Support vector machines are a type of supervised machine learning algorithm used for classification and regression analysis. They work by mapping data to high-dimensional feature spaces to find optimal linear separations between classes. Key advantages are effectiveness in high dimensions, memory efficiency using support vectors, and versatility through kernel functions. Hyperparameters like kernel type, gamma, and C must be tuned for best performance. Common kernels include linear, polynomial, and radial basis function kernels.
Related topics: