SlideShare a Scribd company logo
2004 - Lecture 2: Page 1
Do Not Duplicate
Spectroradiometry Short Course
Lecture 2: Source-based Radiometry
Spectroradiometry Short Course
2004 - Lecture 2: Page 2
Do Not Duplicate
Spectroradiometry Short Course
Outline
1.Source Metrology
2.Blackbodies
3.Spectral Radiance Sources
a) Tungsten Strip Lamps
b) Integrating Spheres
c) Diffusely Reflecting Surfaces
4.Spectral Irradiance Sources
a) Lamps
5.Scale Realizations
2004 - Lecture 2: Page 3
Do Not Duplicate
Spectroradiometry Short Course
Traceability and measurement equation
A1 A2
d
Source Radiometer



 d
s
C
v )
(
)
(


)
(
  

s
Source flux, radiance, or irradiance is known, radiometer response is not known.
The source may be broadband or monochromatic (single wavelength). It may be
a primary standard or a transfer standard.
2004 - Lecture 2: Page 4
Do Not Duplicate
Spectroradiometry Short Course
NIST spectral Irradiance calibrations
Typical Irradiance Values
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
Wavelength [nm]
Irradiance
[W
cm
-3
]
FEL
XEXON
ISS w/fiber output
D2
FOS-FEL
FOS-D2
LE7
2004 - Lecture 2: Page 5
Do Not Duplicate
Spectroradiometry Short Course
NIST spectral radiance calibrations
Typical Radiance Values
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04
1.0E+05
1.0E+06
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
Wavelength [nm]
Radiance
[W
cm
-3
sr
-1
]
RFL
L460
L450-12U
L450
L420
V40
LE7
2800 K BB
1100 K BB
2004 - Lecture 2: Page 6
Do Not Duplicate
Spectroradiometry Short Course
Radiance and Irradiance
1.Radiance Sources
a) Overfill the field-of-view of the radiometer
b) Extended source that is spatially uniform
c) Radiance is independent of view angle
d) Radiance is independent of distance to radiometer
2.Irradiance Sources
a) Underfill the field-of-view of the radiometer
b) Approximate a point source (follows 1/d2 law)
c) Uniform irradiance at the entrance pupil of the radiometer
2004 - Lecture 2: Page 7
Do Not Duplicate
Spectroradiometry Short Course
The Right Source for You
1.Describe the Source you want to Measure
a) spectral shape, size and angular extent, magnitude,
polarization, stability
2.Choose the Standard Source
a) as similar to the unknown source as possible
b) practical considerations apply
3.If Mismatches occur
a) thorough instrument characterization is required
4.Define the Acceptable Uncertainty!
2004 - Lecture 2: Page 8
Do Not Duplicate
Spectroradiometry Short Course
Blackbody Sources
Cavity temperature, T [K]
In an enclosed cavity, where the walls are in thermal equilibrium
with the radiation field inside the cavity, the radiation
• depends ONLY on the cavity temperature (T), and
• not on the shape, surface structure, material, etc. of the cavity.
• The radiant flux is a function of the wavelength [].
All materials above absolute temperature (zero kelvin)
emit thermal radiation.
2004 - Lecture 2: Page 9
Do Not Duplicate
Spectroradiometry Short Course
“Ideal” Blackbody Sources
Enclosed isothermal cavity with a small hole for observation of the radiant flux
The effect of the hole is truly negligible so that the radiation field and the cavity
walls remain in complete thermal equilibrium (the cavity remains isothermal).
The cavity absorbs all incident radiation, and the emitted spectral radiance is
independent of direction. No surface can emit more thermal radiation than a
blackbody at that temperature.
Lb() = spectral radiance of ideal blackbody
Ideal blackbody is difficult to engineer, but we can
still calculate this ideal situation: Lb() is known as
a function of blackbody temperature—this is
Planck’s Law.
Natural Examples:
A large underground cavern
Deep inside a stellar atmosphere
2004 - Lecture 2: Page 10
Do Not Duplicate
Spectroradiometry Short Course
“Practical” Blackbody Sources
An enclosed cavity with a small hole for observation of the radiant flux
The effect of the hole is small so that the radiation field and the cavity walls
remain in approximate thermal equilibrium.
L () = spectral radiance of real blackbody
)
(
)
(
)
(
b 



L
L

Concept of Emittance (emissivity) ():
Ratio of what you have to the ideal situation.
Depends on cavity isothermality, cavity design,
surface emittance (which may depend on
temperature), temperature of surrounds,
wavelength, direction, and angular acceptance
Graybody: () = 
2004 - Lecture 2: Page 11
Do Not Duplicate
Spectroradiometry Short Course
Planck’s Law
 
  1
/
exp
1
)
(
2
5
2
1L
b


T
n
c
n
c
L



radiation
of
wavelength
constant
radiation
second
air)
for
1
(
medium
of
refraction
of
index
)
(
radiance
spectral
for
constant
radiation
first
2
1L







c
n
c
Ideal Blackbody
Non ideal Blackbody: L() = Lb() ()
Note nonlinear relationship between Spectral Radiance
and Blackbody Temperature
c1L = 1.19 x 108 [W m4 m-2 sr-1]
c2 = 14 388 [m K]
2004 - Lecture 2: Page 12
Do Not Duplicate
Spectroradiometry Short Course
Spectral Distribution, Lb()
Wavelength [m]
0.1 1 10
10
-7
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
10
4
10
5
10
6
10
7
2800
o
C
1064.18
o
C
232
o
C
Spectral
radiance
[W
m
-2
sr
-1
m
-1
]
 
  1
/
exp
1
)
(
2
5
1L
b


T
c
c
L



T
c3
max 

 
 
