SlideShare a Scribd company logo
Search Platform
 Features & Use Cases
SOLR


●
    SOLR is an standalone search server, that can scale separatedly from
    the application that uses it
    ●
        i.e. Avoid the case where an e-commerce server is slowed down by the
        users searching their product catalog
●
    SOLR is accessed using HTTP/XML REST-like and JSON APIs
    ●
        Multi-platform, multi-language and client-independent
    ●
        Results in XML, CSV, or JSON (with custom variations for
        Ruby,Python,PHP)
●
    100% Opensource, written in Java, runs in JVM
●
    Apache Foundation top-level project
●
    Most widely-used search server in industry
SOLR : A Lucene server

●
     Solr is a search platform that provides all the features of Lucene search engine *
        ●
            high-performance indexing
        ●
            Incremental and batch indexing
        ●
            Small footprint (RAM and disk)




●
    And has all of Lucene features
    ●
        Ranked searching
    ●
        Many query types (phrase, wildcard, regexp, range, geospatial proximity)
    ●
        Many field types, meaningful sorting
    ●
        Multi-index search and merge of results
    ●   Faceting
    ●
        Language recognition (stemming)
    ●   Suggestions



                                             * (both projects are actually merged since SOLR 3.1, March 2010)
Simple SOLR Example


●
    Index a product catalog (i.e. IPod Video)
●
    Data in XML format
    <doc>
      <field   name="id">MA147LL/A</field>
      <field   name="name">Apple 60 GB iPod with Video Playback Black</field>
      <field   name="features">2.5-inch, 320x240 color TFT LCD display with LED backlight</field>
      <field   name="features">Up to 20 hours of battery life</field>
      <field   name="features">Plays AAC, MP3, WAV, AIFF, Audible, Apple Lossless, H.264 video</field>
      <field   name="price">399.00</field>
      <field   name="inStock">true</field>
      <field   name="store">37.7752,-100.0232</field>   <!-- Dodge City store -->
    </doc>




●
    Schema configuration
    <field
    <field
             name="id" type="string" indexed="true" stored="true"/>
             name="name" type="text" indexed="true" stored="true"/>
    <field   name="features" type="text" indexed="true" stored="true" multiValued="true"/>
    <field   name="price" type="float" indexed="true" stored="true"/>
    <field   name="inStock" type="boolean" indexed="true" stored="true" />
    <field   name="store" type="location" indexed="true" stored="true"/>
Simple SOLR Example

●
     Query
       ●
              Return all products with « video » in any field, sorted by descendant
              price, show just the name,price,inStock
curl "http://localhost:8983/solr/collection1/select?q=video&sort=price+desc&fl=name,price,instock&indent=true"
<?xml version="1.0" encoding="UTF-8"?>
<response>

<lst name="responseHeader">
  <int name="status">0</int>
  <int name="QTime">1</int>
  <lst name="params">
    <str name="fl">name,price</str>
    <str name="sort">price desc</str>
    <str name="indent">true</str>
    <str name="q">video</str>
  </lst>
</lst>
<result name="response" numFound="3" start="0">
  <doc>
    <str name="name">ATI Radeon X1900 XTX 512 MB PCIE Video Card</str>
    <float name="price">649.99</float>
    <bool name="inStock">false</bool></doc>
  <doc>
    <str name="name">ASUS Extreme N7800GTX/2DHTV (256 MB)</str>
    <float name="price">479.95</float>
    <bool name="inStock">false</bool></doc>
  <doc>
    <str name="name">Apple 60 GB iPod with Video Playback Black</str>
    <float name="price">399.0</float>
    <bool name="inStock">true</bool></doc>
</result>
</response>
Simple SOLR Example

