ons	
  must	
  sa&sfy	
  Einstein	
  equa&ons.	
  
•  No	
  unique	
  way	
  to	
  formulate	
  evolu&on	
  equa&ons.	
  
•  Gauge	
  freedom	
  –	
  how	
  choose	
  gauge	
  condi&ons?	
  
•  Need	
  combina&on	
  of	
  evolu&on	
  equa&ons	
  +	
  gauges	
  that	
  yield	
  
to	
  numerically	
  stable	
  simula&ons.	
  
	
  BSSN	
  Formula0on	
  
Generalized	
  Harmonic	
  Formula0on	
  
Nakamura+87,	
  Shibata	
  &	
  Nakamura	
  95,	
  Baumgarte	
  &	
  Shapiro	
  99	
  	
  	
  
Friedrich	
  85,	
  Pretorius	
  05,	
  Lindblom+	
  06	
  	
  	
  
•  Conformal-­‐traceless	
  reformula&on	
  of	
  Arnowi--­‐Deser-­‐Misner	
  59,	
  York	
  79.	
  
•  Addi&onal	
  evolu&on	
  equa&ons,	
  condi&onally	
  strongly	
  hyperbolic.	
  
•  Sensi&ve	
  to	
  gauge	
  choice;	
  good	
  gauges	
  known.	
  
•  Most	
  widely	
  used	
  evolu&on	
  system	
  today.	
  
•  Choice	
  of	
  coordinates	
  so	
  that	
  evolu&on	
  equa&ons	
  	
  
wave-­‐equa&on	
  like.	
  Symmetric	
  hyperbolic.	
  
•  Sensi&ve	
  to	
  gauge	
  choices,	
  horizon	
  boundary	
  condi&ons.	
  
•  Used	
  primarily	
  by	
  Caltech/Cornell	
  SXS	
  code	
  SpEC.	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   19	
  
•  Spectral	
  Einstein	
  Code:	
  SpEC	
  
Caltech-­‐Cornell-­‐CITA-­‐Fullerton	
  
Simula&ng	
  eXtreme	
  Space&mes	
  
Collabora&on	
  (SXS)	
  
•  Generalized	
  harmonic	
  formula&on.	
  
•  Explicit	
  mul&-­‐domain,	
  mul&-­‐frame	
  
pseudo-­‐spectral	
  methods.	
  C++.	
  
•  Severely	
  scaling	
  limited	
  >	
  48	
  cores.	
  
1	
  simula&on	
  with	
  40	
  orbits:	
  	
  
3-­‐6	
  months	
  on	
  48	
  cores.	
  
•  Proprietary	
  (closed	
  source).	
  
More	
  info	
  on	
  
h-p://www.black-­‐holes.org	
  
Example	
  Computa0onal	
  Approach:	
  SpEC	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   20	
  
Pfeiffer/Scheel	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   21	
  
BBH	
  &	
  Advanced	
  LIGO/Virgo	
  
NASA,	
  M.	
  Weiss	
  
•  BBH	
  Source	
  popula&on	
  &	
  parameters	
  unknown!	
  
•  Present	
  EOB/Phenom	
  models	
  calibrated	
  for	
  moderate	
  (mostly	
  aligned)	
  
spins,	
  mass	
  ra&os	
  m1/m2	
  ~	
  1	
  –	
  1:10.	
  
•  NR	
  simula&ons	
  needed	
  for	
  rest	
  of	
  parameter	
  space	
  (high	
  spin,	
  precession).	
  
(at	
  40	
  Mpc)	
  
(at	
  1	
  Gpc)	
  
(at	
  1	
  Gpc)	
  
(at	
  1	
  Gpc)	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   22	
  
Complete	
  Waveforms:	
  Problems	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
•  7D	
  parameter	
  space	
  –	
  at	
  least	
  107	
  simula&ons	
  needed.	
  
•  Many	
  cycles	
  in	
  sensi&vity	
  band:	
   N ⇠
4
2⇡
⇥ 104
✓
M
M
◆ 5/3
O(100)	
  for	
  5+5	
  M⦿	
  
-­‐>	
  Impossible	
  with	
  numerical	
  rela&vity	
  simula&ons!	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   23	
  
Complete	
  Waveforms:	
  Solu&ons	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
•  Many	
  cycles	
  in	
  sensi&vity	
  band:	
  
N ⇠
4
2⇡
⇥ 104
✓
M
M
◆ 5/3
(~130	
  for	
  5+5	
  M⦿)	
  
Solu&on:	
  “Hybridiza0on”	
  
Further	
  problem:	
  
#	
  of	
  required	
  NR	
  cycles	
  unknown;	
  dependent	
  on	
  system	
  parameters.	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   24	
  
Complete	
  Waveforms:	
  Solu&ons	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
Solu&on:	
  “Surrogate	
  Model”	
  via	
  Reduced-­‐Order	
  Modeling	
  
•  7D	
  parameter	
  space	
  –	
  at	
  least	
  107	
  simula&ons	
  needed.	
  
(1)	
  Intelligently	
  &	
  sparsely	
  sample	
  parameter	
  space	
  with	
  O(1,000)	
  
	
  numerical	
  rela&vity	
  simula&ons.	
  
(2)	
  Interpolate	
  between	
  waveforms	
  to	
  obtain	
  waveform	
  for	
  
	
  any	
  set	
  of	
  BBH	
  parameters.	
  
Basic	
  Idea:	
  	
  
	
  
Goal:	
  Build	
  model	
  that	
  is	
  as	
  good	
  as	
  NR	
  and	
  	
  
	
  can	
  be	
  a	
  subs&tute	
  for	
  NR	
  simula&ons	
  (surrogate).	
  
Have N reduced basis
waveforms (blue lines)
Fit data at N empirical
time nodes (red lines)
using known data (black
dots)
Evaluate fits at arbitrary
parameter(s) (cyan
dots)
Use empirical interpolant
to uniquely determine
new data (cyan line)
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   25	
  
Numerical	
  Rela&vity	
  Surrogate	
  Models	
  
Vela	
  
(by	
  Jonathan	
  Blackman)	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   26	
  
Numerical	
  Rela&vity	
  Surrogate	
  Models	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
(by	
  Jonathan	
  Blackman,	
  Blackman+15)	
  
1D	
  surrogate	
  model	
  (mass	
  ra&o).	
  
Work	
  on	
  mul&-­‐D	
  surrogate	
  models	
  in	
  progress.	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   27	
  
Example	
  2:	
  NSNS	
  and	
  BHNS	
  Mergers	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
•  Harder:	
  must	
  simulate	
  also	
  ma-er	
  (and	
  magne&c	
  fields)	
  
	
  -­‐>	
  (magneto)-­‐hydrodynamics,	
  neutrinos,	
  nuclear	
  EOS.	
  
•  But:	
  lower	
  mass	
  	
  
	
  -­‐>	
  PN	
  approx.	
  valid	
  for	
  much/most(NSNS)	
  of	
  inspiral.	
  
M1	
  ~	
  M2	
  ~	
  1.4	
  MSun	
  
-­‐>	
  galac&c	
  NSNS	
  binaries!	
  
MBH	
  ~	
  7-­‐10	
  x	
  MNS	
  (Belczynski+’10)	
  	
  
(but	
  no	
  BHNS	
  systems	
  known)	
  
credit:	
  D.	
  Tsang	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   28	
  
NSNS	
  in	
  the	
  Advanced	
  Detector	
  Band	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
•  Poten&al	
  to	
  constrain	
  nuclear	
  equa&on	
  of	
  state.	
  
Mul0-­‐Physics,	
  Mul0-­‐Messenger	
  Astrophysics	
  
29	
  C.	
  D.	
  O-	
  @	
  YKIS	
  2013,	
  2013/06/07	
  
Nuclear	
  Equa0on	
  of	
  State	
  (EOS)	
  
Neutrinos/Neutrino	
  Interac0ons	
   Nuclear	
  Reac0ons	
  &	
  Opaci0es	
  
Crust	
  Physics	
  &	
  Superfluidity	
  (SF)	
  
EOS	
  
Crust/SF	
  
hot	
  EOS	
   hot	
  EOS	
  
Neutrinos	
   Neutrinos	
   Neutrinos	
  
hot	
  EOS	
  
Neutrinos	
  
Nuclear	
   Nuclear	
   Nuclear	
  
hot	
  EOS	
  
EM	
  aherglow/	
  
counterpart	
  
Gamma-­‐Ray	
  Bursts	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   30	
  
BATSE	
  
LGRBs	
  
SGRBs	
  
•  Two	
  general	
  groups	
  of	
  GRBs:	
  	
  
Long	
  and	
  Short	
  
•  Favored	
  model:	
  	
  
Beamed	
  Ultrarela&vis&c	
  ou}low	
  	
  
emi~ng	
  	
  γ-­‐rays.	
  
[Reviews:	
  e.g.	
  Woosley	
  &	
  Bloom	
  ‘06,	
  Piran	
  ‘05,	
  Meszaros	
  ’05]	
  
NS-­‐NS	
  /	
  NS-­‐BH	
  merger	
  
Massive	
  H/He-­‐poor	
  Star	
  
SGRB	
  
LGRB	
  
Simplis0c	
  Engine	
  Picture:	
   Energy	
  sources:	
  
Gravita&onal	
  energy	
  (accre&on)	
  
Black	
  Hole/NS	
  spin	
  energy.	
  
Disk	
  Mass:	
  	
  
∼0.1	
  MSun	
  
Disk	
  Mass:	
  	
  
∼1	
  MSun	
  
Media0ng	
  Processes:	
  
Neutrino	
  Pair	
  Annihila&on	
  
Magnetohydrodynamics	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   31	
  
NSNS	
  Simula&ons:	
  Outcomes	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
Sensi&vity	
  to	
  system	
  mass,	
  mass	
  ra&o,	
  and	
  nuclear	
  EOS.	
  
C.	
  D.	
  O-	
  @	
  HIPACC	
  Summer	
  School	
  2014,	
  2014/07/23	
   32	
  
BHNS	
  Merger	
  Scenario	
  
Kyohei	
  Kawaguchi	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   33	
  
NSNS/NSBH	
  Modeling	
  and	
  Simula&on	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
•  NSNS:	
  	
  
PN	
  approxima&on	
  valid	
  through	
  inspiral,	
  
mul&-­‐physics	
  NR+GR(M)HD	
  simula&on	
  for	
  	
  
merger/postmerger	
  evolu&on.	
  
	
  
•  BHNS:	
  
PN	
  approxima&on	
  valid	
  in	
  inspiral	
  if	
  	
  
mass	
  ra&o	
  MBH/MNS	
  small	
  and	
  BH	
  spin	
  small.	
  
	
  
But:	
  most	
  likely	
  BH	
  spin	
  large,	
  MBH/MNS	
  >	
  ~7:1.	
  
-­‐>	
  need	
  long	
  NR+GR(M)HD	
  BHNS	
  inspiral	
  simula&ons.	
  	
  
credit:	
  D.	
  Tsang	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   34	
  
Example	
  3:	
  Core-­‐Collapse	
  Supernovae	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
•  Explosions	
  of	
  massive	
  stars:	
  Gravity	
  bombs.	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   35	
  
©	
  Anglo-­‐Australian	
  Observatory	
  
Core-­‐Collapse	
  Supernovae:	
  
Supernova	
  1987A	
  
Large	
  Magellanic	
  Cloud	
  
Progenitor:	
  	
  
BSG	
  Sanduleak	
  -­‐69°	
  220a,	
  ≈18	
  MSUN	
  
	
  
Explosions	
  of	
  Massive	
  Stars	
   8M . M . 130M
Reminder:	
  Core	
  Collapse	
  Basics	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   36	
  
Nuclear	
  equa&on	
  of	
  state	
  (EOS)	
  
s&ffens	
  at	
  nuclear	
  density.	
  
	
  
Inner	
  core	
  (~0.5	
  MSun)	
  	
  
-­‐>	
  protoneutron	
  star	
  core.	
  	
  
Shock	
  wave	
  formed.	
  
Outer	
  core	
  accretes	
  onto	
  
shock	
  &	
  protoneutron	
  star	
  
with	
  O(1)	
  M⦿/s.	
  
-­‐>	
  Shock	
  stalls	
  at	
  ~100	
  km,	
  
	
  must	
  be	
  “revived”	
  to	
  drive	
  
	
  explosion.	
  
Reviews:	
  
Bethe’90	
  
Janka+’12	
  
Core-­‐Collapse	
  Supernova	
  Energe&cs	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   37	
  
•  Collapse	
  to	
  a	
  neutron	
  star:	
  ∼3	
  x	
  1053	
  erg	
  =	
  300	
  [B]ethe	
  	
  
gravita0onal	
  energy	
  (≈0.15	
  MSunc2).	
  
-­‐>	
  	
  Any	
  explosion	
  mechanism	
  must	
  tap	
  this	
  reservoir.	
  
•  ∼1051	
  erg	
  =	
  1	
  B	
  kine&c	
  and	
  internal	
  energy	
  of	
  the	
  ejecta.	
  
(Extreme	
  cases:	
  10	
  B;	
  “hypernova”)	
  
•  99%	
  of	
  the	
  energy	
  is	
  radiated	
  in	
  neutrinos	
  on	
  O(10)s	
  
-­‐>	
  Strong	
  evidence	
  from	
  SN	
  1987A	
  neutrino	
  observa&ons.	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   38	
  
Example	
  3:	
  Core-­‐Collapse	
  Supernovae	
  
NASA,	
  M.	
  Weiss	
  Vela	
  
•  Explosions	
  of	
  massive	
  stars:	
  Gravity	
  bombs.	
  
•  Mul&-­‐dimensional,	
  mul&-­‐physics,	
  mul0-­‐scale	
  problem.	
  
•  What	
  is	
  the	
  detailed	
  explosion	
  mechanism?	
  
•  Sources	
  of	
  GW	
  bursts	
  -­‐>	
  GWs	
  carry	
  informa&on	
  on	
  	
  
mul&-­‐D	
  dynamics	
  and	
  explosion	
  mechanism	
  (O-	
  09).	
  	
  
•  Mul&-­‐Messenger	
  Astronomy	
  -­‐>	
  neutrinos,	
  GWs,	
  photons!	
  	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   39	
  
Magneto-­‐Hydrodynamics	
  
Nuclear	
  and	
  Neutrino	
  Physics	
  
General	
  Rela&vity	
  
Boltzmann	
  Transport	
  Theory	
  
Dynamics	
  of	
  the	
  stellar	
  fluid.	
  
Nuclear	
  EOS,	
  nuclear	
  	
  
reac&ons	
  &	
  ν	
  interac&ons.	
  
Gravity	
  
Neutrino	
  transport.	
  
Fully	
  coupled!	
  
•  Addi&onal	
  Complica&on:	
  Core-­‐Collapse	
  Supernovae	
  are	
  3D	
  
– Rota&on,	
  fluid	
  instabili0es,	
  magne0c	
  fields,	
  mul&-­‐D	
  stellar	
  structure	
  
from	
  convec&ve	
  burning,	
  etc.	
  
•  Full	
  problem:	
  3D	
  space,	
  3D	
  momentum	
  space	
  +	
  &me	
  
Detailed	
  CCSN	
  Simula0ons:	
  Ingredients	
  	
  
The	
  3D	
  Fron0er	
  –	
  Petascale	
  Compu0ng!	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
  
40	
  
•  Modeling:	
  only	
  for	
  photons	
  (light	
  curve,	
  spectra).	
  
•  Simula0on	
  required	
  for	
  everything	
  else.	
  
•  Some	
  early	
  work:	
  Fryer	
  &	
  Warren	
  02,	
  04	
  
•  Loads	
  of	
  new	
  work	
  since	
  ~2010:	
  	
  
Fernandez	
  10,	
  Nordhaus+10,	
  Takiwaki+11,13,	
  	
  
Burrows+12,	
  Murphy+13,	
  Dolence+13,	
  	
  
Hanke+12,13,	
  Kuroda+12,	
  O-+13,	
  Couch	
  13,	
  	
  
Takiwaki+13,	
  Couch	
  &	
  O-	
  13,	
  15,	
  	
  
Abdikamalov+15,	
  Couch	
  &	
  O’Connor	
  14,	
  
Lentz+15,	
  Melson+15ab,	
  Cardall&Budiardja	
  15,	
  
Radice+15,	
  Summa+15	
  
O-+2013	
  
41	
  
O-+2013	
  
Caltech,	
  
full	
  GR,	
  
parameterized	
  
neutrino	
  hea&ng	
  
Gravita0onal-­‐Waves	
  from	
  Core-­‐Collapse	
  Supernovae	
  
42	
  
Reviews:	
  O-	
  09,	
  Kotake	
  11,	
  Fryer	
  &	
  New	
  11	
  
Need:	
  
accelerated	
  aspherical	
  (quadrupole)	
  
mass-­‐energy	
  mo&ons	
  
Candidate	
  Emission	
  Processes:	
  
v  Turbulent	
  convec&on	
  &	
  shock	
  instability	
  (SASI)	
  
v  Rota&ng	
  collapse	
  &	
  bounce	
  
v  3D	
  rota&onal	
  instabili&es	
  
v  Aspherical	
  mass-­‐energy	
  ou}lows:	
  
-­‐>	
  aspherical	
  neutrino	
  emission	
  
-­‐>	
  aspherical	
  explosion	
  
3
-150 -100 -50 0 50 100 150
x [km]
-150
-100
-50
0
50
100
150
z[km]
t = 10.00 ms
-30 -20 -10 0 10 20 30
x [km]
-30
-20
-10
0
10
20
30
z[km]
t = 68.88 ms
-30 -20 -10 0 10 20 30
x [km]
-30
-20
-10
0
10
20
30
z[km]
t = 69.39 ms
-30 -20 -10 0 10 20 30
x [km]
-30
-20
-10
0
10
20
30
z[km]
t = 84.00 ms
108 1010 1012 1014
log
108 1010 1012 1014
log
108 1010 1012 1014
log
109 1010 1011
log
FIG. 3: Snapshots of the meridional density distribution with
superposed velocity vectors in model u75rot1 taken at various
0 20 40 60 80 100 120 140
t tbounce [ms]
1
2
3
f[kHz]
u75rot2
3 2 1 0 1 2 3
log |D˜h+,e|2
400
200
0
200
Dh+,e[cm]
DhCCE
+,e u75rot1
DhCCE
+,e u75rot1.5
DhCCE
+,e u75rot2
1.6 0.8 0.0 0.8 1.6
t tBH [ms]
400
200
0
200
FIG. 4: Top: GW signals h+,e emitted by the rotating mod-
els as seen by an equatorial observer and rescaled by distance
C.	
  D.	
  O-	
  @	
  ERAU,	
  2015/11/30	
  
GW	
  emission	
  
weak	
  –	
  	
  
detectable	
  only	
  	
  
for	
  galac&c	
  CCSN	
  
GWs	
  from	
  Convec0on	
  &	
  Standing	
  Accre0on	
  Shock	
  Instability	
  
43	
  
Recent	
  work:	
  Murphy+09,	
  Kotake+09,	
  11,	
  Yakunin+10,	
  E.	
  Müller+12,	
  B.Müller+13	
  	
  OTT, & BURROWS Vol. 707
he
es
7)
es,
e-
ng
m
8)
We
Figure 2. Sample of GW strain (h+) times the distance, D, vs. time after
Murphy+09	
  
C.	
  D.	
  O-	
  @	
  ERAU,	
  2015/11/30	
  
GW	
  burst!	
  
Murphy+09	
  
Time-­‐Frequency	
  Analysis	
  of	
  GWs	
  
44	
  
Murphy,	
  O-,	
  Burrows	
  09,	
  see	
  also	
  B.	
  Müller+13	
  
fp ⇠
!BV
2⇡
Peak	
  emission	
  
traces	
  buoyancy	
  	
  
frequency	
  at	
  	
  
proto-­‐NS	
  edge.	
  
(buoyancy	
  frequency)	
  	
  
C.	
  D.	
  O-	
  @	
  ERAU,	
  2015/11/30	
  
GWs	
  from	
  Rota0ng	
  Collapse	
  &	
  Bounce	
  
C.	
  D.	
  O-	
  @	
  ERAU,	
  2015/11/30	
   45	
  
Recent	
  work:	
  Dimmelmeier+08,	
  Scheidegger+10,	
  O-+12,	
  Abdikamalov+14	
  	
  
•  Axisymmetric:	
  ONLY	
  h+	
  
•  Simplest	
  GW	
  emission	
  process:	
  Rota0on	
  +	
  mass	
  of	
  inner	
  core	
  +	
  	
  
gravity	
  	
  +	
  	
  s0ffening	
  of	
  nuclear	
  EOS	
  	
  
•  Strong	
  signals	
  for	
  rapid	
  rota&on	
  (-­‐>	
  millisecond	
  proto-­‐NS).	
  
C.	
  D.	
  O-	
  @	
  ERAU,	
  2015/11/30	
  	
   46	
  
Simple	
  signal	
  features:	
  Axisymmetric	
  rota&ng	
  collapse	
  
Permits	
  es&ma&on	
  
of	
  core	
  angular	
  momentum.	
  
Can	
  (almost)	
  
be	
  used	
  for	
  matched	
  filtering!	
  
GWs	
  from	
  Rota0ng	
  Collapse	
  &	
  Bounce	
  
Recent	
  work:	
  Dimmelmeier+08,	
  Scheidegger+10,	
  O-+12,	
  Abdikamalov+14	
  	
  
C.	
  D.	
  O-	
  @	
  ERAU,	
  2015/11/30	
  	
   47	
  
3D	
  Rota&onal	
  Instabili&es	
  
Simula&on:	
  C.	
  D.	
  O-,	
  Visualiza&on:	
  R.	
  Kaehler	
  
C.	
  D.	
  O-	
  @	
  GW2010,	
  UMN,	
  2010/10/15	
   48	
  
Polar	
  Observer	
  +	
  
Polar	
  Observer	
  x	
  Equatorial	
  Observer	
  x	
  
Equatorial	
  Observer	
  +	
  
O-+07	
  
GWs	
  from	
  Asymmetric	
  Neutrino	
  Emission	
  
C.	
  D.	
  O-	
  @	
  CASS	
  UCSD	
  2009/11/18	
   49	
  
[Epstein	
  1978,	
  Burrows	
  &	
  Hayes	
  1996,	
  Janka	
  &	
  Müller	
  1997,	
  Müller	
  et	
  al.	
  2004,	
  Dessart	
  et	
  al.	
  2006,	
  O-	
  2009]	
  
•  Any	
  accelerated	
  mass-­‐energy	
  quadrupole	
  	
  
will	
  emit	
  GWs.	
  Asymmetric	
  neutrino	
  radia&on:	
  
Asymmetric	
  neutrino	
  emission	
  in	
  core-­‐collapse	
  SNe:	
  
•  Convec0on:	
  small-­‐scale	
  varia&ons.	
  
•  Rapid	
  rota0on:	
  large-­‐scale	
  asymmetry.	
  
•  Large-­‐scale	
  asymmetries:	
  large-­‐scale	
  asymmetry.	
  
[O-	
  et	
  al.	
  2008]	
  
GW	
  
“Memory”	
  
[Dessart	
  et	
  al.	
  2006,	
  	
  O-	
  2008	
  
Accre&on-­‐Induced	
  Collapse	
  
Large	
  h,	
  
low	
  frequency	
  
The	
  Einstein	
  Toolkit	
  Project	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   50	
  
Mösta+14	
  
Löffler+12	
  
h-p://einsteintoolkit.org	
  
The	
  Einstein	
  Toolkit	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   51	
  
Mösta+14	
  
Löffler+12	
  
• Collec&on	
  of	
  open-­‐source	
  sohware	
  components	
  for	
  the	
  
simula&on	
  and	
  analysis	
  of	
  general-­‐rela&vis&c	
  
astrophysical	
  systems.	
  
h-p://einsteintoolkit.org	
  
The	
  Einstein	
  Toolkit	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   52	
  
Mösta+14	
  
Löffler+12	
  
• Collec&on	
  of	
  open-­‐source	
  sohware	
  components	
  for	
  the	
  
simula&on	
  and	
  analysis	
  of	
  general-­‐rela&vis&c	
  
astrophysical	
  systems.	
  
