SlideShare a Scribd company logo
Introduction to Support Vector Machine

                       Lucas Xu


                September 4, 2012




Lucas Xu    Introduction to Support Vector Machine   September 4, 2012   1 / 20
1   Classifier


2   Hyper-Plane


3   Convex Optimization


4   Kernel


5   Application




        Lucas Xu      Introduction to Support Vector Machine   September 4, 2012   2 / 20
Classifier




   Attributes and Class Labels
   Training Data
    S = (x(1) , y (1) ), · · · , (x(m) , y (m) ) ,    x(i) ∈ Rd , y (i) ∈ {−1, 1}




      Lucas Xu             Introduction to Support Vector Machine   September 4, 2012   3 / 20
Classifier



   Umeng Gender Classification Data
                user app1 app2         ···     appd gender
                user1 1    0           ···      0    male
                user2 0    1           ···      1   f emale
                  .
                  .    .
                       .    .
                            .          ..        .
                                                 .     .
                                                       .
                  .    .    .             .      .     .
                usern 1    1           ···      1   f emale

   Each App belongs to one category, ≈ 20 categories.
   Categories are mutual exclusive.




     Lucas Xu        Introduction to Support Vector Machine   September 4, 2012   4 / 20
Classifier



    Umeng Gender Classification Data
        S = (x(1) , y (1) ), · · · , (x(m) , y (m) ) ,    x(i) ∈ Rd , y (i) ∈ {−1, 1}


  (i)
 xk ∈ {0, 1},         0 means not installed, 1 means installed on the device
   1 ≤ k ≤ d, d            30, 000, about 30,000 apps
                      y (i) ∈ {male, f emale}




          Lucas Xu             Introduction to Support Vector Machine   September 4, 2012   5 / 20
Hyper-Plane




                           Figure : Hyper Plane


The hyper-plane: wT x + b = 0
Classification function: hw,b (x) = g(wT x + b)

                                   1         if z ≥ 0
                      g(z) =
                                   −1        otherwise
       Lucas Xu        Introduction to Support Vector Machine   September 4, 2012   6 / 20
Hyper-Plane



Functional Margin:
                            γ (i) = y (i) (wT x(i) + b)
                            ˆ
Scaling: set constraint normalization condition : w = 1
Geometric Margin:

                                       w      T            b
                     γ (i) = y (i)                x(i) +
                                       w                   w

γ (i) should be a large positive number to increase the prediction
confidence.




       Lucas Xu          Introduction to Support Vector Machine   September 4, 2012   7 / 20
Hyper-Plane




Definition
The geometry margin of (w, b) with respect to training dataset S:

                             γ = min γ (i)
                                   i=1,...,m




       Lucas Xu       Introduction to Support Vector Machine   September 4, 2012   8 / 20
Hyper-Plane
The optimal margin classifier: (Intuitive)
find a decision boundary that maximizes the margin.

             maxγ,w,b    γ
                  s.t. y (i) (wT x(i) + b) ≥ γ,          i = 1, ..., m
                           w = 1.




      Lucas Xu          Introduction to Support Vector Machine   September 4, 2012   9 / 20
Hyper-Plane
Normalization Constraint: let function margin γ = 1
                                              ˆ

                                          ⇓

                         1
             maxγ,w,b
                         w
                    s.t. y (i) (wT x(i) + b) ≥ γ,          i = 1, ..., m


                                          ⇓

                         1
                 maxw,b      w 2
                         2
                    s.t. y (i) (wT x(i) + b) ≥ 1,         i = 1, ..., m


      Lucas Xu            Introduction to Support Vector Machine   September 4, 2012   10 / 20
Hyper-Plane




   Convex function




     Lucas Xu        Introduction to Support Vector Machine   September 4, 2012   11 / 20
Hyper-Plane




   Convex function
   Convex set




     Lucas Xu        Introduction to Support Vector Machine   September 4, 2012   11 / 20
Hyper-Plane




   Convex function
   Convex set
   So-called Quadratic Programming. Their are many software
   packages to solve the problem.




     Lucas Xu        Introduction to Support Vector Machine   September 4, 2012   11 / 20
Hyper-Plane




   Convex function
   Convex set
   So-called Quadratic Programming. Their are many software
   packages to solve the problem.
   Basic Ideas for Support Vector Machine DONE !




     Lucas Xu        Introduction to Support Vector Machine   September 4, 2012   11 / 20
Hyper-Plane




   Convex function
   Convex set
   So-called Quadratic Programming. Their are many software
   packages to solve the problem.
   Basic Ideas for Support Vector Machine DONE !
   More efficient solution ?




     Lucas Xu        Introduction to Support Vector Machine   September 4, 2012   11 / 20
Convex Optimization




Primal Problem:
                         1
                 maxw,b      w 2
                         2
                    s.t. y (i) (wT x(i) + b) ≥ 1,         i = 1, ..., m




      Lucas Xu            Introduction to Support Vector Machine   September 4, 2012   12 / 20
Convex Optimization
Lagrangian for the original problem:
                                                    m
                         1                 2
     min max L(w, b, α) = w                    −         αi y (i) (wT x(i) + b) − 1
     w,b α:αi ≥0         2
                                                   i=1

                                           ⇓
Under K.K.T condition, transforms to its Dual problem:
                               m                m
                                           1
          max W (α) =               αi −               y (i) y (j) αi αj x(i) , x(j)
            α                              2
                              i=1              i,j=1

           s.t. αi ≥ 0,        i = 1, ..., m
                  m
                        αi y (i) = 0
                  i=1



       Lucas Xu            Introduction to Support Vector Machine      September 4, 2012   13 / 20
Convex Optimization
Solutions:
                   m
              ∗
             w =         αi y (i) x(i)
                   i=1
                      maxi:y(i) =−1 w∗T x(i) + mini:y(i) =1 w∗T x(i)
             b∗ = −
                                                    2

Predict:

                         g(x) = wT x + b
                                         m                   T
                               =             αi y (i) x(i)       x+b
                                     i=1
                                    m
                               =         αi y (i) x(i) , x + b
                                   i=1

       Lucas Xu            Introduction to Support Vector Machine      September 4, 2012   14 / 20
Kernel

   For most of αi ,    αi = 0.
   For those αi > 0, (x(i) , y (i) ) are called support vectors
   Only needs to compute x(i) , x
                                        (i)   (i)      (i)
   if we can map feature space (x1 , x2 , ...xk ) to another high
                      (i) (i)     (i)
   dimension space (z1 , z2 , ...zl ), z = φ(x)
   i.e. φ(x(i) , φ(x)
   we can easily compute z (i) , z = K(φ( x(i) , x ))
   Use a slightly different notation:

                            K(x, y) = φ(x), φ(y)


   Intuitive Explanation: Measure of Similarities

     Lucas Xu          Introduction to Support Vector Machine   September 4, 2012   15 / 20
Kernel




Definition
Mercer Kernel: K is positive semi-definite




       Lucas Xu       Introduction to Support Vector Machine   September 4, 2012   16 / 20
Kernel




   Primitive x, y




     Lucas Xu       Introduction to Support Vector Machine   September 4, 2012   17 / 20
Kernel




   Primitive x, y
   Polynomial ( x, y + 1)d




     Lucas Xu       Introduction to Support Vector Machine   September 4, 2012   17 / 20
Kernel




   Primitive x, y
   Polynomial ( x, y + 1)d
   RBF exp(−γ||x − y||2 )




     Lucas Xu       Introduction to Support Vector Machine   September 4, 2012   17 / 20
Kernel




   Primitive x, y
   Polynomial ( x, y + 1)d
   RBF exp(−γ||x − y||2 )
   Sigmoid tanh(κ x, y + c).