●
    Query Facets
    ●
         Add facets options and desired category

        Facet : inStock                     Facet : price, from 0 to 1000$, in 100$ gaps
        q=video&sort=price+desc&facet=tru   q=video&sort=price+desc&facet=true&facet.range=pr
        e&facet.field=inStock               ice&facet.range.gap=100&facet.range.start=0.0&fac
                                            et.range.end=1000
        <lst name="facet_counts">
        <lst name="facet_queries"/>         <lst name="counts">
        <lst name="facet_fields">           <int name="0.0">0</int>
        <lst name="inStock">                <int name="100.0">0</int>
        <int name="false">2</int>           <int name="200.0">0</int>
        <int name="true">1</int>            <int name="300.0">1</int> (Apple Ipod 399$)
        </lst>                              <int name="400.0">1</int> (Asus Extreme 479$)
        </lst>                              <int name="500.0">0</int>
        <lst name="facet_dates"/>           <int name="600.0">1</int> (ATI Radeon 649$)
        <lst name="facet_ranges"/>          <int name="700.0">0</int>
        </lst>                              <int name="800.0">0</int>
                                            <int name="900.0">0</int>
                                            </lst>
Simple SOLR Example

●
    Filter Query
    ●
        Uses different cache than Search Cache (useful for big results)

    Filter Query : all products priced from 300 to 499 USD
    q=*&fl=name,price&fq=price:[300 TO 499]

    <result name="response" numFound="4" start="0">
    <doc>
      <str name="name">Maxtor DiamondMax 11 - hard drive - 500 GB – SATA-300</str>
      <float name="price">350.0</float>
    </doc>
    <doc>
      <str name="name">Apple 60 GB iPod with Video Playback Black</str>
      <float name="price">399.0</float>
    </doc>
    <doc>
      <str name="name">Canon PowerShot SD500</str>
      <float name="price">329.95</float>
    </doc>
    <doc>
      <str name="name">ASUS Extreme N7800GTX/2DHTV (256 MB)</str>
      <float name="price">479.95</float>
    </doc>
    </result>
Simple SOLR Example

●
    Spatial Query
    ●
        Store data:
          –   <field name="store">45.17614,-93.87341</field>           <!-- Buffalo store -->
          –   <field name="store">40.7143,-74.006</field>              <!-- NYC store -->
          –   <field name="store">37.7752,-122.4232</field>            <!-- San Francisco store -->

    ●
        We are at 45.15,-93.85 (at 3.437 km from the Buffalo store)
    ●
        Find all products in a store within 5km of our position:
    QUERY : &fl=name,store&q=*:*&fq={!geofilt%20pt=45.15,-93.85%20sfield=store%20d=5} »

    "response":{"numFound":3,"start":0,"docs":[
          {
            "name":"Maxtor DiamondMax 11 - hard drive - 500 GB - SATA-300",
            "store":"45.17614,-93.87341"},
          {
            "name":"Belkin Mobile Power Cord for iPod w/ Dock",
            "store":"45.18014,-93.87741"},
          {
            "name":"A-DATA V-Series 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC 3200) System Memory - OEM",
            "store":"45.18414,-93.88141"}]
      }
SOLR Features


●
    SOLR Cloud
    ●
        Cluster configuration using zookeper
    ●
        Easy sharding and failover management
    ●
        Self-healing, no single point of failure
●
    SOLR Cell (aka RequestImportHandler)
    ●
        TIKA integration for binary document parsing
    ●
        Parses DOC, PDF, XLS, MIME, etc
●
    DataImportHandlers
    ●
        Automatically fetch and index SQL Databases, E-mails, RSS feeds,
        Files in folder, etc.
SOLR Features


●
    Multiple Solr Core
    ●
        Many index collections in the same server
    ●
        Different schema definitions for each collection
    ●
        Different configurations for storage, replication, etc
●
    Caching
    ●
        Recurrent searches are cached, improves speed
    ●
        Advanced warming techniques
    ●
        Adding content triggers just a partial cache update
●   Advanced
    ●
        Language detection
    ●
        Natural Language Processing
    ●
        Clustering to scale both search and document retrieval
SOLR CLoud
SOLR TIKA integration


●
    SOLRCell embeds TIKA for binary file parsing
●
    TIKA parses DOC, PDF, XLSX, HTML... and represent it
    using XHTML, JSON or CSV
    ●
        Full list of accepted formats :
        http://tika.apache.org/1.3/formats.html
    ●
        For some files, it can just index metadata (MP3, JPG, AVI)
●
    SOLRCell will internally recover the TIKA output and store it so
    we can search it
●
    SOLR does not store the original binary file
SOLR Addons


●
    Admin Interface
SOLR Addons


●
    Web Interface (SOLRitas)
SOLR Use Cases

●
    Liferay Search
    ●
        As liferay already uses Lucene, we can connect it to a SOLR server
    ●
        Leverages the Liferay server and lets the SOLR cluster handle all the
        user searches in the portal
●
    Magento E-Commerce .
    ●
        Avoids using MySQL for searching
    ●
        Better search results
    ●
        Better overall performance
●
    Alfresco Search
    ●
        Currently, Alfresco recommends to setup SOLR from the beginning
    ●
        By default, Lucene+Tika is used internally

More Related Content

PDF
Add Powerful Full Text Search to Your Web App with Solr
ODT
Hadoop on aws amazon
PDF
My sql regis_handsonlab
ODP
Caching and tuning fun for high scalability
PDF
Capturing, Analyzing, and Optimizing your SQL
PDF
A MySQL Odyssey - A Blackhole Crossover
ODP
Beyond PHP - it's not (just) about the code
PDF
Demystifying PostgreSQL
Add Powerful Full Text Search to Your Web App with Solr
Hadoop on aws amazon
My sql regis_handsonlab
Caching and tuning fun for high scalability
Capturing, Analyzing, and Optimizing your SQL
A MySQL Odyssey - A Blackhole Crossover
Beyond PHP - it's not (just) about the code
Demystifying PostgreSQL

What's hot (18)

PDF
Demystifying PostgreSQL (Zendcon 2010)
PDF
Hostingultraso com (14)
PDF
New features in Performance Schema 5.7 in action
ODP
Caching and tuning fun for high scalability
PDF
SSD based storage tuning for databases
PDF
Troubleshooting MySQL Performance
KEY
10x Performance Improvements
ODP
Beyond PHP - It's not (just) about the code
PDF
Apache ignite - a do-it-all key-value db?
PDF
UKOUG 2011: Practical MySQL Tuning
PDF
Hostingultraso australia
PDF
2012 summarytables
PDF
MySQL Best Practices - OTN LAD Tour
PPTX
My sql administration
PDF
Performance Schema for MySQL troubleshooting
PDF
Tracking Page Changes for Your Database and Bitmap Backups
ODP
Common schema my sql uc 2012
PDF
FIXING BLOCK CORRUPTION (RMAN) on 11G
 
Demystifying PostgreSQL (Zendcon 2010)
Hostingultraso com (14)
New features in Performance Schema 5.7 in action
Caching and tuning fun for high scalability
SSD based storage tuning for databases
Troubleshooting MySQL Performance
10x Performance Improvements
Beyond PHP - It's not (just) about the code
Apache ignite - a do-it-all key-value db?
UKOUG 2011: Practical MySQL Tuning
Hostingultraso australia
2012 summarytables
MySQL Best Practices - OTN LAD Tour
My sql administration
Performance Schema for MySQL troubleshooting
Tracking Page Changes for Your Database and Bitmap Backups
Common schema my sql uc 2012
FIXING BLOCK CORRUPTION (RMAN) on 11G
 
Ad

Viewers also liked (20)