• Supported	
  by	
  NSF	
  via	
  collabora&ve	
  grant	
  to	
  
Georgia	
  Tech,	
  LSU,	
  RIT,	
  and	
  Caltech.	
  
• ~110	
  users,	
  53	
  groups;	
  ~10	
  ac&ve	
  maintainers.	
  
• Goals:	
  
h-p://einsteintoolkit.org	
  
- Reproducibility.	
  
- Build	
  a	
  community	
  codebase	
  for	
  numerical	
  rela&vity	
  and	
  
computa&onal	
  rela&vis&c	
  astrophysics.	
  
- Enable	
  new	
  science	
  by	
  lowering	
  technological	
  hurdles	
  for	
  
researchers	
  with	
  new	
  ideas.	
  Enable	
  code	
  verifica&on/valida&on,	
  
physics	
  benchmarking,	
  regression	
  tes&ng.	
  
- Make	
  it	
  easy	
  for	
  users	
  to	
  take	
  advantage	
  of	
  new	
  technologies.	
  
- Provide	
  cyberinfrastructure	
  tools	
  for	
  code	
  and	
  data	
  management.	
  
The	
  Einstein	
  Toolkit	
  
C.	
  D.	
  O-	
  @	
  COFI,	
  2015/12/05	
   53	
  
Mösta+14	
  
Löffler+12	
  
• Cactus	
  (framework),	
  Carpet	
  (adap&ve	
  mesh	
  refinement)	
  
• GRHydro	
  –	
  GRMHD	
  solver	
  
• McLachlan	
  –	
  BSSN/Z4c	
  space&me	
  solver	
  
(code	
  auto-­‐generated	
  based	
  on	
  Mathema&ca	
  script,	
  GPU-­‐enabled)	
  
• Ini&al	
  data	
  solvers	
  /	
  importers	
  
• Analysis	
  tools	
  (wave	
  extrac&on,	
  horizon	
  finders,	
  etc.)	
  
• Visualiza&on	
  via	
  VisIt	
  (h-p://visit.llnl.gov)	
  
	
  
Available	
  Components:	
  
• Regular	
  releases	
  of	
  stable	
  code	
  versions.	
  	
  
Most	
  recent:	
  “Somerville”	
  release,	
  November	
  2015	
  
• Support	
  via	
  mailing	
  list	
  and	
  weekly	
  open	
  conference	
  calls.	
  
• Working	
  examples	
  for	
  BH	
  mergers,	
  NS	
  mergers,	
  isolated	
  
NSs,	
  rota&ng,	
  magne&zed	
  core	
  collapse.	
  
The	
  Dawn	
  of	
  	
  
Gravita0onal	
  Wave	
  Astronomy	
  	
  
Stay	
  Tuned…	
  
LIGO-­‐G1501322v1	
  D.	
  Reitze	
  
Betelgeuse,	
  D~200	
  pc	
  

More Related Content

PDF
New Insights into Massive Star Explosions
PDF
Morphologies of Wolf-Rayet Planetary Nebulae based on IFU Observations
PDF
Hard X-ray Emitting Symbiotics: Candidates for Type Ia Supernova Progenitors
PDF
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
PDF
Ultra-fast Outflows from Active Galactic Nuclei of Seyfert I Galaxies
PDF
Tendex and Vortex Lines around Spinning Supermassive Black Holes
PPTX
Electromagnetic counterparts of Gravitational Waves - Elena Pian
PPT
The Evolution of Elliptical Galaxies in Rich Clusters
New Insights into Massive Star Explosions
Morphologies of Wolf-Rayet Planetary Nebulae based on IFU Observations
Hard X-ray Emitting Symbiotics: Candidates for Type Ia Supernova Progenitors
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
Ultra-fast Outflows from Active Galactic Nuclei of Seyfert I Galaxies
Tendex and Vortex Lines around Spinning Supermassive Black Holes
Electromagnetic counterparts of Gravitational Waves - Elena Pian
The Evolution of Elliptical Galaxies in Rich Clusters

What's hot (20)

PDF
Kinematical Properties of Planetary Nebulae with WR-type Nuclei
PDF
Relativistic Compact Outflows in Radio-quiet AGN
PDF
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
PDF
[PDF] Geneva2017 - Testing Strong Equivalence Principle with Pulsars
PDF
Chandra Grating Spectroscopy of PG 1211+143: Evidence for an Ultra-fast Outflow
PDF
Bayesian X-ray Spectral Analysis of the Symbiotic Star RT Cru
PDF
Active Galactic Nuclei: Laboratory for Gravitational Physics
PDF
Chemical Compositions of [WR] Planetary Nebulae based on IFU Observations
PDF
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
PDF
Insights to the Morphology of Planetary Nebulae from 3D Spectroscopy
PDF
Paths to a Unified AGN Outflow Model via Computational Relativity
PPTX
Pawan Kumar Relativistic jets in tidal disruption events
PDF
Masashi hazumi talk
PDF
A mildly relativistic wide-angle outflow in the neutron-star merger event GW1...
PDF
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
PDF
IVega_Acevedo
PDF
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
PPT
Dark energy by david spergel
PPTX
Grossan grbtelescope+bsti
Kinematical Properties of Planetary Nebulae with WR-type Nuclei
Relativistic Compact Outflows in Radio-quiet AGN
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
[PDF] Geneva2017 - Testing Strong Equivalence Principle with Pulsars
Chandra Grating Spectroscopy of PG 1211+143: Evidence for an Ultra-fast Outflow
Bayesian X-ray Spectral Analysis of the Symbiotic Star RT Cru
Active Galactic Nuclei: Laboratory for Gravitational Physics
Chemical Compositions of [WR] Planetary Nebulae based on IFU Observations
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
Insights to the Morphology of Planetary Nebulae from 3D Spectroscopy
Paths to a Unified AGN Outflow Model via Computational Relativity
Pawan Kumar Relativistic jets in tidal disruption events
Masashi hazumi talk
A mildly relativistic wide-angle outflow in the neutron-star merger event GW1...
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
IVega_Acevedo
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Dark energy by david spergel
Grossan grbtelescope+bsti
Ad

Viewers also liked (10)

PDF
Physics, Astrophysics & Simulation of Gravitational Wave Source (Lecture 2)
PPTX
Ligo(animation) new
PDF
Digasyprm grav wavesfin
PPTX
Gravitational waves
PPTX
Interferometer: An insight in Gravitational Waves
PDF
Gravitational Waves_2016
PPTX
Gravitational waves
PPT
Gravitational Waves
PPTX
Science achievement Feb-2016
PPTX
L i g o ( Laser Interferometer Gravitational-Wave Observatory)
Physics, Astrophysics & Simulation of Gravitational Wave Source (Lecture 2)
Ligo(animation) new
Digasyprm grav wavesfin
Gravitational waves
Interferometer: An insight in Gravitational Waves
Gravitational Waves_2016
Gravitational waves
Gravitational Waves
Science achievement Feb-2016
L i g o ( Laser Interferometer Gravitational-Wave Observatory)
Ad

Similar to Simulation and Modeling of Gravitational Wave Sources (20)

PDF
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
PDF
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
PDF
Gravitational Waves and Binary Systems (1) - Thibault Damour
PDF
The Search for Gravitational Waves
PDF
Biermann AstroPhysic
PPT
Cyberinfrastructure for Einstein's Equations and Beyond
PDF
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
PDF
Ilya Mandel Seminar NITheP UKZN 20 Jan 2014
PDF
Gravitational Waves Volume 2 Astrophysics And Cosmology Illustrated Michele M...
PDF
Gravitational Waves Volume 2 Astrophysics And Cosmology Illustrated Michele M...
PDF
Binary Black Holes & Tests of GR - Luis Lehner
PDF
Probing new physics on the horizon of black holes with gravitational waves
PDF
first research paper
PDF
The distribution and_annihilation_of_dark_matter_around_black_holes
PDF
General Relativity and gravitational waves: a primer
PPTX
Gravitational waves and their detection and future
PPT
GWs.ppt
PDF
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
PDF
Honors Thesis
PDF
Probing Extreme Physics With Compact Objcts
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
Gravitational Waves and Binary Systems (1) - Thibault Damour
The Search for Gravitational Waves
Biermann AstroPhysic
Cyberinfrastructure for Einstein's Equations and Beyond
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
Ilya Mandel Seminar NITheP UKZN 20 Jan 2014
Gravitational Waves Volume 2 Astrophysics And Cosmology Illustrated Michele M...
Gravitational Waves Volume 2 Astrophysics And Cosmology Illustrated Michele M...
Binary Black Holes & Tests of GR - Luis Lehner
Probing new physics on the horizon of black holes with gravitational waves
first research paper
The distribution and_annihilation_of_dark_matter_around_black_holes
General Relativity and gravitational waves: a primer
Gravitational waves and their detection and future
GWs.ppt
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
Honors Thesis
Probing Extreme Physics With Compact Objcts

Recently uploaded (20)

PDF
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
PPTX
endocrine - management of adrenal incidentaloma.pptx
PPTX
Introduction to Immunology (Unit-1).pptx
PPTX
2currentelectricity1-201006102815 (1).pptx
PDF
Science Form five needed shit SCIENEce so
PPTX
A powerpoint on colorectal cancer with brief background
PPTX
TORCH INFECTIONS in pregnancy with toxoplasma
PDF
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
PDF
GROUP 2 ORIGINAL PPT. pdf Hhfiwhwifhww0ojuwoadwsfjofjwsofjw
PPT
Biochemestry- PPT ON Protein,Nitrogenous constituents of Urine, Blood, their ...
PPTX
Platelet disorders - thrombocytopenia.pptx
PPTX
Preformulation.pptx Preformulation studies-Including all parameter
PPTX
perinatal infections 2-171220190027.pptx
PPT
LEC Synthetic Biology and its application.ppt
PPTX
gene cloning powerpoint for general biology 2
PDF
Communicating Health Policies to Diverse Populations (www.kiu.ac.ug)
PPTX
Presentation1 INTRODUCTION TO ENZYMES.pptx
PPTX
Introcution to Microbes Burton's Biology for the Health
PPTX
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
PPTX
HAEMATOLOGICAL DISEASES lack of red blood cells, which carry oxygen throughou...
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
endocrine - management of adrenal incidentaloma.pptx
Introduction to Immunology (Unit-1).pptx
2currentelectricity1-201006102815 (1).pptx
Science Form five needed shit SCIENEce so
A powerpoint on colorectal cancer with brief background
TORCH INFECTIONS in pregnancy with toxoplasma
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
GROUP 2 ORIGINAL PPT. pdf Hhfiwhwifhww0ojuwoadwsfjofjwsofjw
Biochemestry- PPT ON Protein,Nitrogenous constituents of Urine, Blood, their ...
Platelet disorders - thrombocytopenia.pptx
Preformulation.pptx Preformulation studies-Including all parameter
perinatal infections 2-171220190027.pptx
LEC Synthetic Biology and its application.ppt
gene cloning powerpoint for general biology 2
Communicating Health Policies to Diverse Populations (www.kiu.ac.ug)
Presentation1 INTRODUCTION TO ENZYMES.pptx
Introcution to Microbes Burton's Biology for the Health
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
HAEMATOLOGICAL DISEASES lack of red blood cells, which carry oxygen throughou...

