SlideShare a Scribd company logo
1-1
CHAPTER 1
1.1 a) 3 teaspoons in 1 tablespoon
b) 236.5 ml in 1 cup
1.2 m = 6 slugs, g = 32.0 ft/s2, W = mg = 6(32) = 192 lbf
1.3 m = 46 kg, W = 450 N, g =
W
m
=
450
46
= 9.78 m/s2
1.4 128 fl oz · 2.957 x 10-5 = 3.78 x 10-3 m3
3.78 l · 1 x 10-3 = 3.78 x 10-3 m3
1 gallon · 3.785 x 10-3 = 3.78 x 10-3 m3 all equivalent
m
V
—
= ρ; m = ρV
— = 1 030(3.78 x 10-3 m3)
m = 3.9 kg
1.5 1/2 gallon · 3.785 x 10-3 = 1.89 x 10-3 m3
2 liter · 1 x 10-3 = 2 x 10-3 m3 (2 - 1.89)/2 = 0.055 = 5.5%
close enough to allow use of same container
1.6 V
— = 1 ft3; W = 62.4 lbf; W = mg; m =
W
g
=
62.4
32.2
a) m = 1.94 slug Wmoon = mg = 1.94(32.2/6) or
b) W = 10.4 lbf
1.7
BTU
hr
·
1 hr
3600 s
·
1054
745.7
= 3.926 x 10-4
HP
(BTU/hr)
1.8 1 gallon · 3.785 x 10-3 = 3.785 x 10-3 m3
m = 1 000 kg/m3(3.785 x 10-3 m3) = 3.785 kg
W = mg = 3.785(9.81) = 37.13 N = 8.35 lbf
1.9 Plot of data
1.10 ρ = 1 000 kg/m3 (SI); ρ =
1 000
16.01
= 62.5 lbm/ft3
ρ =
1 000
16.01(32.2)
= 1.94 slug/ft3 ρ =
1 000
1 000
= 1 g/cm3
s
m
t
b
9
8
@
g
m
a
i
l
.
c
o
m
You can access complete document on following URL. Contact me if site not loaded
https://unihelp.xyz/
Contact me in order to access the whole complete document - Email: smtb98@gmail.com
WhatsApp: https://wa.me/message/2H3BV2L5TTSUF1 - Telegram: https://t.me/solutionmanual
1-2
1.11 Sphere D = 8000 miles · 5280 ft/mile = 4.224 x 107 ft
V
— =
πD3
6
=
π(4.224 x 107)3
6
= 5.92 x 1022 ft3 ρ = 6 560 kg/m3 = 410 lbm/ft3
m = ρV
— = 410(5.92 x 1022) = 2.43 x 1025 lbm
m = 2.43 x 1025 · 4.535 x 10-1 = 1.1 x 1025 kg = m
1.12 Liquid weighs 1 - 1/2 = 1/2 lbf; ρg =
0.5 lbf
8 ounces
; using conversions,
ρg =
0.5 lbf
8 oz
·
4.448
2.957 x 10-5 = 9.4 x 103 N/m3 = SW
ρ =
9 400
9.81
= 958 kg/m3 = ρ ρ =
958
515.379
= 1.86 slug/ft3 = ρ
ρg = 1.86(32.2) = 59.9 lbf/ft3 = SW
1.13 V
— = 1 ft3; Carbon tetrachloride Appendix Table A-5, ρ = 1.59(1.94) slug/ft3;
W = mg = ρV
—g = 1.59(1.94)(1)(32.2) = 99.3 lbf; W = 99.3(4.448) or
W = 442 N
1.14 V
— = 5 ft3, Kerosene Appendix Table A-5, ρ = 0.823(1.94 slug/ft3);
m = ρV
— = 0.823(1.94)(5) = 7.99 slug; m = 7.99(14.59) or
m = 116.5 kg
1.15 minimum shear required is τo; movement impending when τ = τo
τo = 4 N/m2 =
force
area
=
mg
A
;
so m =
Aτo
g
=
0.5 m2 (4 N/m2)
9.81 m/s2 = 0.204 N·s2/m = 0.204 kg
so for movement to begin, m > 0.204 kg
1.16 m = 0.25 kg; W = mg = 0.25(9.81) = 2.45 N; τ =
F
A
=
2.45
0.5
= 4.9 N/m2
By definition, τ = τo + µo
∆V
∆y
; 4.9 = 4 + 4 x 10-3
∆V
0.005
∆V = 1.13 m/s
1.17 τ = µ
∆V
∆y
; τ =
W
A
=
W
0.5 m2
Table A-5 for turpentine, µ = 1.375 x 10-3 N·s/m2
1-3
∆V = 0.05 m/s; By substitution,
W
0.5
= 1.375 x 10-3
0.05
0.005
W = 0.007 N
1.18
F
A
= µ
∆V
∆y
; F = 0.89 N; A = 0.16 m2; ∆V = 0.12 m/s;
Table A-5, µ = 1.53 x 10-5 N·s/m2
∆y =
µ∆VA
F
=
1.53 x 10-5 (0.12)(0.16)
8.9
or
∆y = 3.3 x 10-5 m
1.19
F
A
= µ
∆V
∆y
; F = 0.025 kg(9.81 m/s2) = 0.245 N
∆y = 0.01 m; µ = 650 x 10-3 N·s/m2; A = 0.75 m2
∆V =
0.245(0.01)
0.75(650 x 10-3)
= 5.03 x 10-3 m/s
so V = 5.03 mm/s
1.20 Plot of data
1.21
F
A
= µ
∆V
∆y
; A = 2 sides ·
2.5 m2
side
= 5 m2; ∆V = 0.002 5 m/s; ∆y = 0.012 m
Table A-5 µ = 1.64 x 10-3 N·s/m2
so F =
5(1.64 x 10-3)(0.002 5)
0.012
or
F = 1.708 x 10-3 N
1.22
F
A
= µ
∆V
∆y
; F = 2 lbf; µ = 1.11 x 10-5 lbf·s/ft2 ; ∆V = 12 in./s = 1 ft/s
∆y = (0.05/12) ft; 2A =
F∆y
µ∆V
=
2(0.05/12)
1.11 x 10-5 (1)
= 750 ft2
A = 375 ft2
1.23 τ is the same on both sides. Given ∆y1 + ∆y2 = 1 - 0.1 or
∆y1 + ∆y2 = 0.9 cm = 0.009 m
τ = µ1
∆V
∆y1
= µ2
∆V
∆y2
so
µ1
∆y1
=
µ2
∆y2
From Table A-5, we get
1-4
µ1
µ2
=
16.2
42
=
∆y1
∆y2
or
0.009 m - ∆y2
∆y2
= 0.386 1.386∆y2 = 0.009
Solving,
∆y2 = 0.006 5 m = 0.65 cm ∆y1 = 0.9 - 0.65 or
∆y1 = 0.35 cm
1.24 The shear applied to both fluids is the same. Thus on the left,
τ = µ1
∆V
∆y1
and on the right, τ = µ2
∆V
∆y2
; so
µ1
∆y1
=
µ2
∆y2
From Table A-5, µ1 = 1.095 x 10-3 N·s/m2
Also, ∆y1 = 2∆y2 ; With µ2 = µ1
∆y2
∆y1
= 1.095 x 10-3 · (1/2) or
µ2 = 0.548 x 10-3 N·s/m2
1.25
200
100
0
0
2
4
6
8
10
dV/dy, 1/s
t,
N/m^2
Bingham Plastic
1-5
1.26
120
100
80
60
40
20
0
0.000
0.002
0.004
0.006
0.008
0.010
0.012
dV/dy, 1/s
t,
N/m^2
Pseudoplastic
1.27
60
50
40
30
20
10
0
0
10
20
dV/dy, 1/s
t,
lbf/ft^2
Newtonian (close enough)
1-6
1.28
1500
1000
500
0
0
200
400
600
800
1000
1200
dV/dy, 1/s
t,
N/m^2
Dilatant
1.29
Kraft Mayo
0
50
100
150
200
250
300
350
0 200 400 600 800 1000 1200
dV/dy in 1/s
shear
stress
in
Pa
pseudoplastic with an initial yield stress
1-7
1.30
Honey
0
100
200
300
400
500
600
700
800
900
1000
0 20 40 60 80 100
dV/dy in 1/s
shear
stress
in
Pa
Newtonian
1.31 A = 0.09 · 0.016 = 0.001 4 m2 ; V = 5 cm/s = 0.05 m/s
∆y = 2 mm = 0.002 m
a) τ =
F
A
=
0.07
0.001 4
= 48.6 N/m2
b)
dV
dy
=
∆V
∆y
=
0.05
0.002
= 25/s
c) µ =
τ
dV/dy
=
48.6
25
= 1.94 N·s/m2
1.32 Assume oil is Newtonian so τ = µ
dV
dy
; sleeve is stationary, shaft velocity is
V = 5 in./s = 0.417 ft/s; τ =
F
A
; A = area of contact. Surface area of shaft
does not equal surface of sleeve, so take an average. For shaft,
A = πDL = π(4/12)(12/12) = 1.047 ft2 ; for the sleeve,
A = π(4.01/12)(12/12) = 1.05 ft2 ; use A =
1.05 + 1.047
2
= 1.048 ft2
τ =
25
1.048
= 23.8 lbf/ft2 ;
dV
dy
=
∆V
∆y
=
5/12 - 0
0.005/12
= 1000
µ =
τ
dV/dy
=
23.8
1000
or µ = 23.8 x 10-3 lbf·s/ft2
1-8
1.33 Pseudoplastic τ = K