PDF
Solarponics Case Study
PDF
Rm632 2012 mins_ac
PPT
Portfólio Povos Indígenas
PDF
Short information about Finland via EBook
PPT
Renaissance man tweet meet leuven
PPTX
Livia bellina atlanta global summit 2015
PPTX
MobileDiagnosis Onlus il tuo 5 x 1000 2016
PDF
Prevencao saudehigienesegurancanotrabalho
PDF
Argument writing
PDF
What we do in CASA UCL
PPTX
Claim Based Authentication in SharePoint 2010 for Community Day 2011
PDF
POJER E SANDRI Vinix 15.08 2011
PPTX
Apps for Office Introduction
DOC
Au psy492 m6 a2 thompson b doc
DOCX
Inserire ultimi articoli su blogger
PDF
Il tempo dei se e dei ma è finito
PDF
Associated Partners - Business Profile
PPT
Twitter for local business
PPT
What is science
Solarponics Case Study
Rm632 2012 mins_ac
Portfólio Povos Indígenas
Short information about Finland via EBook
Renaissance man tweet meet leuven
Livia bellina atlanta global summit 2015
MobileDiagnosis Onlus il tuo 5 x 1000 2016
Prevencao saudehigienesegurancanotrabalho
Argument writing
What we do in CASA UCL
Claim Based Authentication in SharePoint 2010 for Community Day 2011
POJER E SANDRI Vinix 15.08 2011
Apps for Office Introduction
Au psy492 m6 a2 thompson b doc
Inserire ultimi articoli su blogger
Il tempo dei se e dei ma è finito
Associated Partners - Business Profile
Twitter for local business
What is science
Ad

Similar to Solr features (20)

PDF
Apache Solr crash course
PPTX
Solr site search makes shopping simple
PDF
NoSQL, Apache SOLR and Apache Hadoop
PPTX
Apache Solr - search for everyone!
KEY
Solr 101
PDF
Introduction to Solr
PDF
Solr the intelligent search engine
PDF
Solr Powered Lucene
PPTX
Search Engine Building with Lucene and Solr (So Code Camp San Diego 2014)
PPTX
Assamese search engine using SOLR by Moinuddin Ahmed ( moin )
KEY
Apache Solr - Enterprise search platform
PPTX
Solr introduction
PDF
Rapid Prototyping with Solr
PDF
Get the most out of Solr search with PHP
PDF
Solr Recipes
PDF
Solr @ eBay Kleinanzeigen
PPTX
Apache Solr + ajax solr
PDF
Search Engine-Building with Lucene and Solr, Part 1 (SoCal Code Camp LA 2013)
PDF
Rapid Prototyping with Solr
PDF
Rapid prototyping with solr - By Erik Hatcher
Apache Solr crash course
Solr site search makes shopping simple
NoSQL, Apache SOLR and Apache Hadoop
Apache Solr - search for everyone!
Solr 101
Introduction to Solr
Solr the intelligent search engine
Solr Powered Lucene
Search Engine Building with Lucene and Solr (So Code Camp San Diego 2014)
Assamese search engine using SOLR by Moinuddin Ahmed ( moin )
Apache Solr - Enterprise search platform
Solr introduction
Rapid Prototyping with Solr
Get the most out of Solr search with PHP
Solr Recipes
Solr @ eBay Kleinanzeigen
Apache Solr + ajax solr
Search Engine-Building with Lucene and Solr, Part 1 (SoCal Code Camp LA 2013)
Rapid Prototyping with Solr
Rapid prototyping with solr - By Erik Hatcher

More from Marcos García (6)

PDF
Puts and calls in stock options
PDF
Cloud economics design, capacity and operational concerns
PDF
Welcome to icehouse
PDF
Initial presentation of swift (for montreal user group)
PDF
Initial presentation of openstack (for montreal user group)
ODP
Quick introduction to Java Garbage Collector (JVM GC)
Puts and calls in stock options
Cloud economics design, capacity and operational concerns
Welcome to icehouse
Initial presentation of swift (for montreal user group)
Initial presentation of openstack (for montreal user group)
Quick introduction to Java Garbage Collector (JVM GC)

Recently uploaded (20)

PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Encapsulation theory and applications.pdf
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PPTX
Spectroscopy.pptx food analysis technology
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
cuic standard and advanced reporting.pdf
PDF
Spectral efficient network and resource selection model in 5G networks
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Digital-Transformation-Roadmap-for-Companies.pptx
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Programs and apps: productivity, graphics, security and other tools
Encapsulation theory and applications.pdf
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
The Rise and Fall of 3GPP – Time for a Sabbatical?
Spectroscopy.pptx food analysis technology
Mobile App Security Testing_ A Comprehensive Guide.pdf
Chapter 3 Spatial Domain Image Processing.pdf
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
MIND Revenue Release Quarter 2 2025 Press Release
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Advanced methodologies resolving dimensionality complications for autism neur...
Reach Out and Touch Someone: Haptics and Empathic Computing
Encapsulation_ Review paper, used for researhc scholars
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
cuic standard and advanced reporting.pdf
Spectral efficient network and resource selection model in 5G networks

