SlideShare a Scribd company logo
Spark Performance
Tuning - Part #2 (๋ณ‘๋ ฌ์ฒ˜๋ฆฌ)
2019. 1. 22
Contents
1. ์„œ๋ก 
1. ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ ๋ฐ ๋ฐฉ๋ฒ•
2. ์ด๋ก ์  ๊ณ ์ฐฐ
3. ์˜ˆ์ธก๋ชจ๋ธ ๊ฐœ๋ฐœ๊ณต์ •
2. ๋ณธ๋ก 
1. ์‹œ์Šคํ…œ ๊ตฌ์„ฑ๋„
2. ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ๋„
3. ์‹œ์Šคํ…œ ์„ค์ •
4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ
3. ๊ฒฐ๋ก 
2
1. ์„œ๋ก 
3
4
2-1. ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ ๋ฐ ๋ฐฉ๋ฒ•
ํ•˜๋‘ก์—์ฝ”์‹œ์Šคํ…œ ๊ตฌ์„ฑ ๋ฐ ์ƒ˜ํ”Œ๋ฐ์ดํ„ฐ ํ™œ์šฉํ•˜์—ฌ ์ด๊ด€ ํ…Œ์ŠคํŠธ
Hadoop
Name Node
Spark
Master
Hive
Master
Resource Manger
No Lv1 Lv2 Version Contents
1
Oracle
Linux
7.3 OS
2 Hadoop 2.7.6 Distributed Storage
3 Spark 2.2.0
Distributed
Processing
4 Hive 2.3.3
Supprt SQL
(Master, Only master)
5 MariaDB 10.2.11
RDB
(Master, Only master)
6
Oracle
Client
18.3.0.0.
0
Oracle DB
client
Maria DB
Hadoop
DataNode
Spark
Worker
NodeManager
Hadoop
DataNode
Spark
Worker
NodeManager
Hadoop
DataNode
Spark
Worker
NodeManager
Service configurationHadoop Ecosystem
Secondary
Name Node
p-master
hadoop1 hadoop2 hadoop3
5
2-1. ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ ๋ฐ ๋ฐฉ๋ฒ•
ํ•˜๋‘ก์—์ฝ”์‹œ์Šคํ…œ ๊ตฌ์„ฑ ๋ฐ ์ƒ˜ํ”Œ๋ฐ์ดํ„ฐ ํ™œ์šฉํ•˜์—ฌ ์ด๊ด€ ํ…Œ์ŠคํŠธ
๋ถˆ๋Ÿฌ์˜ค๊ธฐ ์ฒ˜๋ฆฌ ์ €์žฅํ•˜๊ธฐ
Source Data Spark Output Data
ํŒ๋งค์‹ค์  ๋ฐ์ดํ„ฐ ์ด๊ด€ ํŒ๋งค์‹ค์ 
Oracle
DB
Spark
Oracle
DB
S/W
H/W
S/W
H/W
S/W
H/W
6
2-2. ์ด๋ก ์  ๊ณ ์ฐฐ
ํŒŒํ‹ฐ์…”๋‹
ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ํ†ตํ•ด ์ž‘์—…์„ ๋ฐฐํฌํ•˜๊ณ  ๊ฐ ๋…ธ๋“œ์˜ ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ ์‚ฌํ•ญ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด
Spark๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ํŒŒํ‹ฐ์…˜์„ ํ†ตํ•ด ๋ถ„ํ• ํ•˜๊ณ  ๊ฐ ํŒŒํ‹ฐ์…˜์€ Executor์— ์ „์†ก๋จ.
์ „์ฒด ๋ฐ์ดํ„ฐ
ํŒŒํ‹ฐ์…˜ ํŒŒํ‹ฐ์…˜#1 ํŒŒํ‹ฐ์…˜#2 ํŒŒํ‹ฐ์…˜#3
Executor1 Executor2 Executor3
7
2-2. ์ด๋ก ์  ๊ณ ์ฐฐ
1. Spark ๊ตฌ๋™๋ฐฉ์‹
Spark-submit ์‚ฌ์šฉํ•˜์—ฌ
Spark ์ž‘์—… ์ œ์ถœ
Sparkcontext ๋“œ๋ผ์ด๋ฒ„
ํ”„๋กœ๊ทธ๋žจ ์‹คํ–‰
ํด๋Ÿฌ์Šคํ„ฐ ๋งˆ์Šคํ„ฐ
๋…ธ๋“œ์—์„œ WORKER NODE๋ฅผ ํ†ตํ•ด
Executor๊ฐ€ ์‹คํ–‰๋˜๋ฉฐ ํ”„๋กœ๊ทธ๋žจ ๊ตฌ๋™
8
2-2. ์ด๋ก ์  ๊ณ ์ฐฐ
2. ์…”ํ”Œ๋ง
๋ฐ์ดํ„ฐ๊ฐ€ ํŒŒํ‹ฐ์…˜๊ฐ„์— ์žฌ๋ฐฐ์น˜ ๋  ๋•Œ ์…”ํ”Œ์ด ๋ฐœ์ƒํ•œ๋‹ค. (๊ทธ๋ฃน ํ•ฉ, ํ‰๊ท ๋“ฑ)
ํŒŒํ‹ฐ์…˜
์…”ํ”Œ ์“ฐ๊ธฐ
ํŒŒํ‹ฐ์…˜#1 ํŒŒํ‹ฐ์…˜#2 ํŒŒํ‹ฐ์…˜#3
Executor1 Executor2 Executor3
ํŒŒํ‹ฐ์…˜#1 ํŒŒํ‹ฐ์…˜#2 ํŒŒํ‹ฐ์…˜#3์…”ํ”Œ ์ฝ๊ธฐ
9
2-2. ์ด๋ก ์  ๊ณ ์ฐฐ
3. ์ฃผ์š” ์„ค์ •ํŒŒ์ผ
(๊ธฐ๋ณธ BASE ์„ค์ •) SPARK-ENV.SH
(๋Ÿฐํƒ€์ž„ ์ ์šฉ ์„ค์ •) SPARK-DEFAULT.CONF
spark-env.sh spark-defaults.conf
10
2-3. ์˜ˆ์ธก๋ชจ๋ธ ๊ฐœ๋ฐœ๊ณต์ •
4. ๊ฐœ๋ฐœ ํ”„๋กœ์„ธ์Šค
๋Œ€๋ถ„๋ฅ˜ ์ค‘๋ถ„๋ฅ˜ ์ž‘์—… ์‚ฐ์ถœ๋ฌผ
์ฐฉ์ˆ˜ ๊ณ„ํš์ˆ˜๋ฆฝ ํ”„๋กœ์ ํŠธ ๊ณ„ํš ์ˆ˜๋ฆฝ / ํ™•์ • ํ”„๋กœ์ ํŠธ ์ˆ˜ํ–‰๊ณ„ํš์„œ
๋ถ„์„
ํ˜„ํ™ฉ๋ถ„์„ ์š”๊ตฌ์‚ฌํ•ญ ์ •์˜, ์‹œ์Šคํ…œ ๋ถ„์„ ์š”๊ตฌ์‚ฌํ•ญ ์ •์˜์„œ
๋ถ„์„๊ณผ์ œ ์ •์˜ ๋ถ„์„๊ณผ์ œ ๋„์ถœ, ์„ ์ •, ํ™•์ •
์‹œ์Šคํ…œ ์•„ํ‚คํ…์ณ ์ •์˜์„œ
๋ถ„์„๋ชจ๋ธ ์ •์˜ ๋ถ„์„๋ชจ๋ธ/์‹œ์Šคํ…œ ์ •์˜
์„ค๊ณ„
๋ถ„์„๋ชจ๋ธ ์„ค๊ณ„ ๋ถ„์„ ์‹œ๋‚˜๋ฆฌ์˜ค, ๋ฐ์ดํ„ฐ, ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„ ๋ฐ ๊ฒ€์ฆ ๋ถ„์„๋ชจ๋ธ ์ •์˜์„œ
์‹œ์Šคํ…œ ์„ค๊ณ„ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค, I/F ๋ฐ ํ…Œ์ŠคํŠธ ์„ค๊ณ„
ํ…Œ์ด๋ธ”, ํ”„๋กœ๊ทธ๋žจ, ํ™”๋ฉด
์ธํ„ฐํŽ˜์ด์Šค ๋ชฉ๋ก/์ •์˜์„œ
๊ตฌ์ถ• ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ ํ™”๋ฉด, DB, ๋ฐฐ์น˜, I/F ๊ฐœ๋ฐœ ์†Œ์Šค์ฝ”๋“œ, DB
ํ…Œ์ŠคํŠธ ๋‹จ์œ„/ํ†ตํ•ฉ ํ…Œ์ŠคํŠธ
๋‹จ์œ„ํ…Œ์ŠคํŠธ ์‹œ๋‚˜๋ฆฌ์˜ค ์ž‘์„ฑ ๋ฐ ์ˆ˜ํ–‰ ๋‹จ์œ„ ๋ฐ ํ†ตํ•ฉ ํ…Œ์ŠคํŠธ
๊ณ„ํš์„œ/์ ˆ์ฐจ์„œ/๊ฒฐ๊ณผ์„œํ†ตํ•ฉํ…Œ์ŠคํŠธ ๊ณ„ํš / ์‹œ๋‚˜๋ฆฌ์˜ค ์ˆ˜๋ฆฝ ๋ฐ ์‹คํ–‰
์ดํ–‰
๋ฐ ์•ˆ์ •ํ™”
์‹œ์Šคํ…œ ์ดํ–‰ ์ดํ–‰๊ณ„ํš์„œ ์ž‘์„ฑ ์ดํ–‰ ๊ณ„ํš์„œ
์‚ฌ์šฉ์ž ๊ต์œก ์‚ฌ์šฉ์ž/์šด์˜์ž ๊ต์œก ์‹ค์‹œ ๋ฐ ๋งค๋‰ด์–ผ ์ž‘์„ฑ
์‚ฌ์šฉ์ž ๋งค๋‰ด์–ผ,
์šด์˜ ๋งค๋‰ด์–ผ
์ข…๋ฃŒ ํ”„๋กœ์ ํŠธ ์ข…๋ฃŒ ์ข…๋ฃŒ๋ณด๊ณ  ๋ฐ ์ธ์ˆ˜ํ™•์ธ ์™„๋ฃŒ๋ณด๊ณ ์„œ, ๊ฒ€์ˆ˜ํ™•์ธ์„œ
3. ๋ณธ๋ก 
11
3-1. ์‹œ์Šคํ…œ ๊ตฌ์„ฑ๋„
12
Input DB Output DB
192.168.110.112 192.168.110.111
Hadoop
Name Node
Spark
Master
Hive
Master
Resource Manger
Maria DB
Hadoop
DataNode
Spark
Worker
NodeManager
Hadoop
DataNode
Spark
Worker
NodeManager
Hadoop
DataNode
Spark
Worker
NodeManager
Hadoop Ecosystem
Secondary
Name Node
p-master
hadoop1 hadoop2 hadoop3
192.168.110.117
192.168.110.118 192.168.110.119 192.168.110.120
Oracle Oracle
3-2. ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ๋„
13
Define the outbound and inbound data
No InterfaceID Content System Type Count Periods Column cnt Comments
1 IB-001 Sellout Dev System RDB 100 million - 17 TBD
2 IB-002 Sellout Dev System RDB 13 million 17 1/22
3 IB-003 Parameter Dev System RDB 2 5
inbound
No InterfaceID Content System Type Count Periods Column cnt Comments
1 OB-001 Sellout Op System RDB
100
million
- 17 TBD
2 OB-002 Sellout Op System RDB 13 million 17 1/22
outbound
3-3. ์‹œ์Šคํ…œ ์„ค์ •
14
Div Value
Cluster 3
Worker ์„œ๋ฒ„๋ณ„ 1
Executor-count ์„œ๋ฒ„๋ณ„ 3
Executor-core 4
Executor-memory 10
์Šฌ๋ ˆ์ด๋ธŒ PC #1
Executor
Core: 4
Mem: 10
Worker #1
Worker #2, โ€ฆ.