T
c
c
L 

 /
exp
)
( 2
5
1L
b 

Wien Approximation:
c3 = 2898 [m K]
(1337 K)
(505 K)
(3073 K)
2004 - Lecture 2: Page 13
Do Not Duplicate
Spectroradiometry Short Course
Stefan-Boltzmann Law
• Total exitance M: sum L() over all directions
(into the hemisphere above the opening) and sum
L() over all the electromagnetic spectrum (all
wavelengths)
• For an ideal blackbody, the spectral radiance
lambertian
• With ()   and n()  n, the sums
yield
•  = Stefan-Boltzmann constant
 = 5.670 400 x 10-8 [W m-2 K-4]
)
1
with
(
4
4
2


 n
T
T
n
M 



2004 - Lecture 2: Page 14
Do Not Duplicate
Spectroradiometry Short Course
Values of Constants
• c1L = 1.191 042 722(93) x 108 [W m4 m-2 sr-1]
• c2 = 14 387.752(25) [m K]
• c3 = 2897.768 6(51) [m K]
•  = 5.670 400(40) x 10-8 [W m-2 K-4] Gold-point Blackbody
CODATA Internationally recognized values of constants (http://physics.nist.gov)
300 400 500
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
Signal
[V]
Time [min]
2004 - Lecture 2: Page 15
Do Not Duplicate
Spectroradiometry Short Course
Example—peak emission
1. What is the wavelength for which the spectral
radiance of an ideal blackbody at 22 C is a
maximum?
a. Convert to kelvin: 22 + 273.15 = 295.15 K
b. Rule: max = c3/T, so max =2898/295 = 9.82 m
c. Application: The room is radiating in the 8 m to
14 m region
2004 - Lecture 2: Page 16
Do Not Duplicate
Spectroradiometry Short Course
Problems with Blackbodies
1.Temperatures above 3000 K are very difficult to
achieve
2.Expensive to produce accurate systems (testing and
modeling)
3.Not very transportable
4.Slow time constants
2004 - Lecture 2: Page 17
Do Not Duplicate
Spectroradiometry Short Course
Blackbody Alternatives
1.Lamps, arc sources (many types), heated refractories,
light emitting diodes, lasers, synchrotron radiation
2.Examples:
a) tungsten filament strip lamps
b) tungsten quartz-halogen lamps
c) deuterium (D2) gas discharge lamps
d) xenon arc lamps
e) Nernst glower and Globar
2004 - Lecture 2: Page 18
Do Not Duplicate
Spectroradiometry Short Course
Tungsten strip lamp features
18
• Spectral Radiance or Radiance
Temperature standards
• Vacuum or Gas-filled
• Quartz or glass windows
• Good stability (especially for the
vacuum type)
• Small target area (0.6 mm wide
by 0.8 mm tall)
• Careful alignment procedures
required
• Calibrated by comparison to a
blackbody or another strip lamp at
0.654 m
• Suited for Devices Under Test
with small field-of-views
2004 - Lecture 2: Page 19
Do Not Duplicate
Spectroradiometry Short Course
Emittance of Tungsten
0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
250 350 450 550 650 750 850
Wavelength [nm]
Emissivity
1600 K
2400 K
)
ln(
1
1
2



c
T
T

 =1510 K at 1600 K and 660 nm
Spectral and
temperature
dependence of
tungsten.
Radiance
Temperature
2004 - Lecture 2: Page 20
Do Not Duplicate
Spectroradiometry Short Course
Tungsten strip lamp output
Gas-filled Lamps (to
suppress tungsten
evaporation)
0
5000
10000
15000
20000
25000
200 600 1000 1400 1800 2200
Wavelength [nm]
Spec.
Rad.
[uW/cm2/sr/nm]
40.4 A
For Spectral Radiance
10
15
20
25
30
35
40
800 1200 1600 2000 2400
Radiance Temp. [deg C]
Lamp
Current
[A]
655.3 nm
For Radiance Temperature
2004 - Lecture 2: Page 21
Do Not Duplicate
Spectroradiometry Short Course
Comparison of blackbodies and tungsten strip lamps
0 500 1000 1500 2000 2500
10
-2
10
-1
10
0
10
1
10
2
10
3
10
4
10
5
10
6
10
7
Radiance
(
W
/
cm
3
/
sr
)
Wavelength ( nm )
2004 - Lecture 2: Page 22
Do Not Duplicate
Spectroradiometry Short Course
Integrating Spheres
1. Features:
a) Spherical geometry
b) Low absorbance
c) Diffuse reflectance
2. Result
a) Flux “averager”
3. Applications
a) Radiance source (add lamp,
laser, LED, etc)
b) Irradiance collector
c) Internal or external sources and
detectors
2004 - Lecture 2: Page 23
Do Not Duplicate
Spectroradiometry Short Course
Sphere Performance
1.Flux transfer equations yield
2.Baffles to shield direct view of lamps
3.Integrated monitor detectors to record performance
4.Stable power supplies and reflectance of interior wall
 
 
f
A
L




1
)
(
1
)
(
)
(
)
(







A
f


areas
port
2004 - Lecture 2: Page 24
Do Not Duplicate
Spectroradiometry Short Course
Reflectance and Throughput
0 500 1000 1500 2000 2500
0.75
0.80
0.85
0.90
0.95
1.00
0
5
10
15
20
25
30
Reflectance
Wavelength [nm]
() (Barium Sulfate)
Throughput
()/(1-0.98())
2004 - Lecture 2: Page 25
Do Not Duplicate
Spectroradiometry Short Course
Sphere Source Protocols
1.Geometry for uniform illumination
a) Lamps baffle
2.Document operation
a) Lamp current, lamp voltage drop, monitor detector signals,
Lamp operating hours
3.Keep coating clean
4.Recalibrate
5.Map spatial uniformity and dependence on view angle
2004 - Lecture 2: Page 26
Do Not Duplicate
Spectroradiometry Short Course
Radiance of Integrating Spheres
0 500 1000 1500 2000 2500
0
10
20
30
40
50
Spectralon (TM)
Barium Sulfate
Earth Systems
Spectral
Radiance
[

W
/
(cm
2
sr
nm)]
Wavelength [nm]
2004 - Lecture 2: Page 27
Do Not Duplicate
Spectroradiometry Short Course
Temporal changes in the sphere output
400 500 600 700 800 900
-1.0
-0.5
0.0
0.5
1.0
NIST
UA
3 Lamp Config. 18 June 1997
Percent
Difference
(
Begin
/
End
Runs
)
Wavelength ( nm )
14:22:07 15:22:07 16:22:07 17:22:07 18:22:07
4.60E-006
4.62E-006
4.64E-006
4.66E-006
4.68E-006
4.70E-006
4.72E-006
4.74E-006
4.76E-006
4.78E-006
4.80E-006
Photodiode
Voltage
Time ( hr: min: sec )
Photometer measurements
Changes at 400 nm
are more pronounced
2004 - Lecture 2: Page 28
Do Not Duplicate
Spectroradiometry Short Course
“Lamp-Plaque” Method
1. Radiance standard
a) substitute for strip lamp,
blackbody, or integrating
sphere
b) Combines irradiance standard
and reflectance standard
2. Measurement Equation
a)  = offset from front post and
radiometric center
b) R =  BRDF
)
50
,
(
)
(
)
50
(
)
,
45
,
0
(
)
,
( 2
2





 E
d
R
d
L





2004 - Lecture 2: Page 29
Do Not Duplicate
Spectroradiometry Short Course
Halogen Filament Lamps
•Illumination, heating, &
irradiance standards
•Wide commercial selection
•Select on features:
•lifetime
•color temperature
•lumen efficacy
•current or voltage
•built in lens
•base configuration
•Maximum wavelength
range: 250 nm to 2.6 m
2004 - Lecture 2: Page 30
Do Not Duplicate
Spectroradiometry Short Course
FEL Lamp Irradiance Standards
• 1000 W output
• Coiled-coil structure to increase
emittance
• FEL type (a model number)
• Modified by addition of bipost
base
• Calibrated by comparison to a
high temperature blackbody
• 50 cm from front of post
• 1 cm2 collecting area
• Selected and screened for
undesirable features
2004 - Lecture 2: Page 31
Do Not Duplicate
Spectroradiometry Short Course
FEL alignment system
2004 - Lecture 2: Page 32
Do Not Duplicate
Spectroradiometry Short Course
FEL Lamp Screening
1. Inspect, test, anneal, age, pot into base
2. Spectral line screening (currently 0 % pass rate)
a) 250 nm to 400 nm in 0.1 nm steps with 0.04 nm bandpass (emission
and absorption lines)
3. Temporal stability (90 % pass rate)
a) <0.5 % before and after 24 h continuous operation at four
wavelengths in UV to near infrared
4. Geometric (95% pass rate)
a) < 1% in  1 at 655 nm
2004 - Lecture 2: Page 33
Do Not Duplicate
Spectroradiometry Short Course
FEL Output
0
5
10
15
20
25
30
200 600 1000 1400 1800 2200 2600
Wavelength [nm]
Spectral
Irrad.
[uW/cm2/nm]
50 cm
Calibration Data, FEL at 8.2 A
240 260 280 300 320 340 360 380 400 420
0
1
2
3
4
5
Absorption Lines
Emission Lines
Signal
[V]
Wavelength [nm]
Undesirable Lines
a. 256.97 nm (256.80 nm)
b. 257.67 nm (257.51 nm)
c. 308.48 nm (308.22 nm)
d. 309.47 nm (309.27 nm)
e. 394.57 nm (394.40 nm)
f. 396.27 nm (396.15 nm)
2004 - Lecture 2: Page 34
Do Not Duplicate
Spectroradiometry Short Course
Dependence on horizontal and vertical angles
-8 -6 -4 -2 0 2 4 6 8
6
4
2
0
-2
-4
-6
Percent different from center
Horizontal Angle [  ]
Vertical
Angle
[

]
-7.5
-6.5
-5.5
-4.5
-3.5
-2.5
-1.5
-0.5
0.5
1.0


50 cm
2004 - Lecture 2: Page 35
Do Not Duplicate
Spectroradiometry Short Course
Protocols for FEL Standard Lamps
1. Orientation
a) 50 cm from front of posts, entrance pupil diameter
of 1 cm2, use special alignment jig for FELs
2. Electrical
a) maintain polarity, constant current, log voltage drop
and burning hours
b) Similar sensitivity to error in current as strip lamps
3. Operational
a) 30 min warm-up; recalibrate every 50 h
b) transfer to user working standards
c) don’t touch the envelope; don’t enclose the lamp
during operation; baffle properly
2004 - Lecture 2: Page 36
Do Not Duplicate
Spectroradiometry Short Course
Power Supply Feedback Loop
16 bit DA
Converter
Lamp
0.01  Shunt
Resistor
Computer
Power Supply
Digital
Voltmeter
Voltage to
current
conversion in the
power supply
8.2 A  1 mA
stabilization
~ 5 s
2004 - Lecture 2: Page 37
Do Not Duplicate
Spectroradiometry Short Course
Vertical Side Horizontal
Optic
Axis Radiometer
Aperture
Lamp Orientations
2004 - Lecture 2: Page 38
Do Not Duplicate
Spectroradiometry Short Course
Frame, Lamp, and Radiometer
Lamp
Frame
Radiometer
(Shutter)
At NIST
Orientation dependence of the FEL
300 400 500 600 700 800 900 1000
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
Ratio
to
Initial
Vertical
Signals
Wavelength [nm]
Side
Horizontal
Vertical
2004 - Lecture 2: Page 39
Do Not Duplicate
Spectroradiometry Short Course
D2 Irradiance Standards
•30 W output
• Stable relative spectral irradiance
distribution
• 200 nm to 350 nm
• Modified by addition of bipost base
(same as FEL)
• Calibrated by a) relative distribution
from wall stabilized hydrogen arc and
b) FEL at 250 nm
• 50 cm from front of post
• 1 cm2 collecting area
• Selected and screened for undesirable
features
2004 - Lecture 2: Page 40
Do Not Duplicate
Spectroradiometry Short Course
Deuterium, Xe and FEL
200 300 400 500 600 700 800 9001000
1000
0.01
0.1
1
10
100
1000
Spectral
Irradiance
[
W
/
cm
3
]
Wavelength [ nm ]
FEL 1000 W
Xe
Deuterium lamp
2004 - Lecture 2: Page 41
Do Not Duplicate
Spectroradiometry Short Course
Synchrotron Ultraviolet Radiation Facility (SURF) SURF III
BL 2 Beamline for instrument
calibrations
BL 3 “Whitelight” beamline for deuterium lamp calibrations
BL 4 “UV” beamline for detector calibrations
BL 3
BL 4
BL 2
Source spectral radiance calculated
according to the Schwinger equation
2004 - Lecture 2: Page 42
Do Not Duplicate
Spectroradiometry Short Course
Spectral Output of Synchrotron Radiation
10 MeV < E0 < 380 MeV
1 10 100 1000 10000 100000
Wavelength  (nm)
0
1014
2*1014
3*1014
4*1014
5*1014
6*1014
Flux
(Photons
/
s)
at