Solr features

  • 2. SOLR ● SOLR is an standalone search server, that can scale separatedly from the application that uses it ● i.e. Avoid the case where an e-commerce server is slowed down by the users searching their product catalog ● SOLR is accessed using HTTP/XML REST-like and JSON APIs ● Multi-platform, multi-language and client-independent ● Results in XML, CSV, or JSON (with custom variations for Ruby,Python,PHP) ● 100% Opensource, written in Java, runs in JVM ● Apache Foundation top-level project ● Most widely-used search server in industry
  • 3. SOLR : A Lucene server ● Solr is a search platform that provides all the features of Lucene search engine * ● high-performance indexing ● Incremental and batch indexing ● Small footprint (RAM and disk) ● And has all of Lucene features ● Ranked searching ● Many query types (phrase, wildcard, regexp, range, geospatial proximity) ● Many field types, meaningful sorting ● Multi-index search and merge of results ● Faceting ● Language recognition (stemming) ● Suggestions * (both projects are actually merged since SOLR 3.1, March 2010)
  • 4. Simple SOLR Example ● Index a product catalog (i.e. IPod Video) ● Data in XML format <doc> <field name="id">MA147LL/A</field> <field name="name">Apple 60 GB iPod with Video Playback Black</field> <field name="features">2.5-inch, 320x240 color TFT LCD display with LED backlight</field> <field name="features">Up to 20 hours of battery life</field> <field name="features">Plays AAC, MP3, WAV, AIFF, Audible, Apple Lossless, H.264 video</field> <field name="price">399.00</field> <field name="inStock">true</field> <field name="store">37.7752,-100.0232</field> <!-- Dodge City store --> </doc> ● Schema configuration <field <field name="id" type="string" indexed="true" stored="true"/> name="name" type="text" indexed="true" stored="true"/> <field name="features" type="text" indexed="true" stored="true" multiValued="true"/> <field name="price" type="float" indexed="true" stored="true"/> <field name="inStock" type="boolean" indexed="true" stored="true" /> <field name="store" type="location" indexed="true" stored="true"/>
  • 5. Simple SOLR Example ● Query ● Return all products with « video » in any field, sorted by descendant price, show just the name,price,inStock curl "http://localhost:8983/solr/collection1/select?q=video&sort=price+desc&fl=name,price,instock&indent=true" <?xml version="1.0" encoding="UTF-8"?> <response> <lst name="responseHeader"> <int name="status">0</int> <int name="QTime">1</int> <lst name="params"> <str name="fl">name,price</str> <str name="sort">price desc</str> <str name="indent">true</str> <str name="q">video</str> </lst> </lst> <result name="response" numFound="3" start="0"> <doc> <str name="name">ATI Radeon X1900 XTX 512 MB PCIE Video Card</str> <float name="price">649.99</float> <bool name="inStock">false</bool></doc> <doc> <str name="name">ASUS Extreme N7800GTX/2DHTV (256 MB)</str> <float name="price">479.95</float> <bool name="inStock">false</bool></doc> <doc> <str name="name">Apple 60 GB iPod with Video Playback Black</str> <float name="price">399.0</float> <bool name="inStock">true</bool></doc> </result> </response>
  • 6. Simple SOLR Example ● Query Facets ● Add facets options and desired category Facet : inStock Facet : price, from 0 to 1000$, in 100$ gaps q=video&sort=price+desc&facet=tru q=video&sort=price+desc&facet=true&facet.range=pr e&facet.field=inStock ice&facet.range.gap=100&facet.range.start=0.0&fac et.range.end=1000 <lst name="facet_counts"> <lst name="facet_queries"/> <lst name="counts"> <lst name="facet_fields"> <int name="0.0">0</int> <lst name="inStock"> <int name="100.0">0</int> <int name="false">2</int> <int name="200.0">0</int> <int name="true">1</int> <int name="300.0">1</int> (Apple Ipod 399$) </lst> <int name="400.0">1</int> (Asus Extreme 479$) </lst> <int name="500.0">0</int> <lst name="facet_dates"/> <int name="600.0">1</int> (ATI Radeon 649$) <lst name="facet_ranges"/> <int name="700.0">0</int> </lst> <int name="800.0">0</int> <int name="900.0">0</int> </lst>