CPU: 16์ฝ”์–ด MEM: 40G ํ• ๋‹น
๋งˆ์Šคํ„ฐ PC
Worker #1
MEM: 5G ํ• ๋‹น
Executor
Core: 4
Mem: 10
Executor
Core: 4
Mem: 10
Executor
Core: 4
Mem: 10
์Šฌ๋ ˆ์ด๋ธŒ PC #1
Executor
Core: 4
Mem: 10
Worker #1
Worker #2, โ€ฆ.
CPU: 16์ฝ”์–ด MEM: 40G ํ• ๋‹น
Executor
Core: 4
Mem: 10
Executor
Core: 4
Mem: 10
Executor
Core: 4
Mem: 10
์Šฌ๋ ˆ์ด๋ธŒ PC #1
Executor
Core: 4
Mem: 10
Worker #1
Worker #2, โ€ฆ.
CPU: 16์ฝ”์–ด MEM: 40G ํ• ๋‹น
Executor
Core: 4
Mem: 10
Executor
Core: 4
Mem: 10
Executor
Core: 4
Mem: 10
3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ
15
(Case #1) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ๋ฏธ ์ ์šฉ ์‹œ (์ฝ”๋“œ์‹คํ–‰)
spark-submit --class com.spark.c10_dataTransfer.basicDataTransfer sparkProgramming-spark-1.0.jar
ํŒŒํ‹ฐ์…˜ ๋ฏธ ์ ์šฉ
3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ
16
(Case #1) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ๋ฏธ ์ ์šฉ ์‹œ (๊ฒฐ๊ณผ)
3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ
17
(Case #2) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ์ ์šฉ ์‹œ (์ฝ”๋“œ์‹คํ–‰)
spark-submit --class com.spark.c10_dataTransfer.partitionDataTransfer sparkProgramming-spark-1.0.jar
ํŒŒํ‹ฐ์…˜ ์‚ฌ์ด์ฆˆ 100 ์„ค์ •
3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ
18
(Case #2) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ์ ์šฉ ์‹œ (๊ฒฐ๊ณผ)
3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ
19
(Case #3) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ์ ์šฉ ์‹œ (์ฝ”๋“œ์‹คํ–‰)
spark-submit --class com.spark.c10_dataTransfer.partitionDataTransfer sparkProgramming-spark-1.0.jar
ํŒŒํ‹ฐ์…˜ ์‚ฌ์ด์ฆˆ 1000 ์„ค์ •
3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ
20
(Case #3) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ์ ์šฉ ์‹œ (๊ฒฐ๊ณผ)
3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ
21
(Case #4) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ์ ์šฉ ์‹œ (์ฝ”๋“œ์‹คํ–‰)
spark-submit --class com.spark.c10_dataTransfer.partitionDataTransfer sparkProgramming-spark-1.0.jar
ํŒŒํ‹ฐ์…˜ ์‚ฌ์ด์ฆˆ 10 ์„ค์ •
3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ
22
(Case #4) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ์ ์šฉ ์‹œ (๊ฒฐ๊ณผ)
4. ๊ฒฐ๋ก 
23
4. ๊ฒฐ๋ก 
โ€ข Spark์—์„œ ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ ๋ฐ ์ €์žฅํ•˜๊ธฐ ์‹œ ์ฝ”๋“œ ์ƒ์—์„œ
๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ ์šฉ ์‹œ ์†๋„ ํ–ฅ์ƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค.
(๋‹จ, ์„ค์ •ํ•œ Band์˜ ํฌ๊ธฐ๋ฅผ ํŒ๋‹จํ•˜์—ฌ ํŒŒํ‹ฐ์…˜ ์‚ฌ์ด์ฆˆ ๊ณ ๋ ค๊ฐ€ ํ•„์š”ํ•จ)
๊ตฌ๋ถ„ ๋ฐ์ดํ„ฐ (1500๋งŒ๊ฑด, 2.6GB) ๋น„๊ณ 
๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ๋ฏธ ์ ์šฉ ์‹œ 7๋ถ„ No ํŒŒํ‹ฐ์…˜
์ ์šฉ ์‹œ (ํŒŒํ‹ฐ์…˜ ์‚ฌ์ด์ฆˆ 100) 3.7๋ถ„ ํŒŒํ‹ฐ์…˜ ํฌ๊ธฐ 100
์ ์šฉ ์‹œ (ํŒŒํ‹ฐ์…˜ ์‚ฌ์ด์ฆˆ 1000) 12๋ถ„ ํŒŒํ‹ฐ์…˜ ํฌ๊ธฐ 1000
์ ์šฉ ์‹œ (ํŒŒํ‹ฐ์…˜ ์‚ฌ์ด์ฆˆ 10) 16๋ถ„ ํŒŒํ‹ฐ์…˜ ํฌ๊ธฐ 100
Thank you
25
End of Document

More Related Content

PDF
PostgreSQL Deep Internal
ย 
PDF
Tajo TPC-H Benchmark Test on AWS
ย 
PPTX
Airflow๋ฅผ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ Workflow ๊ด€๋ฆฌ
PDF
Web Analytics at Scale with Elasticsearch @ naver.com - Part 2 - Lessons Learned
PDF
Web Analytics at Scale with Elasticsearch @ naver.com - Part 1
PPTX
Data discovery & metadata management (amundsen installation)
PDF
Java ์ดˆ๋ณด์ž๋ฅผ ์œ„ํ•œ hadoop ์„ค์ •
PDF
Custom DevOps Monitoring System in MelOn (with InfluxDB + Telegraf + Grafana)
PostgreSQL Deep Internal
ย 
Tajo TPC-H Benchmark Test on AWS
ย 
Airflow๋ฅผ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ Workflow ๊ด€๋ฆฌ
Web Analytics at Scale with Elasticsearch @ naver.com - Part 2 - Lessons Learned
Web Analytics at Scale with Elasticsearch @ naver.com - Part 1
Data discovery & metadata management (amundsen installation)
Java ์ดˆ๋ณด์ž๋ฅผ ์œ„ํ•œ hadoop ์„ค์ •
Custom DevOps Monitoring System in MelOn (with InfluxDB + Telegraf + Grafana)

What's hot (20)

PDF
[OpenInfra Days Korea 2018] Day 2 - E1: ๋”ฅ๋‹ค์ด๋ธŒ - OpenStack ์ƒ์กด๊ธฐ
PDF
[OpenInfra Days Korea 2018] Day 2 - CEPH ์šด์˜์ž๋ฅผ ์œ„ํ•œ Object Storage Performance T...
PPTX
introduce of Hadoop map reduce
PDF
์—˜๋ผ์Šคํ‹ฑ์„œ์น˜ ํด๋Ÿฌ์Šคํ„ฐ๋กœ ์ˆ˜์‹ญ์–ต ๊ฑด์˜ ๋ฐ์ดํ„ฐ ์šด์˜ํ•˜๊ธฐ
PDF
[Pgday.Seoul 2018] Greenplum์˜ ๋…ธ๋“œ ๋ถ„์‚ฐ ์„ค๊ณ„
PPTX
Vectorized processing in_a_nutshell_DeView2014
ย 
PDF
TestDFSIO
ย 
PPTX
data platform on kubernetes
PPTX
2.apache spark ์‹ค์Šต
PDF
Data platform data pipeline(Airflow, Kubernetes)
PDF
Grafana Review
PDF
Terasort
ย 
PDF
Apache kafka performance(throughput) - without data loss and guaranteeing dat...
PDF
Alluxio: Data Orchestration on Multi-Cloud
PPTX
Spark ์†Œ๊ฐœ 1๋ถ€
PDF
20141029 ํ•˜๋‘ก2.5์™€ hive์„ค์น˜ ๋ฐ ์˜ˆ์ œ
PDF
๋น…๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ ์ŠคํŒŒํฌ 2 ํ”„๋กœ๊ทธ๋ž˜๋ฐ : ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๋ถ€ํ„ฐ ๋จธ์‹ ๋Ÿฌ๋‹๊นŒ์ง€
PDF
Fluentd with MySQL
PDF
4.1 ๋‹จ์ผํ˜ธ์ŠคํŠธ์˜ ๋ถ€ํ•˜
PDF
AWS ํ™˜๊ฒฝ์—์„œ MySQL Infra ์„ค๊ณ„ํ•˜๊ธฐ-2๋ถ€.๋ณธ๋ก 
[OpenInfra Days Korea 2018] Day 2 - E1: ๋”ฅ๋‹ค์ด๋ธŒ - OpenStack ์ƒ์กด๊ธฐ
[OpenInfra Days Korea 2018] Day 2 - CEPH ์šด์˜์ž๋ฅผ ์œ„ํ•œ Object Storage Performance T...
introduce of Hadoop map reduce
์—˜๋ผ์Šคํ‹ฑ์„œ์น˜ ํด๋Ÿฌ์Šคํ„ฐ๋กœ ์ˆ˜์‹ญ์–ต ๊ฑด์˜ ๋ฐ์ดํ„ฐ ์šด์˜ํ•˜๊ธฐ
[Pgday.Seoul 2018] Greenplum์˜ ๋…ธ๋“œ ๋ถ„์‚ฐ ์„ค๊ณ„
Vectorized processing in_a_nutshell_DeView2014
ย 
TestDFSIO
ย 
data platform on kubernetes
2.apache spark ์‹ค์Šต
Data platform data pipeline(Airflow, Kubernetes)
Grafana Review
Terasort
ย 
Apache kafka performance(throughput) - without data loss and guaranteeing dat...