dV
dy
n
; substituting,
4.63 x 10-2 = K(25)n and 6.52 x 10-2 = K(50)n ; dividing gives
4.63
6.52
=




25
50
n
; which becomes 0.71 = (0.5)n ; ln(0.71) = n ln(0.5);
n = 0.494
4.63 x 10-2 = K(25)0.494 ; K =
4.63 x 10-2
4.91
K = 9.44 x 10-3
Check with second equation: 9.44 x 10-3 (50)0.494 = 6.52 x 10-2 which is OK.
τ = 9.44 x 10-3 (dV/dy)0.494 ; when τ = 7 x 10-2 ,
7 x 10-2 = 9.44 x 10-3




dV
dy
0.494
;
dV
dy
= (7.42)1/0.494 or
dV
dy
= 57.7 rad/s
1.34 τ = K




dV
dy
n
; 8.72 x 10-3 = K(20)n and 2.10 x 10-2 = K(40)n ; dividing,
8.72 x 10-3
2.10 x 10-2 =




20
40
n
; 0.415 = (0.5)n ; ln(0.415) = n ln(0.5)
n = 1.27
8.27 x 10-3 = K(20)1.27 ; K = 1.95 x 10-4
Check 1.95 x 10-4 (40)1.27 = 2.1 x 10-2 OK
τ = 1.95 x 10-4