=
4°,
100
mA,
1%
b.w.
380 MeV, c = 8.5 nm
331 MeV, c = 13 nm
284 MeV, c = 20 nm
234 MeV, c = 36 nm
183 MeV, c = 76 nm
131 MeV, c = 210 nm
78 MeV, c = 976 nm
37 MeV, c = 9533 nm
Blackbody 3000 K
DUV
Visible
EUV
2004 - Lecture 2: Page 43
Do Not Duplicate
Spectroradiometry Short Course
NIST Radiance Scale Realization
1. Gold point blackbody, T = 1337.33 K
2. Lamp 1 at 1337.33 K
a) transfer at 655 nm
3. Lamp 2 at 1530 K
a) transfer at 655 nm, “whiter”
4. Variable temperature blackbody
1610.7 K to 2654.2 K
a) transfer at 655 nm, use from ~ 300 nm to 2400 nm
b) small aperture, high emittance
Expanded uncertainties 0.5% to 1%, depending on wavelength
2004 - Lecture 2: Page 44
Do Not Duplicate
Spectroradiometry Short Course
View of the VTBB
VTBB = 0.9987
2 mm
diameter
opening of
the
blackbody
2004 - Lecture 2: Page 45
Do Not Duplicate
Spectroradiometry Short Course
Irradiance Scale Flow Diagram
High Accuracy Cryogenic
Radiometer & Lasers
Aperture Area
Measurement Facility
Detector Transfer Standard
(Trap Radiometer)
Irradiance Filter
Radiometers
High Temperature
Blackbody
Working Standard Spectral
Irradiance Lamps
2004 - Lecture 2: Page 46
Do Not Duplicate
Spectroradiometry Short Course
NIST Irradiance Scale Realization
Detector-
based
Radiometry
2004 - Lecture 2: Page 47
Do Not Duplicate
Spectroradiometry Short Course
Irradiance Realization
1000 W
Irradiance
Standard Lamp
Precision
Aperture
High
Temperature
Blackbody
Filter
Radiometer
Spectro-
radiometer
2004 - Lecture 2: Page 48
Do Not Duplicate
Spectroradiometry Short Course
Reduction in E() Uncertainties
0 500 1000 1500 2000 2500
0
1
2
3
4
5
1990 Scale
2000 Scale
2000 Scale (issued lamps)
Expanded
Uncertainties
(
k
=
2
)
[
%
]
Wavelength [ nm ]
2004 - Lecture 2: Page 49
Do Not Duplicate
Spectroradiometry Short Course
Summary
1.Sources are required to calibrate radiometers
2.Sources must be
a) selected for the application
b) characterized for performance
c) calibrated – made traceable to SI units
3.For best performance
a) incorporate monitor detectors
b) observe all protocols
c) intercompare with others
2004 - Lecture 2: Page 50
Do Not Duplicate
Spectroradiometry Short Course
References
1. C.E. Gibson, B.K. Tsai, and A.C. Parr, Radiance Temperature Calibrations, NIST Special
Publication 250-43, Washington, DC, (1998) 56 pp plus appendices.
2. D.G. Goebel, Generalized integrating-sphere theory, Appl. Optics, 6, (1967) 125-128.
3. J.H. Walker, R.D. Saunders, A.T. Hattenburg, Spectral Radiance Calibrations, NBS Special
Publication 250-1, Washington, DC, (1987) 26 pp plus appendices.
4. J.H. Walker, R.D. Saunders, J.K. Jackson, D.A. McSparron, Spectral Irradiance Calibrations,
NBS Special Publication 250-20, Washington, DC, (1987) 37 pp plus appendices.
5. G.J. Zissis, Ed., Sources of Radiation, The Infrared and Electro-Optical Systems Handbook,
Vol. 1, ERIM (Ann Arbor, MI) and SPIE(Bellingham, WA) co-publishers, (1993) 373 pp.

More Related Content

PPTX
Fluorimetry
PPTX
Uv vis and raman spectroscopy
PPTX
Seminar on Uv Visible spectroscopy by Amogh G V
PPTX
XRF Theory and Application
PPTX
Xrd presentation
PPT
Spectrophotometry
PPTX
INTRODUCTION TO SPECTROCOPY
PPT
Chapter 19
Fluorimetry
Uv vis and raman spectroscopy
Seminar on Uv Visible spectroscopy by Amogh G V
XRF Theory and Application
Xrd presentation
Spectrophotometry
INTRODUCTION TO SPECTROCOPY
Chapter 19

What's hot (19)

PPTX
Electron diffraction and Neutron diffraction
PPTX
Uv vis-ir spectroscopy
PPTX
XRD principle and application
PPTX
UV visible spectroscopy
PPT
Flourimetry
PPT
L10 datta lecture on industrial radiation sources
PDF
PhD_presentation_animationsRemoved
PDF
UV visible spectroscopy principles and instrumentation
PPT
2018 HM XRF X-RAY FLUORESCENCE EMISSION -THEORY AND APPLICATION
PDF
JOHN_RAE_1102333_PROJECTREPORT
PPT
Xps
PDF
UV -Vis Spectrophotometry- Principle, Theory, Instrumentation and Application...
PDF
mems module-4.pdf
PPTX
Rutherford Back-Scattering(RBS) Modeling Algorithms
PPTX
UV-VISIBLE SPECTRO PHOTOMETER
PPTX
Ion implantation
PPT
X ray diff lecture 3
Electron diffraction and Neutron diffraction
Uv vis-ir spectroscopy
XRD principle and application
UV visible spectroscopy
Flourimetry
L10 datta lecture on industrial radiation sources
PhD_presentation_animationsRemoved
UV visible spectroscopy principles and instrumentation
2018 HM XRF X-RAY FLUORESCENCE EMISSION -THEORY AND APPLICATION
JOHN_RAE_1102333_PROJECTREPORT
Xps
UV -Vis Spectrophotometry- Principle, Theory, Instrumentation and Application...
mems module-4.pdf
Rutherford Back-Scattering(RBS) Modeling Algorithms
UV-VISIBLE SPECTRO PHOTOMETER
Ion implantation
X ray diff lecture 3
Ad

Similar to Srsc 04 lecture 2 source based radiometry (20)

PDF
03-GenXrays-PPT.pdf
PDF
PPTX
Flame emission spectroscopy
PPT
Small-angle X-ray Diffraction
PPT
XRD_AG NPG.ppt
PPT
XRD_AG NPG.ppt
PDF
Measurement of energy loss of light ions using silicon surface barrier detector
PPTX
Compiled presentations MOS
PDF
Introduction to Photoelectron spectroscopy- UPS & XPS
PPT
9873erwefeasfasfafawfwessfcefwsfwefwef7.ppt
PPT
4_2020_03_20!07_33_21_PM.ppt
PDF
Laser drivenplasma
PPTX
Transmission Electron Microscope_Lecture1.pptx
PPT
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
PPTX
Neutron scattering from nanoparticles
PPTX
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
PDF
Xray interferometry
PPTX
Optical Antenna
PDF
XRD-calculations and characterization.pdf
PDF
X ray diffraction or braggs diffraction or
03-GenXrays-PPT.pdf
Flame emission spectroscopy
Small-angle X-ray Diffraction
XRD_AG NPG.ppt
XRD_AG NPG.ppt
Measurement of energy loss of light ions using silicon surface barrier detector
Compiled presentations MOS
Introduction to Photoelectron spectroscopy- UPS & XPS
9873erwefeasfasfafawfwessfcefwsfwefwef7.ppt
4_2020_03_20!07_33_21_PM.ppt
Laser drivenplasma
Transmission Electron Microscope_Lecture1.pptx
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Neutron scattering from nanoparticles
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Xray interferometry
Optical Antenna
XRD-calculations and characterization.pdf
X ray diffraction or braggs diffraction or
Ad

Recently uploaded (20)

PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
Overview of calcium in human muscles.pptx
PDF
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
PPT
veterinary parasitology ````````````.ppt
PDF
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPT
6.1 High Risk New Born. Padetric health ppt
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PPTX
Hypertension_Training_materials_English_2024[1] (1).pptx
PDF
An interstellar mission to test astrophysical black holes
PPTX
BIOMOLECULES PPT........................
PPTX
Introcution to Microbes Burton's Biology for the Health
PDF
The Land of Punt — A research by Dhani Irwanto
PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PPT
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
PPTX
CORDINATION COMPOUND AND ITS APPLICATIONS
PPTX
perinatal infections 2-171220190027.pptx
PPTX
The Minerals for Earth and Life Science SHS.pptx
PPTX
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
7. General Toxicologyfor clinical phrmacy.pptx
Overview of calcium in human muscles.pptx
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
veterinary parasitology ````````````.ppt
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
6.1 High Risk New Born. Padetric health ppt
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
Hypertension_Training_materials_English_2024[1] (1).pptx
An interstellar mission to test astrophysical black holes
BIOMOLECULES PPT........................
Introcution to Microbes Burton's Biology for the Health
The Land of Punt — A research by Dhani Irwanto
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
CORDINATION COMPOUND AND ITS APPLICATIONS
perinatal infections 2-171220190027.pptx
The Minerals for Earth and Life Science SHS.pptx
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx

Srsc 04 lecture 2 source based radiometry

  • 1. 2004 - Lecture 2: Page 1 Do Not Duplicate Spectroradiometry Short Course Lecture 2: Source-based Radiometry Spectroradiometry Short Course
  • 2. 2004 - Lecture 2: Page 2 Do Not Duplicate Spectroradiometry Short Course Outline 1.Source Metrology 2.Blackbodies 3.Spectral Radiance Sources a) Tungsten Strip Lamps b) Integrating Spheres c) Diffusely Reflecting Surfaces 4.Spectral Irradiance Sources a) Lamps 5.Scale Realizations
  • 3. 2004 - Lecture 2: Page 3 Do Not Duplicate Spectroradiometry Short Course Traceability and measurement equation A1 A2 d Source Radiometer     d s C v ) ( ) (   ) (     s Source flux, radiance, or irradiance is known, radiometer response is not known. The source may be broadband or monochromatic (single wavelength). It may be a primary standard or a transfer standard.
  • 4. 2004 - Lecture 2: Page 4 Do Not Duplicate Spectroradiometry Short Course NIST spectral Irradiance calibrations Typical Irradiance Values 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 Wavelength [nm] Irradiance [W cm -3 ] FEL XEXON ISS w/fiber output D2 FOS-FEL FOS-D2 LE7
  • 5. 2004 - Lecture 2: Page 5 Do Not Duplicate Spectroradiometry Short Course NIST spectral radiance calibrations Typical Radiance Values 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 Wavelength [nm] Radiance [W cm -3 sr -1 ] RFL L460 L450-12U L450 L420 V40 LE7 2800 K BB 1100 K BB
  • 6. 2004 - Lecture 2: Page 6 Do Not Duplicate Spectroradiometry Short Course Radiance and Irradiance 1.Radiance Sources a) Overfill the field-of-view of the radiometer b) Extended source that is spatially uniform c) Radiance is independent of view angle d) Radiance is independent of distance to radiometer 2.Irradiance Sources a) Underfill the field-of-view of the radiometer b) Approximate a point source (follows 1/d2 law) c) Uniform irradiance at the entrance pupil of the radiometer
  • 7. 2004 - Lecture 2: Page 7 Do Not Duplicate Spectroradiometry Short Course The Right Source for You 1.Describe the Source you want to Measure a) spectral shape, size and angular extent, magnitude, polarization, stability 2.Choose the Standard Source a) as similar to the unknown source as possible b) practical considerations apply 3.If Mismatches occur a) thorough instrument characterization is required 4.Define the Acceptable Uncertainty!
  • 8. 2004 - Lecture 2: Page 8 Do Not Duplicate Spectroradiometry Short Course Blackbody Sources Cavity temperature, T [K] In an enclosed cavity, where the walls are in thermal equilibrium with the radiation field inside the cavity, the radiation • depends ONLY on the cavity temperature (T), and • not on the shape, surface structure, material, etc. of the cavity. • The radiant flux is a function of the wavelength []. All materials above absolute temperature (zero kelvin) emit thermal radiation.
  • 9. 2004 - Lecture 2: Page 9 Do Not Duplicate Spectroradiometry Short Course “Ideal” Blackbody Sources Enclosed isothermal cavity with a small hole for observation of the radiant flux The effect of the hole is truly negligible so that the radiation field and the cavity walls remain in complete thermal equilibrium (the cavity remains isothermal). The cavity absorbs all incident radiation, and the emitted spectral radiance is independent of direction. No surface can emit more thermal radiation than a blackbody at that temperature. Lb() = spectral radiance of ideal blackbody Ideal blackbody is difficult to engineer, but we can still calculate this ideal situation: Lb() is known as a function of blackbody temperature—this is Planck’s Law. Natural Examples: A large underground cavern Deep inside a stellar atmosphere
  • 10. 2004 - Lecture 2: Page 10 Do Not Duplicate Spectroradiometry Short Course “Practical” Blackbody Sources An enclosed cavity with a small hole for observation of the radiant flux The effect of the hole is small so that the radiation field and the cavity walls remain in approximate thermal equilibrium. L () = spectral radiance of real blackbody ) ( ) ( ) ( b     L L  Concept of Emittance (emissivity) (): Ratio of what you have to the ideal situation. Depends on cavity isothermality, cavity design, surface emittance (which may depend on temperature), temperature of surrounds, wavelength, direction, and angular acceptance Graybody: () = 
  • 11. 2004 - Lecture 2: Page 11 Do Not Duplicate Spectroradiometry Short Course Planck’s Law     1 / exp 1 ) ( 2 5 2 1L b   T n c n c L    radiation of wavelength constant radiation second air) for 1 ( medium of refraction of index ) ( radiance spectral for constant radiation first 2 1L        c n c Ideal Blackbody Non ideal Blackbody: L() = Lb() () Note nonlinear relationship between Spectral Radiance and Blackbody Temperature c1L = 1.19 x 108 [W m4 m-2 sr-1] c2 = 14 388 [m K]
  • 12. 2004 - Lecture 2: Page 12 Do Not Duplicate Spectroradiometry Short Course Spectral Distribution, Lb() Wavelength [m] 0.1 1 10 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 2800 o C 1064.18 o C 232 o C Spectral radiance [W m -2 sr -1 m -1 ]     1 / exp 1 ) ( 2 5 1L b   T c c L    T c3 max       T c c L    / exp ) ( 2 5 1L b   Wien Approximation: c3 = 2898 [m K] (1337 K) (505 K) (3073 K)
  • 13. 2004 - Lecture 2: Page 13 Do Not Duplicate Spectroradiometry Short Course Stefan-Boltzmann Law • Total exitance M: sum L() over all directions (into the hemisphere above the opening) and sum L() over all the electromagnetic spectrum (all wavelengths) • For an ideal blackbody, the spectral radiance lambertian • With ()   and n()  n, the sums yield •  = Stefan-Boltzmann constant  = 5.670 400 x 10-8 [W m-2 K-4] ) 1 with ( 4 4 2    n T T n M    
  • 14. 2004 - Lecture 2: Page 14 Do Not Duplicate Spectroradiometry Short Course Values of Constants • c1L = 1.191 042 722(93) x 108 [W m4 m-2 sr-1] • c2 = 14 387.752(25) [m K] • c3 = 2897.768 6(51) [m K] •  = 5.670 400(40) x 10-8 [W m-2 K-4] Gold-point Blackbody CODATA Internationally recognized values of constants (http://physics.nist.gov) 300 400 500 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.44 Signal [V] Time [min]
  • 15. 2004 - Lecture 2: Page 15 Do Not Duplicate Spectroradiometry Short Course Example—peak emission 1. What is the wavelength for which the spectral radiance of an ideal blackbody at 22 C is a maximum? a. Convert to kelvin: 22 + 273.15 = 295.15 K b. Rule: max = c3/T, so max =2898/295 = 9.82 m c. Application: The room is radiating in the 8 m to 14 m region
  • 16. 2004 - Lecture 2: Page 16 Do Not Duplicate Spectroradiometry Short Course Problems with Blackbodies 1.Temperatures above 3000 K are very difficult to achieve 2.Expensive to produce accurate systems (testing and modeling) 3.Not very transportable 4.Slow time constants
  • 17. 2004 - Lecture 2: Page 17 Do Not Duplicate Spectroradiometry Short Course Blackbody Alternatives 1.Lamps, arc sources (many types), heated refractories, light emitting diodes, lasers, synchrotron radiation 2.Examples: a) tungsten filament strip lamps b) tungsten quartz-halogen lamps c) deuterium (D2) gas discharge lamps d) xenon arc lamps e) Nernst glower and Globar
  • 18. 2004 - Lecture 2: Page 18 Do Not Duplicate Spectroradiometry Short Course Tungsten strip lamp features 18 • Spectral Radiance or Radiance Temperature standards • Vacuum or Gas-filled • Quartz or glass windows • Good stability (especially for the vacuum type) • Small target area (0.6 mm wide by 0.8 mm tall) • Careful alignment procedures required • Calibrated by comparison to a blackbody or another strip lamp at 0.654 m • Suited for Devices Under Test with small field-of-views
  • 19. 2004 - Lecture 2: Page 19 Do Not Duplicate Spectroradiometry Short Course Emittance of Tungsten 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 250 350 450 550 650 750 850 Wavelength [nm] Emissivity 1600 K 2400 K ) ln( 1 1 2    c T T   =1510 K at 1600 K and 660 nm Spectral and temperature dependence of tungsten. Radiance Temperature
  • 20. 2004 - Lecture 2: Page 20 Do Not Duplicate Spectroradiometry Short Course Tungsten strip lamp output Gas-filled Lamps (to suppress tungsten evaporation) 0 5000 10000 15000 20000 25000 200 600 1000 1400 1800 2200 Wavelength [nm] Spec. Rad. [uW/cm2/sr/nm] 40.4 A For Spectral Radiance 10 15 20 25 30 35 40 800 1200 1600 2000 2400 Radiance Temp. [deg C] Lamp Current [A] 655.3 nm For Radiance Temperature
  • 21. 2004 - Lecture 2: Page 21 Do Not Duplicate Spectroradiometry Short Course Comparison of blackbodies and tungsten strip lamps 0 500 1000 1500 2000 2500 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 Radiance ( W / cm 3 / sr ) Wavelength ( nm )
  • 22. 2004 - Lecture 2: Page 22 Do Not Duplicate Spectroradiometry Short Course Integrating Spheres 1. Features: a) Spherical geometry b) Low absorbance c) Diffuse reflectance 2. Result a) Flux “averager” 3. Applications a) Radiance source (add lamp, laser, LED, etc) b) Irradiance collector c) Internal or external sources and detectors
  • 23. 2004 - Lecture 2: Page 23 Do Not Duplicate Spectroradiometry Short Course Sphere Performance 1.Flux transfer equations yield 2.Baffles to shield direct view of lamps 3.Integrated monitor detectors to record performance 4.Stable power supplies and reflectance of interior wall     f A L     1 ) ( 1 ) ( ) ( ) (        A f   areas port
  • 24. 2004 - Lecture 2: Page 24 Do Not Duplicate Spectroradiometry Short Course Reflectance and Throughput 0 500 1000 1500 2000 2500 0.75 0.80 0.85 0.90 0.95 1.00 0 5 10 15 20 25 30 Reflectance Wavelength [nm] () (Barium Sulfate) Throughput ()/(1-0.98())
  • 25. 2004 - Lecture 2: Page 25 Do Not Duplicate Spectroradiometry Short Course Sphere Source Protocols 1.Geometry for uniform illumination a) Lamps baffle 2.Document operation a) Lamp current, lamp voltage drop, monitor detector signals, Lamp operating hours 3.Keep coating clean 4.Recalibrate 5.Map spatial uniformity and dependence on view angle
  • 26. 2004 - Lecture 2: Page 26 Do Not Duplicate Spectroradiometry Short Course Radiance of Integrating Spheres 0 500 1000 1500 2000 2500 0 10 20 30 40 50 Spectralon (TM) Barium Sulfate Earth Systems Spectral Radiance [  W / (cm 2 sr nm)] Wavelength [nm]
  • 27. 2004 - Lecture 2: Page 27 Do Not Duplicate Spectroradiometry Short Course Temporal changes in the sphere output 400 500 600 700 800 900 -1.0 -0.5 0.0 0.5 1.0 NIST UA 3 Lamp Config. 18 June 1997 Percent Difference ( Begin / End Runs ) Wavelength ( nm ) 14:22:07 15:22:07 16:22:07 17:22:07 18:22:07 4.60E-006 4.62E-006 4.64E-006 4.66E-006 4.68E-006 4.70E-006 4.72E-006 4.74E-006 4.76E-006 4.78E-006 4.80E-006 Photodiode Voltage Time ( hr: min: sec ) Photometer measurements Changes at 400 nm are more pronounced
  • 28. 2004 - Lecture 2: Page 28 Do Not Duplicate Spectroradiometry Short Course “Lamp-Plaque” Method 1. Radiance standard a) substitute for strip lamp, blackbody, or integrating sphere b) Combines irradiance standard and reflectance standard 2. Measurement Equation a)  = offset from front post and radiometric center b) R =  BRDF ) 50 , ( ) ( ) 50 ( ) , 45 , 0 ( ) , ( 2 2       E d R d L     
  • 29. 2004 - Lecture 2: Page 29 Do Not Duplicate Spectroradiometry Short Course Halogen Filament Lamps •Illumination, heating, & irradiance standards •Wide commercial selection •Select on features: •lifetime •color temperature •lumen efficacy •current or voltage •built in lens •base configuration •Maximum wavelength range: 250 nm to 2.6 m
  • 30. 2004 - Lecture 2: Page 30 Do Not Duplicate Spectroradiometry Short Course FEL Lamp Irradiance Standards • 1000 W output • Coiled-coil structure to increase emittance • FEL type (a model number) • Modified by addition of bipost base • Calibrated by comparison to a high temperature blackbody • 50 cm from front of post • 1 cm2 collecting area • Selected and screened for undesirable features
  • 31. 2004 - Lecture 2: Page 31 Do Not Duplicate Spectroradiometry Short Course FEL alignment system
  • 32. 2004 - Lecture 2: Page 32 Do Not Duplicate Spectroradiometry Short Course FEL Lamp Screening 1. Inspect, test, anneal, age, pot into base 2. Spectral line screening (currently 0 % pass rate) a) 250 nm to 400 nm in 0.1 nm steps with 0.04 nm bandpass (emission and absorption lines) 3. Temporal stability (90 % pass rate) a) <0.5 % before and after 24 h continuous operation at four wavelengths in UV to near infrared 4. Geometric (95% pass rate) a) < 1% in  1 at 655 nm
  • 33. 2004 - Lecture 2: Page 33 Do Not Duplicate Spectroradiometry Short Course FEL Output 0 5 10 15 20 25 30 200 600 1000 1400 1800 2200 2600 Wavelength [nm] Spectral Irrad. [uW/cm2/nm] 50 cm Calibration Data, FEL at 8.2 A 240 260 280 300 320 340 360 380 400 420 0 1 2 3 4 5 Absorption Lines Emission Lines Signal [V] Wavelength [nm] Undesirable Lines a. 256.97 nm (256.80 nm) b. 257.67 nm (257.51 nm) c. 308.48 nm (308.22 nm) d. 309.47 nm (309.27 nm) e. 394.57 nm (394.40 nm) f. 396.27 nm (396.15 nm)
  • 34. 2004 - Lecture 2: Page 34 Do Not Duplicate Spectroradiometry Short Course Dependence on horizontal and vertical angles -8 -6 -4 -2 0 2 4 6 8 6 4 2 0 -2 -4 -6 Percent different from center Horizontal Angle [  ] Vertical Angle [  ] -7.5 -6.5 -5.5 -4.5 -3.5 -2.5 -1.5 -0.5 0.5 1.0   50 cm
  • 35. 2004 - Lecture 2: Page 35 Do Not Duplicate Spectroradiometry Short Course Protocols for FEL Standard Lamps 1. Orientation a) 50 cm from front of posts, entrance pupil diameter of 1 cm2, use special alignment jig for FELs 2. Electrical a) maintain polarity, constant current, log voltage drop and burning hours b) Similar sensitivity to error in current as strip lamps 3. Operational a) 30 min warm-up; recalibrate every 50 h b) transfer to user working standards c) don’t touch the envelope; don’t enclose the lamp during operation; baffle properly
  • 36. 2004 - Lecture 2: Page 36 Do Not Duplicate Spectroradiometry Short Course Power Supply Feedback Loop 16 bit DA Converter Lamp 0.01  Shunt Resistor Computer Power Supply Digital Voltmeter Voltage to current conversion in the power supply 8.2 A  1 mA stabilization ~ 5 s
  • 37. 2004 - Lecture 2: Page 37 Do Not Duplicate Spectroradiometry Short Course Vertical Side Horizontal Optic Axis Radiometer Aperture Lamp Orientations
  • 38. 2004 - Lecture 2: Page 38 Do Not Duplicate Spectroradiometry Short Course Frame, Lamp, and Radiometer Lamp Frame Radiometer (Shutter) At NIST Orientation dependence of the FEL 300 400 500 600 700 800 900 1000 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 Ratio to Initial Vertical Signals Wavelength [nm] Side Horizontal Vertical
  • 39. 2004 - Lecture 2: Page 39 Do Not Duplicate Spectroradiometry Short Course D2 Irradiance Standards •30 W output • Stable relative spectral irradiance distribution • 200 nm to 350 nm • Modified by addition of bipost base (same as FEL) • Calibrated by a) relative distribution from wall stabilized hydrogen arc and b) FEL at 250 nm • 50 cm from front of post • 1 cm2 collecting area • Selected and screened for undesirable features
  • 40. 2004 - Lecture 2: Page 40 Do Not Duplicate Spectroradiometry Short Course Deuterium, Xe and FEL 200 300 400 500 600 700 800 9001000 1000 0.01 0.1 1 10 100 1000 Spectral Irradiance [ W / cm 3 ] Wavelength [ nm ] FEL 1000 W Xe Deuterium lamp
  • 41. 2004 - Lecture 2: Page 41 Do Not Duplicate Spectroradiometry Short Course Synchrotron Ultraviolet Radiation Facility (SURF) SURF III BL 2 Beamline for instrument calibrations BL 3 “Whitelight” beamline for deuterium lamp calibrations BL 4 “UV” beamline for detector calibrations BL 3 BL 4 BL 2 Source spectral radiance calculated according to the Schwinger equation
  • 42. 2004 - Lecture 2: Page 42 Do Not Duplicate Spectroradiometry Short Course Spectral Output of Synchrotron Radiation 10 MeV < E0 < 380 MeV 1 10 100 1000 10000 100000 Wavelength  (nm) 0 1014 2*1014 3*1014 4*1014 5*1014 6*1014 Flux (Photons / s) at  = 4°, 100 mA, 1% b.w. 380 MeV, c = 8.5 nm 331 MeV, c = 13 nm 284 MeV, c = 20 nm 234 MeV, c = 36 nm 183 MeV, c = 76 nm 131 MeV, c = 210 nm 78 MeV, c = 976 nm 37 MeV, c = 9533 nm Blackbody 3000 K DUV Visible EUV
  • 43. 2004 - Lecture 2: Page 43 Do Not Duplicate Spectroradiometry Short Course NIST Radiance Scale Realization 1. Gold point blackbody, T = 1337.33 K 2. Lamp 1 at 1337.33 K a) transfer at 655 nm 3. Lamp 2 at 1530 K a) transfer at 655 nm, “whiter” 4. Variable temperature blackbody 1610.7 K to 2654.2 K a) transfer at 655 nm, use from ~ 300 nm to 2400 nm b) small aperture, high emittance Expanded uncertainties 0.5% to 1%, depending on wavelength
  • 44. 2004 - Lecture 2: Page 44 Do Not Duplicate Spectroradiometry Short Course View of the VTBB VTBB = 0.9987 2 mm diameter opening of the blackbody
  • 45. 2004 - Lecture 2: Page 45 Do Not Duplicate Spectroradiometry Short Course Irradiance Scale Flow Diagram High Accuracy Cryogenic Radiometer & Lasers Aperture Area Measurement Facility Detector Transfer Standard (Trap Radiometer) Irradiance Filter Radiometers High Temperature Blackbody Working Standard Spectral Irradiance Lamps
  • 46. 2004 - Lecture 2: Page 46 Do Not Duplicate Spectroradiometry Short Course NIST Irradiance Scale Realization Detector- based Radiometry
  • 47. 2004 - Lecture 2: Page 47 Do Not Duplicate Spectroradiometry Short Course Irradiance Realization 1000 W Irradiance Standard Lamp Precision Aperture High Temperature Blackbody Filter Radiometer Spectro- radiometer
  • 48. 2004 - Lecture 2: Page 48 Do Not Duplicate Spectroradiometry Short Course Reduction in E() Uncertainties 0 500 1000 1500 2000 2500 0 1 2 3 4 5 1990 Scale 2000 Scale 2000 Scale (issued lamps) Expanded Uncertainties ( k = 2 ) [ % ] Wavelength [ nm ]
  • 49. 2004 - Lecture 2: Page 49 Do Not Duplicate Spectroradiometry Short Course Summary 1.Sources are required to calibrate radiometers 2.Sources must be a) selected for the application b) characterized for performance c) calibrated – made traceable to SI units 3.For best performance a) incorporate monitor detectors b) observe all protocols c) intercompare with others
  • 50. 2004 - Lecture 2: Page 50 Do Not Duplicate Spectroradiometry Short Course References 1. C.E. Gibson, B.K. Tsai, and A.C. Parr, Radiance Temperature Calibrations, NIST Special Publication 250-43, Washington, DC, (1998) 56 pp plus appendices. 2. D.G. Goebel, Generalized integrating-sphere theory, Appl. Optics, 6, (1967) 125-128. 3. J.H. Walker, R.D. Saunders, A.T. Hattenburg, Spectral Radiance Calibrations, NBS Special Publication 250-1, Washington, DC, (1987) 26 pp plus appendices. 4. J.H. Walker, R.D. Saunders, J.K. Jackson, D.A. McSparron, Spectral Irradiance Calibrations, NBS Special Publication 250-20, Washington, DC, (1987) 37 pp plus appendices. 5. G.J. Zissis, Ed., Sources of Radiation, The Infrared and Electro-Optical Systems Handbook, Vol. 1, ERIM (Ann Arbor, MI) and SPIE(Bellingham, WA) co-publishers, (1993) 373 pp.