Alluxio: Data Orchestration on Multi-Cloud
Spark ์†Œ๊ฐœ 1๋ถ€
20141029 ํ•˜๋‘ก2.5์™€ hive์„ค์น˜ ๋ฐ ์˜ˆ์ œ
๋น…๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ ์ŠคํŒŒํฌ 2 ํ”„๋กœ๊ทธ๋ž˜๋ฐ : ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๋ถ€ํ„ฐ ๋จธ์‹ ๋Ÿฌ๋‹๊นŒ์ง€
Fluentd with MySQL
4.1 ๋‹จ์ผํ˜ธ์ŠคํŠธ์˜ ๋ถ€ํ•˜
AWS ํ™˜๊ฒฝ์—์„œ MySQL Infra ์„ค๊ณ„ํ•˜๊ธฐ-2๋ถ€.๋ณธ๋ก 
Ad

Similar to Spark performance tuning (20)

PDF
Rankwave MOMENTโ„ข (Korean)
PPTX
[D2 COMMUNITY] Spark User Group - ์ŠคํŒŒํฌ๋ฅผ ํ†ตํ•œ ๋”ฅ๋Ÿฌ๋‹ ์ด๋ก ๊ณผ ์‹ค์ œ
PDF
Rankwave momentโ„ข desc3
PDF
EMR ํ”Œ๋žซํผ ๊ธฐ๋ฐ˜์˜ Spark ์›Œํฌ๋กœ๋“œ ์‹คํ–‰ ์ตœ์ ํ™” ๋ฐฉ์•ˆ - ์ •์„ธ์›…, AWS ์†”๋ฃจ์…˜์ฆˆ ์•„ํ‚คํ…ํŠธ:: AWS Summit Online Ko...
PPTX
Apache spark ์†Œ๊ฐœ ๋ฐ ์‹ค์Šต
PPTX
Hadoop cluster os_tuning_v1.0_20170106_mobile
PPTX
DeView2013 Big Data Platform Architecture with Hadoop - Hyeong-jun Kim
ย 
PDF
๋น…๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๊ธฐ์ˆ ์˜ ์ดํ•ด
PPTX
ํ•˜๋‘ก ์—์ฝ”์‹œ์Šคํ…œ ์œ„์—์„œ ํ™˜์ƒ์ ์ธ ํ…Œ์ดํฌ์˜คํ”„ - DSTS 2019
PDF
Hadoop engineering v1.0 for dataconference.io
PDF
๊ณ ์„ฑ๋Šฅ ๋น…๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ๋ถ„์„ ์†”๋ฃจ์…˜ - ํ‹ฐ๋งฅ์Šค์†Œํ”„ํŠธ ํ—ˆ์Šน์žฌ ํŒ€์žฅ
PDF
๋น…๋ฐ์ดํ„ฐ, big data
PPTX
Bigquery์™€ airflow๋ฅผ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ ๋ถ„์„ ์‹œ์Šคํ…œ ๊ตฌ์ถ• v1 ๋‚˜๋ฌด๊ธฐ์ˆ (์ฃผ) ์ตœ์œ ์„ 20170912
PDF
Spark_Overview_qna
PPTX
What is spark
PDF
20180714 ํ•˜๋‘ก ์Šคํ„ฐ๋”” ์ข…๋ฃŒ ๋ณด๊ณ  ๋ฐ ์—ฐ๊ตฌ๊ณผ์ œ ๋ฐœํ‘œ์ž๋ฃŒ
PDF
log-monitoring-architecture.pdf
PDF
MS ๋น…๋ฐ์ดํ„ฐ ์„œ๋น„์Šค ๋ฐ ๊ฒŒ์ž„์‚ฌ PoC ์‚ฌ๋ก€ ์†Œ๊ฐœ
PDF
Real-time Big Data Analytics Practice with Unstructured Data
ย 
PPTX
An introduction to hadoop
Rankwave MOMENTโ„ข (Korean)
[D2 COMMUNITY] Spark User Group - ์ŠคํŒŒํฌ๋ฅผ ํ†ตํ•œ ๋”ฅ๋Ÿฌ๋‹ ์ด๋ก ๊ณผ ์‹ค์ œ
Rankwave momentโ„ข desc3
EMR ํ”Œ๋žซํผ ๊ธฐ๋ฐ˜์˜ Spark ์›Œํฌ๋กœ๋“œ ์‹คํ–‰ ์ตœ์ ํ™” ๋ฐฉ์•ˆ - ์ •์„ธ์›…, AWS ์†”๋ฃจ์…˜์ฆˆ ์•„ํ‚คํ…ํŠธ:: AWS Summit Online Ko...
Apache spark ์†Œ๊ฐœ ๋ฐ ์‹ค์Šต
Hadoop cluster os_tuning_v1.0_20170106_mobile
DeView2013 Big Data Platform Architecture with Hadoop - Hyeong-jun Kim
ย 
๋น…๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๊ธฐ์ˆ ์˜ ์ดํ•ด
ํ•˜๋‘ก ์—์ฝ”์‹œ์Šคํ…œ ์œ„์—์„œ ํ™˜์ƒ์ ์ธ ํ…Œ์ดํฌ์˜คํ”„ - DSTS 2019
Hadoop engineering v1.0 for dataconference.io
๊ณ ์„ฑ๋Šฅ ๋น…๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ๋ถ„์„ ์†”๋ฃจ์…˜ - ํ‹ฐ๋งฅ์Šค์†Œํ”„ํŠธ ํ—ˆ์Šน์žฌ ํŒ€์žฅ
๋น…๋ฐ์ดํ„ฐ, big data
Bigquery์™€ airflow๋ฅผ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ ๋ถ„์„ ์‹œ์Šคํ…œ ๊ตฌ์ถ• v1 ๋‚˜๋ฌด๊ธฐ์ˆ (์ฃผ) ์ตœ์œ ์„ 20170912
Spark_Overview_qna
What is spark
20180714 ํ•˜๋‘ก ์Šคํ„ฐ๋”” ์ข…๋ฃŒ ๋ณด๊ณ  ๋ฐ ์—ฐ๊ตฌ๊ณผ์ œ ๋ฐœํ‘œ์ž๋ฃŒ
log-monitoring-architecture.pdf