dV
dy
1.27
; τ = 3 x 10-2
dV
dy
=




3 x 10-2
1.95 x 10-4
1/1.27
dV
dy
= 53.1 rad/s
1.35 µo = 0.029 lbf·s/ft2 ; τ = 2.7 lbf/ft2 ;
dV
dy
= 74.5 rad/s
τ = τo + µo
dV
dy
; 2.7 = τo + 0.029(74.5); τo = 2.7 - 0.029(74.5)
τo = 0.54 lbf/ft2
1-9
1.36 Table A-5 for acetone ρ = 0.787(1 000) = 787 kg/m3
µ = 0.316 x 10-3 N·s/m2 ν = µ/ρ = 4.015 x 10-7 m2/s
Using conversions from Table A-1,
ν =
4.015 x 10-7
9.290304 x 10-2 ;
ν = 4.32 x 10-6 ft2/s (Engineering system, Brit Grav & Brit abs)
ν =
4.015 x 10-7
(1 m/100 cm)2
ν = 4.015 x 10-3 cm-3/s (CGS)
1.37 At 0°C, Table A-4 µ = 1.787 x 10-3 N·s/m2
At 100°C, µ = 0.2818 x 10-3 N·s/m2
% change =
µ100 - µ0
µ0
=
0.2818 - 1.787
1.787
; % change = - 84%
At 0°C, ν = 1.787 x 10-6 m2/s
At 100°C ν = 0.2940 x 10-6
% change =
µ100 - µ0
µ0
=
0.2940 - 1.787
1.787
; % change = - 83.5%
1.38 µ = 8 cp · 1 x 10-3 = 8 x 10-3 N·s/m2 ; ρ = 59 lbm/ft3 · 16.01 = 945 kg/m3
ν =
µ
ρ
=
8 x 10-3
945
= 8.47 x 10-6 m2/s · (1002 cm2/m2)
ν = 8.47 x 10-2 cm2/s
1.39 pi - po =
2σ
R
; po = 101 300 N/m2 ; R = 0.001 m; σ = 23.1 x 10-3 N/m, so
pi = 101 300 +
2(23.1 x 10-3)
0.001
= 101 346 N/m2
1.40 pi - po =
2σ
R
; po = 70 000 N/m2 ; R = 250 x 10-6 m; σ = 72 x 10-3 N/m, so
pi = 70 000 +
2(72 x 10-3)
250 x 10-6 = 70 576 N/m2
1.41 pi - po =
2σ
R
; D = 1/16 in. = 0.0052 ft; R = 0.0026 ft
po = 14.7(144) = 2117 lbf/ft2 ; σ = 27.14 x 10-3 N/m (Table A-5); converting,
1-10
σ =
27.14 x 10-3
4.448
(0.3048) = 1.86 x 10-3 lbf/ft so
pi = 2117 +
2(1.86 x 10-3)
0.0026
or pi = 2118 lbf/ft2
1.42 Benzene σ = 28.2 x 10-3 N/m (Table A-9); D = 1 mm;
R = 0.5 mm = 0.000 5 m; po = 100 000 N/m2 ; pi - po =
2σ
R
;
pi = 100 000 +
2(28.2 x 10-3)
0.000 5
; solving,
a) pi = 1.001 x 105 N/m2 (benzene)
b) pi - po = 113 N/m2 =
2σ
R
for Hg; R =
2σ
113
; σ = 484 x 10-3 N/m (from
Appendix Table A-5 or A-9); R =
2(0.484)
113
or
b) R = 0.008 6 m = 8.6 mm
1.43 h =
2σ
ρRg
cos θ; ρ = 1 000 kg/m3, R = 0.002 m, θ = 0°
H2O at room temperature, Table A-5; σ = 71.97 x 10-3 N/m
h =
2(71.97 x 10-3)
1 000(0.002)(9.81)
; solving,
a) h = 0.007 337 m = 7.34 mm
Table A-5 for Hg, σ = 484 x 10-3 N/m; ρ = 13.6(1 000)
h =
2(484 x 10-3) cos 140°
13.6(1 000)(9.81)(0.002)
; and
b) h = - 2.8 x 10-3 m = - 2.8 mm
1-11
1.44 h =
2σ
ρRg
; R = 0.003 m; h =
2σ
ρRg
=
2σ
ρ(0.003)(9.81)
= 67.96
σ
ρ
Table A-4
T, °C σ, N/m ρ, kg/m3 h, m
0 75.6 x 10-3 0.9999(1 000) 0.00514
10 74.2 0.9997 0.00504
18 73.1 0.9986 0.00497
30 71.2 0.9957 0.00486
40 69.6 0.9922 0.00477
50 67.9 0.9881 0.00467
60 66.2 0.9832 0.00458
70 64.4 0.9778 0.00448
80 62.6 0.9718 0.00438
100 58.9 0.9584 0.00418
100
80
60
40
20
0
0.0040
0.0042
0.0044
0.0046
0.0048
0.0050
0.0052
T in deg C
h
in
m
1-12
1.45 σ =
xyθ
2
ρg ; σ = 71.97 x 10-3 N/m; ρ = 1 000 kg/m3 ; θ = 1° · 2π/360
θ = 0.017 45 rad; substituting,
71.97 x 10-3 = xy