Simulation and Modeling of Gravitational Wave Sources

  • 1. Chris&an  D.  O-     TAPIR,  California  Ins&tute  of  Technology   Simula&ng  eXtreme  Space&mes  (SXS)  Collabora&on   Sherman     Fairchild   Founda0on   Simula0on  and  Modeling  of   Gravita0onal  Wave  Sources  
  • 2. C.  D.  O-  @  COFI,  2015/12/05   2   Gravita&onal  Wave  Emission   •  GWs  (in  GR!)  are  to  lowest-­‐order  quadrupole  waves.   •  Emi-ed  by  accelerated  aspherical  bulk  mass-­‐energy  mo&ons.     •  “Slow-­‐mo&on”  “weak-­‐field”  quadrupole  approxima&on:   mass  quadrupole  moment   dimensionless  GW   “strain”  (displacement)   G c4 ⇡ 10 49 s2 g 1 cm 1 First  Numerical  Es&mate:   Ijk = Z ⇢xjxkd3 x d2 dt2 I ⇠ O(Mv2 ) h ⇠ 2G c4D Mv2 M = 1M D = 10 kpc v = 0.1c h ⇠ 10 19 M ⌘ ”aspherical mass” (adv.  LIGO:        ~4  x  10-­‐24  @  200  Hz)  
  • 3. C.  D.  O-  @  COFI,  2015/12/05   3   GW  Emission   •  GWs  are  very  weak  and  interact  weakly  with  ma-er.   •  No  human-­‐made  sources  (of  detectable  GWs):   M = 1000 kgExample:   ~⌦ R = 10 m ⌦ = 100 Hz D = 100 m (detector  distance)   h ⇠ 10 37-­‐>  GW  strain  amplitude:   (adv.  LIGO:  ~4  x  10-­‐24  @  200  Hz)  
  • 4. C.  D.  O-  @  COFI,  2015/12/05   4   GW  Emission   •  GWs  are  very  weak  and  interact  weakly  with  ma-er.   •  No  human-­‐made  sources.   GW  generator,   TAPIR  group,   Caltech  
  • 7. C.  D.  O-  @  COFI,  2015/12/05   7   NASA,  M.  Weiss  Vela   GW  data  stream   +  mock  signal  at     SNR  10   mock  GW  signal   Need  signal  predic&ons  for:    -­‐>  Detec&on  of  weak  signals  (matched  filtering).    -­‐>  Es&ma&on  of  source  parameters  &  physics.    -­‐>  Tests  of  General  Rela&vity.   Why  Simula&on  and  Modeling?  
  • 8. 8   Simula0on  vs.  Modeling  of  GWs   NASA,  M.  Weiss  Vela   Simula0on   •  From  first  principles.   •  Is  self-­‐consistent  and  depends   on  few  free  parameters.   •  Makes  as  few  approxima&ons   as  possible.   •  Typically  involves  PDEs.   •  Extremely  computa&onally   expensive.  Some&mes   prohibi&vely  expensive.   •  Yields  reliable  predic&ons   (modulo  systema&cs).   Modeling   •  From  phenomenological,   approx.  /  perturba&ve  model.   •  Depends  on  many  free   parameters.   •  Ohen  tuned  /  calibrated  based   on  simula&ons.   •  Typically  involves  ODEs.   •  Computa&onally  inexpensive.   •  Yields  predic&ons  whose   reliability  must  be  tested  with   simula&ons.   (both  are  needed)   C.  D.  O-  @  COFI,  2015/12/05  
  • 9. C.  D.  O-  @  COFI,  2015/12/05   9   GW  Signal  Types,  Simula&on  &  Modeling   NASA,  M.  Weiss  Vela   Coalescence  Signals  (Compact  Binary  Coalescence  [CBC])   (Ohme  2012)   •  (Rela&vely)  simple  signal  morphology.   •  Can  be  well  modeled  /  simulated;     ideal  for  matched  filtering.   •  BH+BH  (BBH),  NS+NS,  NS+BH.     (J.  Blackman)  
  • 10. C.  D.  O-  @  COFI,  2015/12/05   10   GW  Signal  Types,  Simula&on  &  Modeling   NASA,  M.  Weiss  Vela   Coalescence  Signals  (Compact  Binary  Coalescence  [CBC])   Bursts   •  Complex  signal  morphology.   •  Hard  or  impossible  to  model,  difficult  to  simulate.   •  Chao&c  signal  components  (e.g.,  due  to  turbulence).   •  Matched  filtering  generally  not  applicable.   (O-  2009)   Examples:   Core-­‐collapse   supernovae     Postmerger  NS+NS    
  • 11. C.  D.  O-  @  COFI,  2015/12/05   11   GW  Signal  Types,  Simula&on  &  Modeling   NASA,  M.  Weiss  Vela   Coalescence  Signals  (Compact  Binary  Coalescence  [CBC])   Bursts   Con0nuous  Waves   •  Well  modeled,  highly  periodic  signals  due  to   small  deforma&ons  of  spinning  NSs.     (A.  Stuver)   (M.  Kramer)  
  • 12. C.  D.  O-  @  COFI,  2015/12/05   12   GW  Signal  Types,  Simula&on  &  Modeling   NASA,  M.  Weiss  Vela   Coalescence  Signals  (Compact  Binary  Coalescence  [CBC])   Bursts   Con&nuous  Waves   •  Cosmological:  Big  Bang,  infla&on   •  Astrophysical:  superposi&on  of  cosmol.  popula&on  of  CBC/burst  events.   •  Stochas&c  –  no  detailed  h(t)  predic&on  possible.     Stochas0c  Backgrounds  
  • 13. C.  D.  O-  @  COFI,  2015/12/05   13   Example  1:  Coalescing  BH+BH  Pairs   NASA,  M.  Weiss  Vela   Parameter  space   (J.  Blackman)   The Binary Black Hole Parameter Space Black hole masses m1, m2 Spin vectors ~1 and ~2, k~i k = k~Si k/m2 i < 1 Total mass M = m1 + m2 can be scaled out, leaving 7 parameters A moderately dense covering of the parameter space would require ⇠ 107 waveforms! Pure  gravity!   Gµ⌫ = 0 (K.  Thorne)   <-­‐  this  is  why  modeling  is  needed!  
  • 14. C.  D.  O-  @  COFI,  2015/12/05   14   Binary  Black  Hole  Coalescence   NASA,  M.  Weiss  Vela   Ohme  2012   Strong  field  limit   •  Modeling:     – Post-­‐Newtonian  (PN)  approximants  (expansion  in  v/c).     Only  inspiral.  Fails  in  strong-­‐field  regime.   – Effec&ve-­‐one-­‐body  (EOB)  and  “Phenom”-­‐type  PN  models:   Fits  of  PN  inspiral,  merger,  ringdown.  Calibrated  on  NR  simula&ons.   – NR  “surrogate  models”  via  reduced-­‐order  modeling.   •  Simula&on:  Numerical  Rela&vity    −  direct  integra&on  of  field  eqns.  
  • 15. C.  D.  O-  @  COFI,  2015/12/05   15   Binary  Black  Hole  Coalescence   NASA,  M.  Weiss  Vela   Buonanno  &  Sathyaprakash  14   Validity  of  methods   Extreme   Mass  Ra&o     (EMRI)   mass  ra&o   strength   of  rela&vis&c   dynamics/   gravity.   c2 v2 ⇠
  • 16. C.  D.  O-  @  COFI,  2015/12/05   16   Numerical  Rela&vity  Simula&ons   NASA,  M.  Weiss  Vela   Proceedings  of  the  GR1  Conference  on  the  role  of  gravita&on  in  physics   University  of  North  Carolina,  Chapel  Hill  [January  18-­‐23,  1957]    (via  P.  Laguna  &  D.  Shoemaker)   (K.  Thorne)   -­‐>  It  took  un&l  2005  (Pretorius,  Campanelli+,  Baker+)      to  simulate  first  BBH  merger!    
  • 17. Figure:  C.  Reisswig   Folia0on  of  space0me   3-­‐hypersurface   •  12  first-­‐order  hyperbolic  evolu&on  equa&ons.   •  4  ellip&c  constraint  equa&ons   •  4  coordinate  gauge  degrees  of  freedom:  α,  βi.     C.  D.  O-  @  COFI,  2015/12/05   17   Numerical  Rela0vity  
  • 18. C.  D.  O-  @  COFI,  2015/12/05   18   Numerical  Rela0vity  Key  issues     •  Ini&al  condi&ons  must  sa&sfy  Einstein  equa&ons.   •  No  unique  way  to  formulate  evolu&on  equa&ons.   •  Gauge  freedom  –  how  choose  gauge  condi&ons?   •  Need  combina&on  of  evolu&on  equa&ons  +  gauges  that  yield   to  numerically  stable  simula&ons.    BSSN  Formula0on   Generalized  Harmonic  Formula0on   Nakamura+87,  Shibata  &  Nakamura  95,  Baumgarte  &  Shapiro  99       Friedrich  85,  Pretorius  05,  Lindblom+  06       •  Conformal-­‐traceless  reformula&on  of  Arnowi--­‐Deser-­‐Misner  59,  York  79.   •  Addi&onal  evolu&on  equa&ons,  condi&onally  strongly  hyperbolic.   •  Sensi&ve  to  gauge  choice;  good  gauges  known.   •  Most  widely  used  evolu&on  system  today.   •  Choice  of  coordinates  so  that  evolu&on  equa&ons     wave-­‐equa&on  like.  Symmetric  hyperbolic.   •  Sensi&ve  to  gauge  choices,  horizon  boundary  condi&ons.   •  Used  primarily  by  Caltech/Cornell  SXS  code  SpEC.  