MS ๋น…๋ฐ์ดํ„ฐ ์„œ๋น„์Šค ๋ฐ ๊ฒŒ์ž„์‚ฌ PoC ์‚ฌ๋ก€ ์†Œ๊ฐœ
Real-time Big Data Analytics Practice with Unstructured Data
ย 
An introduction to hadoop
Ad

Spark performance tuning

  • 1. Spark Performance Tuning - Part #2 (๋ณ‘๋ ฌ์ฒ˜๋ฆฌ) 2019. 1. 22
  • 2. Contents 1. ์„œ๋ก  1. ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ ๋ฐ ๋ฐฉ๋ฒ• 2. ์ด๋ก ์  ๊ณ ์ฐฐ 3. ์˜ˆ์ธก๋ชจ๋ธ ๊ฐœ๋ฐœ๊ณต์ • 2. ๋ณธ๋ก  1. ์‹œ์Šคํ…œ ๊ตฌ์„ฑ๋„ 2. ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ๋„ 3. ์‹œ์Šคํ…œ ์„ค์ • 4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ 3. ๊ฒฐ๋ก  2
  • 4. 4 2-1. ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ ๋ฐ ๋ฐฉ๋ฒ• ํ•˜๋‘ก์—์ฝ”์‹œ์Šคํ…œ ๊ตฌ์„ฑ ๋ฐ ์ƒ˜ํ”Œ๋ฐ์ดํ„ฐ ํ™œ์šฉํ•˜์—ฌ ์ด๊ด€ ํ…Œ์ŠคํŠธ Hadoop Name Node Spark Master Hive Master Resource Manger No Lv1 Lv2 Version Contents 1 Oracle Linux 7.3 OS 2 Hadoop 2.7.6 Distributed Storage 3 Spark 2.2.0 Distributed Processing 4 Hive 2.3.3 Supprt SQL (Master, Only master) 5 MariaDB 10.2.11 RDB (Master, Only master) 6 Oracle Client 18.3.0.0. 0 Oracle DB client Maria DB Hadoop DataNode Spark Worker NodeManager Hadoop DataNode Spark Worker NodeManager Hadoop DataNode Spark Worker NodeManager Service configurationHadoop Ecosystem Secondary Name Node p-master hadoop1 hadoop2 hadoop3
  • 5. 5 2-1. ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ ๋ฐ ๋ฐฉ๋ฒ• ํ•˜๋‘ก์—์ฝ”์‹œ์Šคํ…œ ๊ตฌ์„ฑ ๋ฐ ์ƒ˜ํ”Œ๋ฐ์ดํ„ฐ ํ™œ์šฉํ•˜์—ฌ ์ด๊ด€ ํ…Œ์ŠคํŠธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ ์ฒ˜๋ฆฌ ์ €์žฅํ•˜๊ธฐ Source Data Spark Output Data ํŒ๋งค์‹ค์  ๋ฐ์ดํ„ฐ ์ด๊ด€ ํŒ๋งค์‹ค์  Oracle DB Spark Oracle DB S/W H/W S/W H/W S/W H/W
  • 6. 6 2-2. ์ด๋ก ์  ๊ณ ์ฐฐ ํŒŒํ‹ฐ์…”๋‹ ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ํ†ตํ•ด ์ž‘์—…์„ ๋ฐฐํฌํ•˜๊ณ  ๊ฐ ๋…ธ๋“œ์˜ ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ ์‚ฌํ•ญ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด Spark๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ํŒŒํ‹ฐ์…˜์„ ํ†ตํ•ด ๋ถ„ํ• ํ•˜๊ณ  ๊ฐ ํŒŒํ‹ฐ์…˜์€ Executor์— ์ „์†ก๋จ. ์ „์ฒด ๋ฐ์ดํ„ฐ ํŒŒํ‹ฐ์…˜ ํŒŒํ‹ฐ์…˜#1 ํŒŒํ‹ฐ์…˜#2 ํŒŒํ‹ฐ์…˜#3 Executor1 Executor2 Executor3
  • 7. 7 2-2. ์ด๋ก ์  ๊ณ ์ฐฐ 1. Spark ๊ตฌ๋™๋ฐฉ์‹ Spark-submit ์‚ฌ์šฉํ•˜์—ฌ Spark ์ž‘์—… ์ œ์ถœ Sparkcontext ๋“œ๋ผ์ด๋ฒ„ ํ”„๋กœ๊ทธ๋žจ ์‹คํ–‰ ํด๋Ÿฌ์Šคํ„ฐ ๋งˆ์Šคํ„ฐ ๋…ธ๋“œ์—์„œ WORKER NODE๋ฅผ ํ†ตํ•ด Executor๊ฐ€ ์‹คํ–‰๋˜๋ฉฐ ํ”„๋กœ๊ทธ๋žจ ๊ตฌ๋™
  • 8. 8 2-2. ์ด๋ก ์  ๊ณ ์ฐฐ 2. ์…”ํ”Œ๋ง ๋ฐ์ดํ„ฐ๊ฐ€ ํŒŒํ‹ฐ์…˜๊ฐ„์— ์žฌ๋ฐฐ์น˜ ๋  ๋•Œ ์…”ํ”Œ์ด ๋ฐœ์ƒํ•œ๋‹ค. (๊ทธ๋ฃน ํ•ฉ, ํ‰๊ท ๋“ฑ) ํŒŒํ‹ฐ์…˜ ์…”ํ”Œ ์“ฐ๊ธฐ ํŒŒํ‹ฐ์…˜#1 ํŒŒํ‹ฐ์…˜#2 ํŒŒํ‹ฐ์…˜#3 Executor1 Executor2 Executor3 ํŒŒํ‹ฐ์…˜#1 ํŒŒํ‹ฐ์…˜#2 ํŒŒํ‹ฐ์…˜#3์…”ํ”Œ ์ฝ๊ธฐ
  • 9. 9 2-2. ์ด๋ก ์  ๊ณ ์ฐฐ 3. ์ฃผ์š” ์„ค์ •ํŒŒ์ผ (๊ธฐ๋ณธ BASE ์„ค์ •) SPARK-ENV.SH (๋Ÿฐํƒ€์ž„ ์ ์šฉ ์„ค์ •) SPARK-DEFAULT.CONF spark-env.sh spark-defaults.conf