0.017 45
2
(1 000)(9.81); xy = 8.048 x 10-4 m2
x y
1 8.408
2 4.2
4 2.1
8 1.05
8
6
4
2
0
0
2
4
6
8
10
x
y
1.46 h =
2σ
ρRg
cos θ; θ = 140° for Hg; Table A-5 for Hg, ρ = 13.6(1.94 slug/ft3)
D = 0.2 in. = 0.0166 ft; R = 0.00833 ft; h = - 0.052 in. = - 0.0043 ft
σ =
ρRhg
2 cos θ
=
13.6(1.94)(0.00833)(- 0.0043)(32.2)
2 cos 140°
σ = 0.0198 lbf/ft
1.47 θ = 0°; R = 0.002 5 m, ethyl alcohol, Table A-5; σ = 22.33 x 10-3 N/m;
ρ = 787 kg/m3 ; h =
2σ
ρRg
=
2(22.33 x 10-3)
787(0.002 5)(9.81)
h = 2.31 mm
1-13
1.48 θ = 0°; R = 0.002 m, benzene, Table A-5; σ = 28.18 x 10-3 N/m;
ρ = 876 kg/m3 ; h =
2σ
ρRg
=
2(28.18 x 10-3)
876(0.002)(9.81)
h = 3.28 mm
1.49 θ = 0°; R = 0.001 5 m, carbon tet, Table A-5; σ = 26.3 x 10-3 N/m;
ρ = 1 590 kg/m3 ; h =
2σ
ρRg
=
2(26.3 x 10-3)
1 590(0.001 5)(9.81)
h = 2.25 mm
1.50 θ = 0°; R = 0.001 25 m, glycerin, Table A-5; σ = 63.0 x 10-3 N/m;
ρ = 1 263 kg/m3 ; h =
2σ
ρRg
=
2(63.0 x 10-3)
1 263(0.001 25)(9.81)
h = 8.14 mm
1.51 θ = 0°; R = 0.001 m, octane, Table A-5; σ = 21.14 x 10-3 N/m;
ρ = 701 kg/m3 ; h =
2σ
ρRg
=
2(21.14 x 10-3)
701(0.001)(9.81)
h = 6.15 mm
1.52 θ = 140°; R = 0.005 m, Hg, Table A-5; σ = 484 x 10-3 N/m;
ρ = 13 600 kg/m3 ; h =
2σ
ρRg
cos θ =
2(484 x 10-3)
13 600(0.005)(9.81)
cos 140°
h = - 1.11 mm
1.53 m = 0.1 slug; ∆T = 25°F; Table A-6 for air, cp = 7.72 BTU/slug·°R
~
Q = mcp∆T = 0.1(7.72)(25)
~
Q = 19.3 BTU
1.54 CO2 Appendix Table A-6 cp = 876 J/(kg·K); m = 1.5 kg; ∆T = 25°C
~
Q = mcp∆T = 1.5(876)(25) = 3.28 x 104 J;
~
Q/m = 3.28 x 104/1.5 = 2.2 x 104 J/kg
1-14
1.55
~
Q = mcv∆T; Table A-6, cp = 523 J/(kg·K); cp/cv = 1.67; so we calculate
cv = 313 J/(kg·K);
~
Q = 8 kg(313 J/(kg·K))(∆T) = 50 000 J; solving,
∆T = 20.0 K increase in temperature
1.56 CO2 Appendix Table A-6 cp = 876 J/(kg·K); γ = 1.30;
cv =
876
1.3
= 674 J/(kg·K); ∆u = cv∆T = 674(50 - 25)
∆u = 1.68 x 104 J/kg
1.57 m = 1 kg; ∆T = 25°C
from Table A-6
He cp = 5 188 J/(kg·K)
H2 cp = 14 310 J/(kg·K)
~
Q = mcp∆T = 1(5 188)(25)
~
Q = 1.3 x 105 J for He
~
Q = mcp∆T = 1(14 310)(25)
~
Q = 3.6 x 105 J for H2
∆h =
~
Q
m
=
1.3 x 105
1
; ∆h = 1.3 x 105 J/kg for He
∆h =
~
Q
m
=
3.6 x 105
1
; ∆h = 3.6 x 105 J/kg for H2
Hydrogen requires more energy
1.58 Air loses
~
Q = mcv(120 - Tf)
H2 gains
~
Q = mcv(Tf - 60)
mair = 2mH2 ; Table A-6 gives
air cp = 7.72 BTU/slug·°R; cp/cv = 1.4
H2 cp = 110 BTU/slug·°R; cp/cv = 1.405
cvair =
7.72
1.4
= 5.51; cvH2 =
110
1.405
= 78.3
~
Q are equal so; mcv(120 - Tf)|air = mcv(Tf - 60)|H2
substituting, 2mH2(5.51)(120 - Tf) = mH2(78.3)(Tf - 60);
1322 - 11.02Tf = 78.3Tf - 4698; 6020 = 89.32Tf
T = 67.4°F

More Related Content

PDF
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
PDF
problemas resueltos
PDF
Appendix b
PDF
Fc025 w5 seminar_solutions_2
PDF
Solution manual for water resources engineering 3rd edition - david a. chin
PDF
Shi20396 ch08
PDF
Solutions for Problems in Fluid Mechanics 2nd Edition by Russell Hibbeler
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
problemas resueltos
Appendix b
Fc025 w5 seminar_solutions_2
Solution manual for water resources engineering 3rd edition - david a. chin
Shi20396 ch08
Solutions for Problems in Fluid Mechanics 2nd Edition by Russell Hibbeler

Similar to Solutions for Exercises – Introduction to Fluid Mechanics 4th Edition by William Janna (20)

PDF
Exerc cios resolvidos_-_cap._01-atkins_(a)
PDF
Principles of Polymer Systems 6th Rodriguez Solution Manual
PDF
Capítulo 08 parafusos
PDF
Solucionario_Felder.pdf
PDF
Principles of Polymer Systems 6th Rodriguez Solution Manual
PDF
Calculo de acero en vigas ok
PDF
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
PDF
Mechanics Of Fluids 4th Edition Potter Solutions Manual
PDF
Diesel Production: Equipments Design
PDF
H c verma part2 pdf solution
PDF
01-state-of-u2i2uwywumatter_-gaseous-state.pdf
PPTX
concreto trabajo sobre losas y vigas diseño
PDF
Capítulo 17 elementos mecânicos flexíveis
PDF
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
PDF
Offshore well intermediate
PDF
HIDROSTATICA_problemas_alonso.pdf
PDF
Ch.3-Examples 3.pdf
PDF
Factoresdeconversion 1935
PDF
Factoresdeconversion fisicoquimica
Exerc cios resolvidos_-_cap._01-atkins_(a)
Principles of Polymer Systems 6th Rodriguez Solution Manual
Capítulo 08 parafusos
Solucionario_Felder.pdf
Principles of Polymer Systems 6th Rodriguez Solution Manual
Calculo de acero en vigas ok
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Mechanics Of Fluids 4th Edition Potter Solutions Manual
Diesel Production: Equipments Design
H c verma part2 pdf solution
01-state-of-u2i2uwywumatter_-gaseous-state.pdf
concreto trabajo sobre losas y vigas diseño
Capítulo 17 elementos mecânicos flexíveis
66.-Merle C. Potter, David C. Wiggert, Bassem H. Ramadan - Mechanics of Fluid...
Offshore well intermediate
HIDROSTATICA_problemas_alonso.pdf
Ch.3-Examples 3.pdf
Factoresdeconversion 1935
Factoresdeconversion fisicoquimica
Ad