     Lucas Xu       Introduction to Support Vector Machine   September 4, 2012   17 / 20
Kernel




   Primitive x, y
   Polynomial ( x, y + 1)d
   RBF exp(−γ||x − y||2 )


   String




     Lucas Xu       Introduction to Support Vector Machine   September 4, 2012   17 / 20
Kernel




   Primitive x, y
   Polynomial ( x, y + 1)d
   RBF exp(−γ||x − y||2 )


   String
   Tree




     Lucas Xu       Introduction to Support Vector Machine   September 4, 2012   17 / 20
Apply to Umeng Gender Classification
   Problem Description
   Classify the gender of a user based on apps (s)he installed and
   categories of apps.
   Kernel Design
                                           m
                          K(x, y) =              φ(xi , yj )
                                         i,j=0




                   
                    (1 + w)xi yj        if i = j
     φ(xi , yj ) =   xi yj               if i = j but the same category
                     0                   if not the same category
                   

   w ≥ 0 , the extra weight if two users have installed the same app.
   default to 1.0
   Experiment Result
     Lucas Xu         Introduction to Support Vector Machine   September 4, 2012   18 / 20
Apply to Umeng Gender Classification
                                         
                                       x1
                                      x2 
                                      
                                      . 
                                      . 
                                        .
                                      xm
                                         ⇓
                                         
                                   w · x1
                                  w · x2 
                                 
                                  . 
                                          
                                  . 
                                     . 
                                 
                                 w · xm 
                                         
                                  c1 
                                         
                                  c2 
                                         
                                  . 
                                  . . 
                                         c20
ci counts the number of apps belonging to category i
       Lucas Xu       Introduction to Support Vector Machine   September 4, 2012   19 / 20
references


    Book: Christopher Bishop – PRML Chapter 7: Section 7.1
    Slides: Andrew Moore – Support Vector Machines
    Video: Bernhard Scholkopf – Kernel Methods
    Video: Liva Ralaivola – Introduction to Kernel Methods
    Video: Colin Campbell – Introduction to Support Vector Machines
    Video: Alex Smola – Kernel Methods and Support Vector
    Machines
    Video: Partha Niyogi – Introduction to Kernel Methods
    Many more videos on kernel-related topics here
http://www.seas.harvard.edu/courses/cs281/



      Lucas Xu       Introduction to Support Vector Machine   September 4, 2012   20 / 20

More Related Content

PPTX
Image Classification And Support Vector Machine
PDF
2013-1 Machine Learning Lecture 05 - Andrew Moore - Support Vector Machines
PPTX
Support Vector Machine
PPTX
Support vector machines
PPT
Linear Discrimination Centering on Support Vector Machines
PDF
Vc dimension in Machine Learning
PPT
Support Vector Machines
PDF
Image Classification And Support Vector Machine
2013-1 Machine Learning Lecture 05 - Andrew Moore - Support Vector Machines
Support Vector Machine
Support vector machines
Linear Discrimination Centering on Support Vector Machines
Vc dimension in Machine Learning
Support Vector Machines

What's hot (19)

PDF
How to use SVM for data classification
PPT
Support Vector machine
PPTX
Svm vs ls svm
PPT
PDF
Support Vector Machines ( SVM )
PDF
Support Vector Machines for Classification
DOC
SVM Tutorial
PDF
L1 intro2 supervised_learning
PPTX
Support vector machine
PDF
Support Vector Machines (SVM)
 
PPTX
Support Vector Machines- SVM
PDF
A BA-based algorithm for parameter optimization of support vector machine
PPTX
Support vector machine
PPT
Svm and kernel machines
PDF
23 Machine Learning Feature Generation
PPTX
Binary Class and Multi Class Strategies for Machine Learning
PDF
11 Machine Learning Important Issues in Machine Learning
PDF
26 Machine Learning Unsupervised Fuzzy C-Means
PPTX
Support vector machines (svm)
How to use SVM for data classification
Support Vector machine
Svm vs ls svm
Support Vector Machines ( SVM )
Support Vector Machines for Classification
SVM Tutorial
L1 intro2 supervised_learning
Support vector machine
Support Vector Machines (SVM)
 
Support Vector Machines- SVM
A BA-based algorithm for parameter optimization of support vector machine
Support vector machine
Svm and kernel machines
23 Machine Learning Feature Generation
Binary Class and Multi Class Strategies for Machine Learning
11 Machine Learning Important Issues in Machine Learning
26 Machine Learning Unsupervised Fuzzy C-Means
Support vector machines (svm)
Ad