  • 19. C.  D.  O-  @  COFI,  2015/12/05   19   •  Spectral  Einstein  Code:  SpEC   Caltech-­‐Cornell-­‐CITA-­‐Fullerton   Simula&ng  eXtreme  Space&mes   Collabora&on  (SXS)   •  Generalized  harmonic  formula&on.   •  Explicit  mul&-­‐domain,  mul&-­‐frame   pseudo-­‐spectral  methods.  C++.   •  Severely  scaling  limited  >  48  cores.   1  simula&on  with  40  orbits:     3-­‐6  months  on  48  cores.   •  Proprietary  (closed  source).   More  info  on   h-p://www.black-­‐holes.org   Example  Computa0onal  Approach:  SpEC  
  • 20. C.  D.  O-  @  COFI,  2015/12/05   20   Pfeiffer/Scheel  
  • 21. C.  D.  O-  @  COFI,  2015/12/05   21   BBH  &  Advanced  LIGO/Virgo   NASA,  M.  Weiss   •  BBH  Source  popula&on  &  parameters  unknown!   •  Present  EOB/Phenom  models  calibrated  for  moderate  (mostly  aligned)   spins,  mass  ra&os  m1/m2  ~  1  –  1:10.   •  NR  simula&ons  needed  for  rest  of  parameter  space  (high  spin,  precession).   (at  40  Mpc)   (at  1  Gpc)   (at  1  Gpc)   (at  1  Gpc)  
  • 22. C.  D.  O-  @  COFI,  2015/12/05   22   Complete  Waveforms:  Problems   NASA,  M.  Weiss  Vela   •  7D  parameter  space  –  at  least  107  simula&ons  needed.   •  Many  cycles  in  sensi&vity  band:   N ⇠ 4 2⇡ ⇥ 104 ✓ M M ◆ 5/3 O(100)  for  5+5  M⦿   -­‐>  Impossible  with  numerical  rela&vity  simula&ons!  
  • 23. C.  D.  O-  @  COFI,  2015/12/05   23   Complete  Waveforms:  Solu&ons   NASA,  M.  Weiss  Vela   •  Many  cycles  in  sensi&vity  band:   N ⇠ 4 2⇡ ⇥ 104 ✓ M M ◆ 5/3 (~130  for  5+5  M⦿)   Solu&on:  “Hybridiza0on”   Further  problem:   #  of  required  NR  cycles  unknown;  dependent  on  system  parameters.  
  • 24. C.  D.  O-  @  COFI,  2015/12/05   24   Complete  Waveforms:  Solu&ons   NASA,  M.  Weiss  Vela   Solu&on:  “Surrogate  Model”  via  Reduced-­‐Order  Modeling   •  7D  parameter  space  –  at  least  107  simula&ons  needed.   (1)  Intelligently  &  sparsely  sample  parameter  space  with  O(1,000)    numerical  rela&vity  simula&ons.   (2)  Interpolate  between  waveforms  to  obtain  waveform  for    any  set  of  BBH  parameters.   Basic  Idea:       Goal:  Build  model  that  is  as  good  as  NR  and      can  be  a  subs&tute  for  NR  simula&ons  (surrogate).  
  • 25. Have N reduced basis waveforms (blue lines) Fit data at N empirical time nodes (red lines) using known data (black dots) Evaluate fits at arbitrary parameter(s) (cyan dots) Use empirical interpolant to uniquely determine new data (cyan line) C.  D.  O-  @  COFI,  2015/12/05   25   Numerical  Rela&vity  Surrogate  Models   Vela   (by  Jonathan  Blackman)  
  • 26. C.  D.  O-  @  COFI,  2015/12/05   26   Numerical  Rela&vity  Surrogate  Models   NASA,  M.  Weiss  Vela   (by  Jonathan  Blackman,  Blackman+15)   1D  surrogate  model  (mass  ra&o).   Work  on  mul&-­‐D  surrogate  models  in  progress.  
  • 27. C.  D.  O-  @  COFI,  2015/12/05   27   Example  2:  NSNS  and  BHNS  Mergers   NASA,  M.  Weiss  Vela   •  Harder:  must  simulate  also  ma-er  (and  magne&c  fields)    -­‐>  (magneto)-­‐hydrodynamics,  neutrinos,  nuclear  EOS.   •  But:  lower  mass      -­‐>  PN  approx.  valid  for  much/most(NSNS)  of  inspiral.   M1  ~  M2  ~  1.4  MSun   -­‐>  galac&c  NSNS  binaries!   MBH  ~  7-­‐10  x  MNS  (Belczynski+’10)     (but  no  BHNS  systems  known)   credit:  D.  Tsang  
  • 28. C.  D.  O-  @  COFI,  2015/12/05   28   NSNS  in  the  Advanced  Detector  Band   NASA,  M.  Weiss  Vela   •  Poten&al  to  constrain  nuclear  equa&on  of  state.  
  • 29. Mul0-­‐Physics,  Mul0-­‐Messenger  Astrophysics   29  C.  D.  O-  @  YKIS  2013,  2013/06/07   Nuclear  Equa0on  of  State  (EOS)   Neutrinos/Neutrino  Interac0ons   Nuclear  Reac0ons  &  Opaci0es   Crust  Physics  &  Superfluidity  (SF)   EOS   Crust/SF   hot  EOS   hot  EOS   Neutrinos   Neutrinos   Neutrinos   hot  EOS   Neutrinos   Nuclear   Nuclear   Nuclear   hot  EOS   EM  aherglow/   counterpart  
  • 30. Gamma-­‐Ray  Bursts   C.  D.  O-  @  COFI,  2015/12/05   30   BATSE   LGRBs   SGRBs   •  Two  general  groups  of  GRBs:     Long  and  Short   •  Favored  model:     Beamed  Ultrarela&vis&c  ou}low     emi~ng    γ-­‐rays.   [Reviews:  e.g.  Woosley  &  Bloom  ‘06,  Piran  ‘05,  Meszaros  ’05]   NS-­‐NS  /  NS-­‐BH  merger   Massive  H/He-­‐poor  Star   SGRB   LGRB   Simplis0c  Engine  Picture:   Energy  sources:   Gravita&onal  energy  (accre&on)   Black  Hole/NS  spin  energy.   Disk  Mass:     ∼0.1  MSun   Disk  Mass:     ∼1  MSun   Media0ng  Processes:   Neutrino  Pair  Annihila&on   Magnetohydrodynamics  
  • 31. C.  D.  O-  @  COFI,  2015/12/05   31   NSNS  Simula&ons:  Outcomes   NASA,  M.  Weiss  Vela   Sensi&vity  to  system  mass,  mass  ra&o,  and  nuclear  EOS.  
  • 32. C.  D.  O-  @  HIPACC  Summer  School  2014,  2014/07/23   32   BHNS  Merger  Scenario   Kyohei  Kawaguchi  
  • 33. C.  D.  O-  @  COFI,  2015/12/05   33   NSNS/NSBH  Modeling  and  Simula&on   NASA,  M.  Weiss  Vela   •  NSNS:     PN  approxima&on  valid  through  inspiral,   mul&-­‐physics  NR+GR(M)HD  simula&on  for     merger/postmerger  evolu&on.     •  BHNS:   PN  approxima&on  valid  in  inspiral  if     mass  ra&o  MBH/MNS  small  and  BH  spin  small.     But:  most  likely  BH  spin  large,  MBH/MNS  >  ~7:1.   -­‐>  need  long  NR+GR(M)HD  BHNS  inspiral  simula&ons.     credit:  D.  Tsang  
  • 34. C.  D.  O-  @  COFI,  2015/12/05   34   Example  3:  Core-­‐Collapse  Supernovae   NASA,  M.  Weiss  Vela   •  Explosions  of  massive  stars:  Gravity  bombs.  
  • 35. C.  D.  O-  @  COFI,  2015/12/05   35   ©  Anglo-­‐Australian  Observatory   Core-­‐Collapse  Supernovae:   Supernova  1987A   Large  Magellanic  Cloud   Progenitor:     BSG  Sanduleak  -­‐69°  220a,  ≈18  MSUN     Explosions  of  Massive  Stars   8M . M . 130M
  • 36. Reminder:  Core  Collapse  Basics   C.  D.  O-  @  COFI,  2015/12/05   36   Nuclear  equa&on  of  state  (EOS)   s&ffens  at  nuclear  density.     Inner  core  (~0.5  MSun)     -­‐>  protoneutron  star  core.     Shock  wave  formed.   Outer  core  accretes  onto   shock  &  protoneutron  star   with  O(1)  M⦿/s.   -­‐>  Shock  stalls  at  ~100  km,    must  be  “revived”  to  drive    explosion.   Reviews:   Bethe’90   Janka+’12  
  • 37. Core-­‐Collapse  Supernova  Energe&cs   C.  D.  O-  @  COFI,  2015/12/05   37   •  Collapse  to  a  neutron  star:  ∼3  x  1053  erg  =  300  [B]ethe     gravita0onal  energy  (≈0.15  MSunc2).   -­‐>    Any  explosion  mechanism  must  tap  this  reservoir.   •  ∼1051  erg  =  1  B  kine&c  and  internal  energy  of  the  ejecta.   (Extreme  cases:  10  B;  “hypernova”)   •  99%  of  the  energy  is  radiated  in  neutrinos  on  O(10)s   -­‐>  Strong  evidence  from  SN  1987A  neutrino  observa&ons.  
  • 38. C.  D.  O-  @  COFI,  2015/12/05   38   Example  3:  Core-­‐Collapse  Supernovae   NASA,  M.  Weiss  Vela   •  Explosions  of  massive  stars:  Gravity  bombs.   •  Mul&-­‐dimensional,  mul&-­‐physics,  mul0-­‐scale  problem.   •  What  is  the  detailed  explosion  mechanism?   •  Sources  of  GW  bursts  -­‐>  GWs  carry  informa&on  on     mul&-­‐D  dynamics  and  explosion  mechanism  (O-  09).     •  Mul&-­‐Messenger  Astronomy  -­‐>  neutrinos,  GWs,  photons!    