More from organicc488 (7)

PDF
Solutions for Exercises – Cornerstones of Cost Management 2nd Edition by Hans...
PDF
Solutions for Exercises – Principles of Managerial Finance 13th Edition by Gi...
PDF
Solutions for Problems from Applied Optimization by Ross Baldick
PDF
Answers to Problems – Geoenvironmental Engineering by Sharma & Reddy
PDF
Solutions for Problems Photonics 6th Edition by Amnon Yariv.pdf
PDF
Solution Manual Organic Chemistry 12th Edition by Carey and Giuliano.pdf
PDF
Solution Manual Organic Chemistry 9th Edition by McMurry.pdf
Solutions for Exercises – Cornerstones of Cost Management 2nd Edition by Hans...
Solutions for Exercises – Principles of Managerial Finance 13th Edition by Gi...
Solutions for Problems from Applied Optimization by Ross Baldick
Answers to Problems – Geoenvironmental Engineering by Sharma & Reddy
Solutions for Problems Photonics 6th Edition by Amnon Yariv.pdf
Solution Manual Organic Chemistry 12th Edition by Carey and Giuliano.pdf
Solution Manual Organic Chemistry 9th Edition by McMurry.pdf
Ad

Recently uploaded (20)

PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PPTX
Unit 4 Skeletal System.ppt.pptxopresentatiom
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
PDF
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
IGGE1 Understanding the Self1234567891011
PPTX
UNIT III MENTAL HEALTH NURSING ASSESSMENT
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PPTX
Lesson notes of climatology university.
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
What if we spent less time fighting change, and more time building what’s rig...
Supply Chain Operations Speaking Notes -ICLT Program
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Chinmaya Tiranga quiz Grand Finale.pdf
LDMMIA Reiki Yoga Finals Review Spring Summer
Unit 4 Skeletal System.ppt.pptxopresentatiom
Final Presentation General Medicine 03-08-2024.pptx
Orientation - ARALprogram of Deped to the Parents.pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
Paper A Mock Exam 9_ Attempt review.pdf.
Computing-Curriculum for Schools in Ghana
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation
Final Presentation General Medicine 03-08-2024.pptx
IGGE1 Understanding the Self1234567891011
UNIT III MENTAL HEALTH NURSING ASSESSMENT
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Lesson notes of climatology university.

Solutions for Exercises – Introduction to Fluid Mechanics 4th Edition by William Janna