Viewers also liked (10)

PDF
Lecture12 - SVM
PDF
Data Science - Part XVI - Fourier Analysis
PDF
Data Science - Part VII - Cluster Analysis
PDF
Data Science - Part VIII - Artifical Neural Network
PDF
Data Science - Part XIV - Genetic Algorithms
PDF
Data Science - Part X - Time Series Forecasting
PDF
Data Science - Part XIII - Hidden Markov Models
PDF
Data Science - Part IX - Support Vector Machine
PDF
Data Science - Part XV - MARS, Logistic Regression, & Survival Analysis
PDF
Data Science - Part XVII - Deep Learning & Image Processing
Lecture12 - SVM
Data Science - Part XVI - Fourier Analysis
Data Science - Part VII - Cluster Analysis
Data Science - Part VIII - Artifical Neural Network
Data Science - Part XIV - Genetic Algorithms
Data Science - Part X - Time Series Forecasting
Data Science - Part XIII - Hidden Markov Models
Data Science - Part IX - Support Vector Machine
Data Science - Part XV - MARS, Logistic Regression, & Survival Analysis
Data Science - Part XVII - Deep Learning & Image Processing
Ad

Similar to Support Vector Machine (20)

PDF
A Simple Review on SVM
PDF
Lecture4 xing
PPT
lecture9-support vector machines algorithms_ML-1.ppt
PDF
05 history of cv a machine learning (theory) perspective on computer vision
PDF
Epsrcws08 campbell isvm_01
PPT
Support Vector machine in Machine learning course
PDF
lec5_annotated.pdf ml csci 567 vatsal sharan
PDF
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
PDF
2012 mdsp pr13 support vector machine
PPT
linear SVM.ppt
PDF
Gradient Descent
PDF
CS571: Gradient Descent
PDF
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6
PDF
cswiercz-general-presentation
PPT
SVM (2).ppt
PDF
Linear Classifiers
PDF
Lagrange
PDF
Prévision de consommation électrique avec adaptive GAM
PPT
lecture14-SVMs (1).ppt
PDF
Lecture 03: Machine Learning for Language Technology - Linear Classifiers
A Simple Review on SVM
Lecture4 xing
lecture9-support vector machines algorithms_ML-1.ppt
05 history of cv a machine learning (theory) perspective on computer vision
Epsrcws08 campbell isvm_01
Support Vector machine in Machine learning course
lec5_annotated.pdf ml csci 567 vatsal sharan
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
2012 mdsp pr13 support vector machine
linear SVM.ppt
Gradient Descent
CS571: Gradient Descent
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6
cswiercz-general-presentation
SVM (2).ppt
Linear Classifiers
Lagrange
Prévision de consommation électrique avec adaptive GAM
lecture14-SVMs (1).ppt
Lecture 03: Machine Learning for Language Technology - Linear Classifiers

Recently uploaded (20)

PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Empathic Computing: Creating Shared Understanding
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Encapsulation theory and applications.pdf
PDF
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
PPT
Teaching material agriculture food technology
PPTX
Cloud computing and distributed systems.
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Empathic Computing: Creating Shared Understanding
Network Security Unit 5.pdf for BCA BBA.
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Spectral efficient network and resource selection model in 5G networks
Encapsulation theory and applications.pdf
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
Teaching material agriculture food technology
Cloud computing and distributed systems.
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Per capita expenditure prediction using model stacking based on satellite ima...
The Rise and Fall of 3GPP – Time for a Sabbatical?
Unlocking AI with Model Context Protocol (MCP)
Review of recent advances in non-invasive hemoglobin estimation
Bridging biosciences and deep learning for revolutionary discoveries: a compr...