  • 10. 10 2-3. ์˜ˆ์ธก๋ชจ๋ธ ๊ฐœ๋ฐœ๊ณต์ • 4. ๊ฐœ๋ฐœ ํ”„๋กœ์„ธ์Šค ๋Œ€๋ถ„๋ฅ˜ ์ค‘๋ถ„๋ฅ˜ ์ž‘์—… ์‚ฐ์ถœ๋ฌผ ์ฐฉ์ˆ˜ ๊ณ„ํš์ˆ˜๋ฆฝ ํ”„๋กœ์ ํŠธ ๊ณ„ํš ์ˆ˜๋ฆฝ / ํ™•์ • ํ”„๋กœ์ ํŠธ ์ˆ˜ํ–‰๊ณ„ํš์„œ ๋ถ„์„ ํ˜„ํ™ฉ๋ถ„์„ ์š”๊ตฌ์‚ฌํ•ญ ์ •์˜, ์‹œ์Šคํ…œ ๋ถ„์„ ์š”๊ตฌ์‚ฌํ•ญ ์ •์˜์„œ ๋ถ„์„๊ณผ์ œ ์ •์˜ ๋ถ„์„๊ณผ์ œ ๋„์ถœ, ์„ ์ •, ํ™•์ • ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ณ ์ •์˜์„œ ๋ถ„์„๋ชจ๋ธ ์ •์˜ ๋ถ„์„๋ชจ๋ธ/์‹œ์Šคํ…œ ์ •์˜ ์„ค๊ณ„ ๋ถ„์„๋ชจ๋ธ ์„ค๊ณ„ ๋ถ„์„ ์‹œ๋‚˜๋ฆฌ์˜ค, ๋ฐ์ดํ„ฐ, ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„ ๋ฐ ๊ฒ€์ฆ ๋ถ„์„๋ชจ๋ธ ์ •์˜์„œ ์‹œ์Šคํ…œ ์„ค๊ณ„ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค, I/F ๋ฐ ํ…Œ์ŠคํŠธ ์„ค๊ณ„ ํ…Œ์ด๋ธ”, ํ”„๋กœ๊ทธ๋žจ, ํ™”๋ฉด ์ธํ„ฐํŽ˜์ด์Šค ๋ชฉ๋ก/์ •์˜์„œ ๊ตฌ์ถ• ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ ํ™”๋ฉด, DB, ๋ฐฐ์น˜, I/F ๊ฐœ๋ฐœ ์†Œ์Šค์ฝ”๋“œ, DB ํ…Œ์ŠคํŠธ ๋‹จ์œ„/ํ†ตํ•ฉ ํ…Œ์ŠคํŠธ ๋‹จ์œ„ํ…Œ์ŠคํŠธ ์‹œ๋‚˜๋ฆฌ์˜ค ์ž‘์„ฑ ๋ฐ ์ˆ˜ํ–‰ ๋‹จ์œ„ ๋ฐ ํ†ตํ•ฉ ํ…Œ์ŠคํŠธ ๊ณ„ํš์„œ/์ ˆ์ฐจ์„œ/๊ฒฐ๊ณผ์„œํ†ตํ•ฉํ…Œ์ŠคํŠธ ๊ณ„ํš / ์‹œ๋‚˜๋ฆฌ์˜ค ์ˆ˜๋ฆฝ ๋ฐ ์‹คํ–‰ ์ดํ–‰ ๋ฐ ์•ˆ์ •ํ™” ์‹œ์Šคํ…œ ์ดํ–‰ ์ดํ–‰๊ณ„ํš์„œ ์ž‘์„ฑ ์ดํ–‰ ๊ณ„ํš์„œ ์‚ฌ์šฉ์ž ๊ต์œก ์‚ฌ์šฉ์ž/์šด์˜์ž ๊ต์œก ์‹ค์‹œ ๋ฐ ๋งค๋‰ด์–ผ ์ž‘์„ฑ ์‚ฌ์šฉ์ž ๋งค๋‰ด์–ผ, ์šด์˜ ๋งค๋‰ด์–ผ ์ข…๋ฃŒ ํ”„๋กœ์ ํŠธ ์ข…๋ฃŒ ์ข…๋ฃŒ๋ณด๊ณ  ๋ฐ ์ธ์ˆ˜ํ™•์ธ ์™„๋ฃŒ๋ณด๊ณ ์„œ, ๊ฒ€์ˆ˜ํ™•์ธ์„œ
  • 12. 3-1. ์‹œ์Šคํ…œ ๊ตฌ์„ฑ๋„ 12 Input DB Output DB 192.168.110.112 192.168.110.111 Hadoop Name Node Spark Master Hive Master Resource Manger Maria DB Hadoop DataNode Spark Worker NodeManager Hadoop DataNode Spark Worker NodeManager Hadoop DataNode Spark Worker NodeManager Hadoop Ecosystem Secondary Name Node p-master hadoop1 hadoop2 hadoop3 192.168.110.117 192.168.110.118 192.168.110.119 192.168.110.120 Oracle Oracle
  • 13. 3-2. ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ๋„ 13 Define the outbound and inbound data No InterfaceID Content System Type Count Periods Column cnt Comments 1 IB-001 Sellout Dev System RDB 100 million - 17 TBD 2 IB-002 Sellout Dev System RDB 13 million 17 1/22 3 IB-003 Parameter Dev System RDB 2 5 inbound No InterfaceID Content System Type Count Periods Column cnt Comments 1 OB-001 Sellout Op System RDB 100 million - 17 TBD 2 OB-002 Sellout Op System RDB 13 million 17 1/22 outbound
  • 14. 3-3. ์‹œ์Šคํ…œ ์„ค์ • 14 Div Value Cluster 3 Worker ์„œ๋ฒ„๋ณ„ 1 Executor-count ์„œ๋ฒ„๋ณ„ 3 Executor-core 4 Executor-memory 10 ์Šฌ๋ ˆ์ด๋ธŒ PC #1 Executor Core: 4 Mem: 10 Worker #1 Worker #2, โ€ฆ. CPU: 16์ฝ”์–ด MEM: 40G ํ• ๋‹น ๋งˆ์Šคํ„ฐ PC Worker #1 MEM: 5G ํ• ๋‹น Executor Core: 4 Mem: 10 Executor Core: 4 Mem: 10 Executor Core: 4 Mem: 10 ์Šฌ๋ ˆ์ด๋ธŒ PC #1 Executor Core: 4 Mem: 10 Worker #1 Worker #2, โ€ฆ. CPU: 16์ฝ”์–ด MEM: 40G ํ• ๋‹น Executor Core: 4 Mem: 10 Executor Core: 4 Mem: 10 Executor Core: 4 Mem: 10 ์Šฌ๋ ˆ์ด๋ธŒ PC #1 Executor Core: 4 Mem: 10 Worker #1 Worker #2, โ€ฆ. CPU: 16์ฝ”์–ด MEM: 40G ํ• ๋‹น Executor Core: 4 Mem: 10 Executor Core: 4 Mem: 10 Executor Core: 4 Mem: 10
  • 15. 3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ 15 (Case #1) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ๋ฏธ ์ ์šฉ ์‹œ (์ฝ”๋“œ์‹คํ–‰) spark-submit --class com.spark.c10_dataTransfer.basicDataTransfer sparkProgramming-spark-1.0.jar ํŒŒํ‹ฐ์…˜ ๋ฏธ ์ ์šฉ
  • 16. 3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ 16 (Case #1) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ๋ฏธ ์ ์šฉ ์‹œ (๊ฒฐ๊ณผ)
  • 17. 3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ 17 (Case #2) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ์ ์šฉ ์‹œ (์ฝ”๋“œ์‹คํ–‰) spark-submit --class com.spark.c10_dataTransfer.partitionDataTransfer sparkProgramming-spark-1.0.jar ํŒŒํ‹ฐ์…˜ ์‚ฌ์ด์ฆˆ 100 ์„ค์ •
  • 18. 3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ 18 (Case #2) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ์ ์šฉ ์‹œ (๊ฒฐ๊ณผ)
  • 19. 3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ 19 (Case #3) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ์ ์šฉ ์‹œ (์ฝ”๋“œ์‹คํ–‰) spark-submit --class com.spark.c10_dataTransfer.partitionDataTransfer sparkProgramming-spark-1.0.jar ํŒŒํ‹ฐ์…˜ ์‚ฌ์ด์ฆˆ 1000 ์„ค์ •
  • 20. 3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ 20 (Case #3) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ์ ์šฉ ์‹œ (๊ฒฐ๊ณผ)
  • 21. 3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ 21 (Case #4) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ์ ์šฉ ์‹œ (์ฝ”๋“œ์‹คํ–‰) spark-submit --class com.spark.c10_dataTransfer.partitionDataTransfer sparkProgramming-spark-1.0.jar ํŒŒํ‹ฐ์…˜ ์‚ฌ์ด์ฆˆ 10 ์„ค์ •
  • 22. 3-4. ์‹คํ–‰ ๋ฐ ํ…Œ์ŠคํŠธ 22 (Case #4) ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ฝ”๋“œ ์ ์šฉ ์‹œ (๊ฒฐ๊ณผ)
  • 24. 4. ๊ฒฐ๋ก  โ€ข Spark์—์„œ ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ ๋ฐ ์ €์žฅํ•˜๊ธฐ ์‹œ ์ฝ”๋“œ ์ƒ์—์„œ ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ์ ์šฉ ์‹œ ์†๋„ ํ–ฅ์ƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. (๋‹จ, ์„ค์ •ํ•œ Band์˜ ํฌ๊ธฐ๋ฅผ ํŒ๋‹จํ•˜์—ฌ ํŒŒํ‹ฐ์…˜ ์‚ฌ์ด์ฆˆ ๊ณ ๋ ค๊ฐ€ ํ•„์š”ํ•จ) ๊ตฌ๋ถ„ ๋ฐ์ดํ„ฐ (1500๋งŒ๊ฑด, 2.6GB) ๋น„๊ณ  ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ ๋ฏธ ์ ์šฉ ์‹œ 7๋ถ„ No ํŒŒํ‹ฐ์…˜ ์ ์šฉ ์‹œ (ํŒŒํ‹ฐ์…˜ ์‚ฌ์ด์ฆˆ 100) 3.7๋ถ„ ํŒŒํ‹ฐ์…˜ ํฌ๊ธฐ 100 ์ ์šฉ ์‹œ (ํŒŒํ‹ฐ์…˜ ์‚ฌ์ด์ฆˆ 1000) 12๋ถ„ ํŒŒํ‹ฐ์…˜ ํฌ๊ธฐ 1000 ์ ์šฉ ์‹œ (ํŒŒํ‹ฐ์…˜ ์‚ฌ์ด์ฆˆ 10) 16๋ถ„ ํŒŒํ‹ฐ์…˜ ํฌ๊ธฐ 100