  • 7. Simple SOLR Example ● Filter Query ● Uses different cache than Search Cache (useful for big results) Filter Query : all products priced from 300 to 499 USD q=*&fl=name,price&fq=price:[300 TO 499] <result name="response" numFound="4" start="0"> <doc> <str name="name">Maxtor DiamondMax 11 - hard drive - 500 GB – SATA-300</str> <float name="price">350.0</float> </doc> <doc> <str name="name">Apple 60 GB iPod with Video Playback Black</str> <float name="price">399.0</float> </doc> <doc> <str name="name">Canon PowerShot SD500</str> <float name="price">329.95</float> </doc> <doc> <str name="name">ASUS Extreme N7800GTX/2DHTV (256 MB)</str> <float name="price">479.95</float> </doc> </result>
  • 8. Simple SOLR Example ● Spatial Query ● Store data: – <field name="store">45.17614,-93.87341</field> <!-- Buffalo store --> – <field name="store">40.7143,-74.006</field> <!-- NYC store --> – <field name="store">37.7752,-122.4232</field> <!-- San Francisco store --> ● We are at 45.15,-93.85 (at 3.437 km from the Buffalo store) ● Find all products in a store within 5km of our position: QUERY : &fl=name,store&q=*:*&fq={!geofilt%20pt=45.15,-93.85%20sfield=store%20d=5} » "response":{"numFound":3,"start":0,"docs":[ { "name":"Maxtor DiamondMax 11 - hard drive - 500 GB - SATA-300", "store":"45.17614,-93.87341"}, { "name":"Belkin Mobile Power Cord for iPod w/ Dock", "store":"45.18014,-93.87741"}, { "name":"A-DATA V-Series 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC 3200) System Memory - OEM", "store":"45.18414,-93.88141"}] }
  • 9. SOLR Features ● SOLR Cloud ● Cluster configuration using zookeper ● Easy sharding and failover management ● Self-healing, no single point of failure ● SOLR Cell (aka RequestImportHandler) ● TIKA integration for binary document parsing ● Parses DOC, PDF, XLS, MIME, etc ● DataImportHandlers ● Automatically fetch and index SQL Databases, E-mails, RSS feeds, Files in folder, etc.
  • 10. SOLR Features ● Multiple Solr Core ● Many index collections in the same server ● Different schema definitions for each collection ● Different configurations for storage, replication, etc ● Caching ● Recurrent searches are cached, improves speed ● Advanced warming techniques ● Adding content triggers just a partial cache update ● Advanced ● Language detection ● Natural Language Processing ● Clustering to scale both search and document retrieval
  • 12. SOLR TIKA integration ● SOLRCell embeds TIKA for binary file parsing ● TIKA parses DOC, PDF, XLSX, HTML... and represent it using XHTML, JSON or CSV ● Full list of accepted formats : http://tika.apache.org/1.3/formats.html ● For some files, it can just index metadata (MP3, JPG, AVI) ● SOLRCell will internally recover the TIKA output and store it so we can search it ● SOLR does not store the original binary file
  • 13. SOLR Addons ● Admin Interface
  • 14. SOLR Addons ● Web Interface (SOLRitas)
  • 15. SOLR Use Cases ● Liferay Search ● As liferay already uses Lucene, we can connect it to a SOLR server ● Leverages the Liferay server and lets the SOLR cluster handle all the user searches in the portal ● Magento E-Commerce . ● Avoids using MySQL for searching ● Better search results ● Better overall performance ● Alfresco Search ● Currently, Alfresco recommends to setup SOLR from the beginning ● By default, Lucene+Tika is used internally