  • 1. 1-1 CHAPTER 1 1.1 a) 3 teaspoons in 1 tablespoon b) 236.5 ml in 1 cup 1.2 m = 6 slugs, g = 32.0 ft/s2, W = mg = 6(32) = 192 lbf 1.3 m = 46 kg, W = 450 N, g = W m = 450 46 = 9.78 m/s2 1.4 128 fl oz · 2.957 x 10-5 = 3.78 x 10-3 m3 3.78 l · 1 x 10-3 = 3.78 x 10-3 m3 1 gallon · 3.785 x 10-3 = 3.78 x 10-3 m3 all equivalent m V — = ρ; m = ρV — = 1 030(3.78 x 10-3 m3) m = 3.9 kg 1.5 1/2 gallon · 3.785 x 10-3 = 1.89 x 10-3 m3 2 liter · 1 x 10-3 = 2 x 10-3 m3 (2 - 1.89)/2 = 0.055 = 5.5% close enough to allow use of same container 1.6 V — = 1 ft3; W = 62.4 lbf; W = mg; m = W g = 62.4 32.2 a) m = 1.94 slug Wmoon = mg = 1.94(32.2/6) or b) W = 10.4 lbf 1.7 BTU hr · 1 hr 3600 s · 1054 745.7 = 3.926 x 10-4 HP (BTU/hr) 1.8 1 gallon · 3.785 x 10-3 = 3.785 x 10-3 m3 m = 1 000 kg/m3(3.785 x 10-3 m3) = 3.785 kg W = mg = 3.785(9.81) = 37.13 N = 8.35 lbf 1.9 Plot of data 1.10 ρ = 1 000 kg/m3 (SI); ρ = 1 000 16.01 = 62.5 lbm/ft3 ρ = 1 000 16.01(32.2) = 1.94 slug/ft3 ρ = 1 000 1 000 = 1 g/cm3 s m t b 9 8 @ g m a i l . c o m You can access complete document on following URL. Contact me if site not loaded https://unihelp.xyz/ Contact me in order to access the whole complete document - Email: smtb98@gmail.com WhatsApp: https://wa.me/message/2H3BV2L5TTSUF1 - Telegram: https://t.me/solutionmanual
  • 2. 1-2 1.11 Sphere D = 8000 miles · 5280 ft/mile = 4.224 x 107 ft V — = πD3 6 = π(4.224 x 107)3 6 = 5.92 x 1022 ft3 ρ = 6 560 kg/m3 = 410 lbm/ft3 m = ρV — = 410(5.92 x 1022) = 2.43 x 1025 lbm m = 2.43 x 1025 · 4.535 x 10-1 = 1.1 x 1025 kg = m 1.12 Liquid weighs 1 - 1/2 = 1/2 lbf; ρg = 0.5 lbf 8 ounces ; using conversions, ρg = 0.5 lbf 8 oz · 4.448 2.957 x 10-5 = 9.4 x 103 N/m3 = SW ρ = 9 400 9.81 = 958 kg/m3 = ρ ρ = 958 515.379 = 1.86 slug/ft3 = ρ ρg = 1.86(32.2) = 59.9 lbf/ft3 = SW 1.13 V — = 1 ft3; Carbon tetrachloride Appendix Table A-5, ρ = 1.59(1.94) slug/ft3; W = mg = ρV —g = 1.59(1.94)(1)(32.2) = 99.3 lbf; W = 99.3(4.448) or W = 442 N 1.14 V — = 5 ft3, Kerosene Appendix Table A-5, ρ = 0.823(1.94 slug/ft3); m = ρV — = 0.823(1.94)(5) = 7.99 slug; m = 7.99(14.59) or m = 116.5 kg 1.15 minimum shear required is τo; movement impending when τ = τo τo = 4 N/m2 = force area = mg A ; so m = Aτo g = 0.5 m2 (4 N/m2) 9.81 m/s2 = 0.204 N·s2/m = 0.204 kg so for movement to begin, m > 0.204 kg 1.16 m = 0.25 kg; W = mg = 0.25(9.81) = 2.45 N; τ = F A = 2.45 0.5 = 4.9 N/m2 By definition, τ = τo + µo ∆V ∆y ; 4.9 = 4 + 4 x 10-3 ∆V 0.005 ∆V = 1.13 m/s 1.17 τ = µ ∆V ∆y ; τ = W A = W 0.5 m2 Table A-5 for turpentine, µ = 1.375 x 10-3 N·s/m2
  • 3. 1-3 ∆V = 0.05 m/s; By substitution, W 0.5 = 1.375 x 10-3 0.05 0.005 W = 0.007 N 1.18 F A = µ ∆V ∆y ; F = 0.89 N; A = 0.16 m2; ∆V = 0.12 m/s; Table A-5, µ = 1.53 x 10-5 N·s/m2 ∆y = µ∆VA F = 1.53 x 10-5 (0.12)(0.16) 8.9 or ∆y = 3.3 x 10-5 m 1.19 F A = µ ∆V ∆y ; F = 0.025 kg(9.81 m/s2) = 0.245 N ∆y = 0.01 m; µ = 650 x 10-3 N·s/m2; A = 0.75 m2 ∆V = 0.245(0.01) 0.75(650 x 10-3) = 5.03 x 10-3 m/s so V = 5.03 mm/s 1.20 Plot of data 1.21 F A = µ ∆V ∆y ; A = 2 sides · 2.5 m2 side = 5 m2; ∆V = 0.002 5 m/s; ∆y = 0.012 m Table A-5 µ = 1.64 x 10-3 N·s/m2 so F = 5(1.64 x 10-3)(0.002 5) 0.012 or F = 1.708 x 10-3 N 1.22 F A = µ ∆V ∆y ; F = 2 lbf; µ = 1.11 x 10-5 lbf·s/ft2 ; ∆V = 12 in./s = 1 ft/s ∆y = (0.05/12) ft; 2A = F∆y µ∆V = 2(0.05/12) 1.11 x 10-5 (1) = 750 ft2 A = 375 ft2 1.23 τ is the same on both sides. Given ∆y1 + ∆y2 = 1 - 0.1 or ∆y1 + ∆y2 = 0.9 cm = 0.009 m τ = µ1 ∆V ∆y1 = µ2 ∆V ∆y2 so µ1 ∆y1 = µ2 ∆y2 From Table A-5, we get
  • 4. 1-4 µ1 µ2 = 16.2 42 = ∆y1 ∆y2 or 0.009 m - ∆y2 ∆y2 = 0.386 1.386∆y2 = 0.009 Solving, ∆y2 = 0.006 5 m = 0.65 cm ∆y1 = 0.9 - 0.65 or ∆y1 = 0.35 cm 1.24 The shear applied to both fluids is the same. Thus on the left, τ = µ1 ∆V ∆y1 and on the right, τ = µ2 ∆V ∆y2 ; so µ1 ∆y1 = µ2 ∆y2 From Table A-5, µ1 = 1.095 x 10-3 N·s/m2 Also, ∆y1 = 2∆y2 ; With µ2 = µ1 ∆y2 ∆y1 = 1.095 x 10-3 · (1/2) or µ2 = 0.548 x 10-3 N·s/m2 1.25 200 100 0 0 2 4 6 8 10 dV/dy, 1/s t, N/m^2 Bingham Plastic
  • 6. 1-6 1.28 1500 1000 500 0 0 200 400 600 800 1000 1200 dV/dy, 1/s t, N/m^2 Dilatant 1.29 Kraft Mayo 0 50 100 150 200 250 300 350 0 200 400 600 800 1000 1200 dV/dy in 1/s shear stress in Pa pseudoplastic with an initial yield stress
  • 7. 1-7 1.30 Honey 0 100 200 300 400 500 600 700 800 900 1000 0 20 40 60 80 100 dV/dy in 1/s shear stress in Pa Newtonian 1.31 A = 0.09 · 0.016 = 0.001 4 m2 ; V = 5 cm/s = 0.05 m/s ∆y = 2 mm = 0.002 m a) τ = F A = 0.07 0.001 4 = 48.6 N/m2 b) dV dy = ∆V ∆y = 0.05 0.002 = 25/s c) µ = τ dV/dy = 48.6 25 = 1.94 N·s/m2 1.32 Assume oil is Newtonian so τ = µ dV dy ; sleeve is stationary, shaft velocity is V = 5 in./s = 0.417 ft/s; τ = F A ; A = area of contact. Surface area of shaft does not equal surface of sleeve, so take an average. For shaft, A = πDL = π(4/12)(12/12) = 1.047 ft2 ; for the sleeve, A = π(4.01/12)(12/12) = 1.05 ft2 ; use A = 1.05 + 1.047 2 = 1.048 ft2 τ = 25 1.048 = 23.8 lbf/ft2 ; dV dy = ∆V ∆y = 5/12 - 0 0.005/12 = 1000 µ = τ dV/dy = 23.8 1000 or µ = 23.8 x 10-3 lbf·s/ft2
  • 8. 1-8 1.33 Pseudoplastic τ = K     dV dy n ; substituting, 4.63 x 10-2 = K(25)n and 6.52 x 10-2 = K(50)n ; dividing gives 4.63 6.52 =     25 50 n ; which becomes 0.71 = (0.5)n ; ln(0.71) = n ln(0.5); n = 0.494 4.63 x 10-2 = K(25)0.494 ; K = 4.63 x 10-2 4.91 K = 9.44 x 10-3 Check with second equation: 9.44 x 10-3 (50)0.494 = 6.52 x 10-2 which is OK. τ = 9.44 x 10-3 (dV/dy)0.494 ; when τ = 7 x 10-2 , 7 x 10-2 = 9.44 x 10-3     dV dy 0.494 ; dV dy = (7.42)1/0.494 or dV dy = 57.7 rad/s 1.34 τ = K     dV dy n ; 8.72 x 10-3 = K(20)n and 2.10 x 10-2 = K(40)n ; dividing, 8.72 x 10-3 2.10 x 10-2 =     20 40 n ; 0.415 = (0.5)n ; ln(0.415) = n ln(0.5) n = 1.27 8.27 x 10-3 = K(20)1.27 ; K = 1.95 x 10-4 Check 1.95 x 10-4 (40)1.27 = 2.1 x 10-2 OK τ = 1.95 x 10-4     dV dy 1.27 ; τ = 3 x 10-2 dV dy =     3 x 10-2 1.95 x 10-4 1/1.27 dV dy = 53.1 rad/s 1.35 µo = 0.029 lbf·s/ft2 ; τ = 2.7 lbf/ft2 ; dV dy = 74.5 rad/s τ = τo + µo dV dy ; 2.7 = τo + 0.029(74.5); τo = 2.7 - 0.029(74.5) τo = 0.54 lbf/ft2
  • 9. 1-9 1.36 Table A-5 for acetone ρ = 0.787(1 000) = 787 kg/m3 µ = 0.316 x 10-3 N·s/m2 ν = µ/ρ = 4.015 x 10-7 m2/s Using conversions from Table A-1, ν = 4.015 x 10-7 9.290304 x 10-2 ; ν = 4.32 x 10-6 ft2/s (Engineering system, Brit Grav & Brit abs) ν = 4.015 x 10-7 (1 m/100 cm)2 ν = 4.015 x 10-3 cm-3/s (CGS) 1.37 At 0°C, Table A-4 µ = 1.787 x 10-3 N·s/m2 At 100°C, µ = 0.2818 x 10-3 N·s/m2 % change = µ100 - µ0 µ0 = 0.2818 - 1.787 1.787 ; % change = - 84% At 0°C, ν = 1.787 x 10-6 m2/s At 100°C ν = 0.2940 x 10-6 % change = µ100 - µ0 µ0 = 0.2940 - 1.787 1.787 ; % change = - 83.5% 1.38 µ = 8 cp · 1 x 10-3 = 8 x 10-3 N·s/m2 ; ρ = 59 lbm/ft3 · 16.01 = 945 kg/m3 ν = µ ρ = 8 x 10-3 945 = 8.47 x 10-6 m2/s · (1002 cm2/m2) ν = 8.47 x 10-2 cm2/s 1.39 pi - po = 2σ R ; po = 101 300 N/m2 ; R = 0.001 m; σ = 23.1 x 10-3 N/m, so pi = 101 300 + 2(23.1 x 10-3) 0.001 = 101 346 N/m2 1.40 pi - po = 2σ R ; po = 70 000 N/m2 ; R = 250 x 10-6 m; σ = 72 x 10-3 N/m, so pi = 70 000 + 2(72 x 10-3) 250 x 10-6 = 70 576 N/m2 1.41 pi - po = 2σ R ; D = 1/16 in. = 0.0052 ft; R = 0.0026 ft po = 14.7(144) = 2117 lbf/ft2 ; σ = 27.14 x 10-3 N/m (Table A-5); converting,