  • 39. C.  D.  O-  @  COFI,  2015/12/05   39   Magneto-­‐Hydrodynamics   Nuclear  and  Neutrino  Physics   General  Rela&vity   Boltzmann  Transport  Theory   Dynamics  of  the  stellar  fluid.   Nuclear  EOS,  nuclear     reac&ons  &  ν  interac&ons.   Gravity   Neutrino  transport.   Fully  coupled!   •  Addi&onal  Complica&on:  Core-­‐Collapse  Supernovae  are  3D   – Rota&on,  fluid  instabili0es,  magne0c  fields,  mul&-­‐D  stellar  structure   from  convec&ve  burning,  etc.   •  Full  problem:  3D  space,  3D  momentum  space  +  &me   Detailed  CCSN  Simula0ons:  Ingredients    
  • 40. The  3D  Fron0er  –  Petascale  Compu0ng!   C.  D.  O-  @  COFI,  2015/12/05   40   •  Modeling:  only  for  photons  (light  curve,  spectra).   •  Simula0on  required  for  everything  else.   •  Some  early  work:  Fryer  &  Warren  02,  04   •  Loads  of  new  work  since  ~2010:     Fernandez  10,  Nordhaus+10,  Takiwaki+11,13,     Burrows+12,  Murphy+13,  Dolence+13,     Hanke+12,13,  Kuroda+12,  O-+13,  Couch  13,     Takiwaki+13,  Couch  &  O-  13,  15,     Abdikamalov+15,  Couch  &  O’Connor  14,   Lentz+15,  Melson+15ab,  Cardall&Budiardja  15,   Radice+15,  Summa+15   O-+2013  
  • 41. 41   O-+2013   Caltech,   full  GR,   parameterized   neutrino  hea&ng  
  • 42. Gravita0onal-­‐Waves  from  Core-­‐Collapse  Supernovae   42   Reviews:  O-  09,  Kotake  11,  Fryer  &  New  11   Need:   accelerated  aspherical  (quadrupole)   mass-­‐energy  mo&ons   Candidate  Emission  Processes:   v  Turbulent  convec&on  &  shock  instability  (SASI)   v  Rota&ng  collapse  &  bounce   v  3D  rota&onal  instabili&es   v  Aspherical  mass-­‐energy  ou}lows:   -­‐>  aspherical  neutrino  emission   -­‐>  aspherical  explosion   3 -150 -100 -50 0 50 100 150 x [km] -150 -100 -50 0 50 100 150 z[km] t = 10.00 ms -30 -20 -10 0 10 20 30 x [km] -30 -20 -10 0 10 20 30 z[km] t = 68.88 ms -30 -20 -10 0 10 20 30 x [km] -30 -20 -10 0 10 20 30 z[km] t = 69.39 ms -30 -20 -10 0 10 20 30 x [km] -30 -20 -10 0 10 20 30 z[km] t = 84.00 ms 108 1010 1012 1014 log 108 1010 1012 1014 log 108 1010 1012 1014 log 109 1010 1011 log FIG. 3: Snapshots of the meridional density distribution with superposed velocity vectors in model u75rot1 taken at various 0 20 40 60 80 100 120 140 t tbounce [ms] 1 2 3 f[kHz] u75rot2 3 2 1 0 1 2 3 log |D˜h+,e|2 400 200 0 200 Dh+,e[cm] DhCCE +,e u75rot1 DhCCE +,e u75rot1.5 DhCCE +,e u75rot2 1.6 0.8 0.0 0.8 1.6 t tBH [ms] 400 200 0 200 FIG. 4: Top: GW signals h+,e emitted by the rotating mod- els as seen by an equatorial observer and rescaled by distance C.  D.  O-  @  ERAU,  2015/11/30   GW  emission   weak  –     detectable  only     for  galac&c  CCSN  
  • 43. GWs  from  Convec0on  &  Standing  Accre0on  Shock  Instability   43   Recent  work:  Murphy+09,  Kotake+09,  11,  Yakunin+10,  E.  Müller+12,  B.Müller+13    OTT, & BURROWS Vol. 707 he es 7) es, e- ng m 8) We Figure 2. Sample of GW strain (h+) times the distance, D, vs. time after Murphy+09   C.  D.  O-  @  ERAU,  2015/11/30   GW  burst!   Murphy+09  
  • 44. Time-­‐Frequency  Analysis  of  GWs   44   Murphy,  O-,  Burrows  09,  see  also  B.  Müller+13   fp ⇠ !BV 2⇡ Peak  emission   traces  buoyancy     frequency  at     proto-­‐NS  edge.   (buoyancy  frequency)     C.  D.  O-  @  ERAU,  2015/11/30  
  • 45. GWs  from  Rota0ng  Collapse  &  Bounce   C.  D.  O-  @  ERAU,  2015/11/30   45   Recent  work:  Dimmelmeier+08,  Scheidegger+10,  O-+12,  Abdikamalov+14     •  Axisymmetric:  ONLY  h+   •  Simplest  GW  emission  process:  Rota0on  +  mass  of  inner  core  +     gravity    +    s0ffening  of  nuclear  EOS     •  Strong  signals  for  rapid  rota&on  (-­‐>  millisecond  proto-­‐NS).  
  • 46. C.  D.  O-  @  ERAU,  2015/11/30     46   Simple  signal  features:  Axisymmetric  rota&ng  collapse   Permits  es&ma&on   of  core  angular  momentum.   Can  (almost)   be  used  for  matched  filtering!   GWs  from  Rota0ng  Collapse  &  Bounce   Recent  work:  Dimmelmeier+08,  Scheidegger+10,  O-+12,  Abdikamalov+14    
  • 47. C.  D.  O-  @  ERAU,  2015/11/30     47   3D  Rota&onal  Instabili&es   Simula&on:  C.  D.  O-,  Visualiza&on:  R.  Kaehler  
  • 48. C.  D.  O-  @  GW2010,  UMN,  2010/10/15   48   Polar  Observer  +   Polar  Observer  x  Equatorial  Observer  x   Equatorial  Observer  +   O-+07  
  • 49. GWs  from  Asymmetric  Neutrino  Emission   C.  D.  O-  @  CASS  UCSD  2009/11/18   49   [Epstein  1978,  Burrows  &  Hayes  1996,  Janka  &  Müller  1997,  Müller  et  al.  2004,  Dessart  et  al.  2006,  O-  2009]   •  Any  accelerated  mass-­‐energy  quadrupole     will  emit  GWs.  Asymmetric  neutrino  radia&on:   Asymmetric  neutrino  emission  in  core-­‐collapse  SNe:   •  Convec0on:  small-­‐scale  varia&ons.   •  Rapid  rota0on:  large-­‐scale  asymmetry.   •  Large-­‐scale  asymmetries:  large-­‐scale  asymmetry.   [O-  et  al.  2008]   GW   “Memory”   [Dessart  et  al.  2006,    O-  2008   Accre&on-­‐Induced  Collapse   Large  h,   low  frequency  
  • 50. The  Einstein  Toolkit  Project   C.  D.  O-  @  COFI,  2015/12/05   50   Mösta+14   Löffler+12   h-p://einsteintoolkit.org  
  • 51. The  Einstein  Toolkit   C.  D.  O-  @  COFI,  2015/12/05   51   Mösta+14   Löffler+12   • Collec&on  of  open-­‐source  sohware  components  for  the   simula&on  and  analysis  of  general-­‐rela&vis&c   astrophysical  systems.   h-p://einsteintoolkit.org  
  • 52. The  Einstein  Toolkit   C.  D.  O-  @  COFI,  2015/12/05   52   Mösta+14   Löffler+12   • Collec&on  of  open-­‐source  sohware  components  for  the   simula&on  and  analysis  of  general-­‐rela&vis&c   astrophysical  systems.   • Supported  by  NSF  via  collabora&ve  grant  to   Georgia  Tech,  LSU,  RIT,  and  Caltech.   • ~110  users,  53  groups;  ~10  ac&ve  maintainers.   • Goals:   h-p://einsteintoolkit.org   - Reproducibility.   - Build  a  community  codebase  for  numerical  rela&vity  and   computa&onal  rela&vis&c  astrophysics.   - Enable  new  science  by  lowering  technological  hurdles  for   researchers  with  new  ideas.  Enable  code  verifica&on/valida&on,   physics  benchmarking,  regression  tes&ng.   - Make  it  easy  for  users  to  take  advantage  of  new  technologies.   - Provide  cyberinfrastructure  tools  for  code  and  data  management.  
  • 53. The  Einstein  Toolkit   C.  D.  O-  @  COFI,  2015/12/05   53   Mösta+14   Löffler+12   • Cactus  (framework),  Carpet  (adap&ve  mesh  refinement)   • GRHydro  –  GRMHD  solver   • McLachlan  –  BSSN/Z4c  space&me  solver   (code  auto-­‐generated  based  on  Mathema&ca  script,  GPU-­‐enabled)   • Ini&al  data  solvers  /  importers   • Analysis  tools  (wave  extrac&on,  horizon  finders,  etc.)   • Visualiza&on  via  VisIt  (h-p://visit.llnl.gov)     Available  Components:   • Regular  releases  of  stable  code  versions.     Most  recent:  “Somerville”  release,  November  2015   • Support  via  mailing  list  and  weekly  open  conference  calls.   • Working  examples  for  BH  mergers,  NS  mergers,  isolated   NSs,  rota&ng,  magne&zed  core  collapse.  
  • 54. The  Dawn  of     Gravita0onal  Wave  Astronomy     Stay  Tuned…   LIGO-­‐G1501322v1  D.  Reitze   Betelgeuse,  D~200  pc