  • 10. 1-10 σ = 27.14 x 10-3 4.448 (0.3048) = 1.86 x 10-3 lbf/ft so pi = 2117 + 2(1.86 x 10-3) 0.0026 or pi = 2118 lbf/ft2 1.42 Benzene σ = 28.2 x 10-3 N/m (Table A-9); D = 1 mm; R = 0.5 mm = 0.000 5 m; po = 100 000 N/m2 ; pi - po = 2σ R ; pi = 100 000 + 2(28.2 x 10-3) 0.000 5 ; solving, a) pi = 1.001 x 105 N/m2 (benzene) b) pi - po = 113 N/m2 = 2σ R for Hg; R = 2σ 113 ; σ = 484 x 10-3 N/m (from Appendix Table A-5 or A-9); R = 2(0.484) 113 or b) R = 0.008 6 m = 8.6 mm 1.43 h = 2σ ρRg cos θ; ρ = 1 000 kg/m3, R = 0.002 m, θ = 0° H2O at room temperature, Table A-5; σ = 71.97 x 10-3 N/m h = 2(71.97 x 10-3) 1 000(0.002)(9.81) ; solving, a) h = 0.007 337 m = 7.34 mm Table A-5 for Hg, σ = 484 x 10-3 N/m; ρ = 13.6(1 000) h = 2(484 x 10-3) cos 140° 13.6(1 000)(9.81)(0.002) ; and b) h = - 2.8 x 10-3 m = - 2.8 mm
  • 11. 1-11 1.44 h = 2σ ρRg ; R = 0.003 m; h = 2σ ρRg = 2σ ρ(0.003)(9.81) = 67.96 σ ρ Table A-4 T, °C σ, N/m ρ, kg/m3 h, m 0 75.6 x 10-3 0.9999(1 000) 0.00514 10 74.2 0.9997 0.00504 18 73.1 0.9986 0.00497 30 71.2 0.9957 0.00486 40 69.6 0.9922 0.00477 50 67.9 0.9881 0.00467 60 66.2 0.9832 0.00458 70 64.4 0.9778 0.00448 80 62.6 0.9718 0.00438 100 58.9 0.9584 0.00418 100 80 60 40 20 0 0.0040 0.0042 0.0044 0.0046 0.0048 0.0050 0.0052 T in deg C h in m
  • 12. 1-12 1.45 σ = xyθ 2 ρg ; σ = 71.97 x 10-3 N/m; ρ = 1 000 kg/m3 ; θ = 1° · 2π/360 θ = 0.017 45 rad; substituting, 71.97 x 10-3 = xy     0.017 45 2 (1 000)(9.81); xy = 8.048 x 10-4 m2 x y 1 8.408 2 4.2 4 2.1 8 1.05 8 6 4 2 0 0 2 4 6 8 10 x y 1.46 h = 2σ ρRg cos θ; θ = 140° for Hg; Table A-5 for Hg, ρ = 13.6(1.94 slug/ft3) D = 0.2 in. = 0.0166 ft; R = 0.00833 ft; h = - 0.052 in. = - 0.0043 ft σ = ρRhg 2 cos θ = 13.6(1.94)(0.00833)(- 0.0043)(32.2) 2 cos 140° σ = 0.0198 lbf/ft 1.47 θ = 0°; R = 0.002 5 m, ethyl alcohol, Table A-5; σ = 22.33 x 10-3 N/m; ρ = 787 kg/m3 ; h = 2σ ρRg = 2(22.33 x 10-3) 787(0.002 5)(9.81) h = 2.31 mm
  • 13. 1-13 1.48 θ = 0°; R = 0.002 m, benzene, Table A-5; σ = 28.18 x 10-3 N/m; ρ = 876 kg/m3 ; h = 2σ ρRg = 2(28.18 x 10-3) 876(0.002)(9.81) h = 3.28 mm 1.49 θ = 0°; R = 0.001 5 m, carbon tet, Table A-5; σ = 26.3 x 10-3 N/m; ρ = 1 590 kg/m3 ; h = 2σ ρRg = 2(26.3 x 10-3) 1 590(0.001 5)(9.81) h = 2.25 mm 1.50 θ = 0°; R = 0.001 25 m, glycerin, Table A-5; σ = 63.0 x 10-3 N/m; ρ = 1 263 kg/m3 ; h = 2σ ρRg = 2(63.0 x 10-3) 1 263(0.001 25)(9.81) h = 8.14 mm 1.51 θ = 0°; R = 0.001 m, octane, Table A-5; σ = 21.14 x 10-3 N/m; ρ = 701 kg/m3 ; h = 2σ ρRg = 2(21.14 x 10-3) 701(0.001)(9.81) h = 6.15 mm 1.52 θ = 140°; R = 0.005 m, Hg, Table A-5; σ = 484 x 10-3 N/m; ρ = 13 600 kg/m3 ; h = 2σ ρRg cos θ = 2(484 x 10-3) 13 600(0.005)(9.81) cos 140° h = - 1.11 mm 1.53 m = 0.1 slug; ∆T = 25°F; Table A-6 for air, cp = 7.72 BTU/slug·°R ~ Q = mcp∆T = 0.1(7.72)(25) ~ Q = 19.3 BTU 1.54 CO2 Appendix Table A-6 cp = 876 J/(kg·K); m = 1.5 kg; ∆T = 25°C ~ Q = mcp∆T = 1.5(876)(25) = 3.28 x 104 J; ~ Q/m = 3.28 x 104/1.5 = 2.2 x 104 J/kg
  • 14. 1-14 1.55 ~ Q = mcv∆T; Table A-6, cp = 523 J/(kg·K); cp/cv = 1.67; so we calculate cv = 313 J/(kg·K); ~ Q = 8 kg(313 J/(kg·K))(∆T) = 50 000 J; solving, ∆T = 20.0 K increase in temperature 1.56 CO2 Appendix Table A-6 cp = 876 J/(kg·K); γ = 1.30; cv = 876 1.3 = 674 J/(kg·K); ∆u = cv∆T = 674(50 - 25) ∆u = 1.68 x 104 J/kg 1.57 m = 1 kg; ∆T = 25°C from Table A-6 He cp = 5 188 J/(kg·K) H2 cp = 14 310 J/(kg·K) ~ Q = mcp∆T = 1(5 188)(25) ~ Q = 1.3 x 105 J for He ~ Q = mcp∆T = 1(14 310)(25) ~ Q = 3.6 x 105 J for H2 ∆h = ~ Q m = 1.3 x 105 1 ; ∆h = 1.3 x 105 J/kg for He ∆h = ~ Q m = 3.6 x 105 1 ; ∆h = 3.6 x 105 J/kg for H2 Hydrogen requires more energy 1.58 Air loses ~ Q = mcv(120 - Tf) H2 gains ~ Q = mcv(Tf - 60) mair = 2mH2 ; Table A-6 gives air cp = 7.72 BTU/slug·°R; cp/cv = 1.4 H2 cp = 110 BTU/slug·°R; cp/cv = 1.405 cvair = 7.72 1.4 = 5.51; cvH2 = 110 1.405 = 78.3 ~ Q are equal so; mcv(120 - Tf)|air = mcv(Tf - 60)|H2 substituting, 2mH2(5.51)(120 - Tf) = mH2(78.3)(Tf - 60); 1322 - 11.02Tf = 78.3Tf - 4698; 6020 = 89.32Tf T = 67.4°F