Support Vector Machine

  • 1. Introduction to Support Vector Machine Lucas Xu September 4, 2012 Lucas Xu Introduction to Support Vector Machine September 4, 2012 1 / 20
  • 2. 1 Classifier 2 Hyper-Plane 3 Convex Optimization 4 Kernel 5 Application Lucas Xu Introduction to Support Vector Machine September 4, 2012 2 / 20
  • 3. Classifier Attributes and Class Labels Training Data S = (x(1) , y (1) ), · · · , (x(m) , y (m) ) , x(i) ∈ Rd , y (i) ∈ {−1, 1} Lucas Xu Introduction to Support Vector Machine September 4, 2012 3 / 20
  • 4. Classifier Umeng Gender Classification Data user app1 app2 ··· appd gender user1 1 0 ··· 0 male user2 0 1 ··· 1 f emale . . . . . . .. . . . . . . . . . . usern 1 1 ··· 1 f emale Each App belongs to one category, ≈ 20 categories. Categories are mutual exclusive. Lucas Xu Introduction to Support Vector Machine September 4, 2012 4 / 20
  • 5. Classifier Umeng Gender Classification Data S = (x(1) , y (1) ), · · · , (x(m) , y (m) ) , x(i) ∈ Rd , y (i) ∈ {−1, 1} (i) xk ∈ {0, 1}, 0 means not installed, 1 means installed on the device 1 ≤ k ≤ d, d 30, 000, about 30,000 apps y (i) ∈ {male, f emale} Lucas Xu Introduction to Support Vector Machine September 4, 2012 5 / 20
  • 6. Hyper-Plane Figure : Hyper Plane The hyper-plane: wT x + b = 0 Classification function: hw,b (x) = g(wT x + b) 1 if z ≥ 0 g(z) = −1 otherwise Lucas Xu Introduction to Support Vector Machine September 4, 2012 6 / 20
  • 7. Hyper-Plane Functional Margin: γ (i) = y (i) (wT x(i) + b) ˆ Scaling: set constraint normalization condition : w = 1 Geometric Margin: w T b γ (i) = y (i) x(i) + w w γ (i) should be a large positive number to increase the prediction confidence. Lucas Xu Introduction to Support Vector Machine September 4, 2012 7 / 20
  • 8. Hyper-Plane Definition The geometry margin of (w, b) with respect to training dataset S: γ = min γ (i) i=1,...,m Lucas Xu Introduction to Support Vector Machine September 4, 2012 8 / 20
  • 9. Hyper-Plane The optimal margin classifier: (Intuitive) find a decision boundary that maximizes the margin. maxγ,w,b γ s.t. y (i) (wT x(i) + b) ≥ γ, i = 1, ..., m w = 1. Lucas Xu Introduction to Support Vector Machine September 4, 2012 9 / 20
  • 10. Hyper-Plane Normalization Constraint: let function margin γ = 1 ˆ ⇓ 1 maxγ,w,b w s.t. y (i) (wT x(i) + b) ≥ γ, i = 1, ..., m ⇓ 1 maxw,b w 2 2 s.t. y (i) (wT x(i) + b) ≥ 1, i = 1, ..., m Lucas Xu Introduction to Support Vector Machine September 4, 2012 10 / 20
  • 11. Hyper-Plane Convex function Lucas Xu Introduction to Support Vector Machine September 4, 2012 11 / 20
  • 12. Hyper-Plane Convex function Convex set Lucas Xu Introduction to Support Vector Machine September 4, 2012 11 / 20
  • 13. Hyper-Plane Convex function Convex set So-called Quadratic Programming. Their are many software packages to solve the problem. Lucas Xu Introduction to Support Vector Machine September 4, 2012 11 / 20
  • 14. Hyper-Plane Convex function Convex set So-called Quadratic Programming. Their are many software packages to solve the problem. Basic Ideas for Support Vector Machine DONE ! Lucas Xu Introduction to Support Vector Machine September 4, 2012 11 / 20
  • 15. Hyper-Plane Convex function Convex set So-called Quadratic Programming. Their are many software packages to solve the problem. Basic Ideas for Support Vector Machine DONE ! More efficient solution ? Lucas Xu Introduction to Support Vector Machine September 4, 2012 11 / 20
  • 16. Convex Optimization Primal Problem: 1 maxw,b w 2 2 s.t. y (i) (wT x(i) + b) ≥ 1, i = 1, ..., m Lucas Xu Introduction to Support Vector Machine September 4, 2012 12 / 20
  • 17. Convex Optimization Lagrangian for the original problem: m 1 2 min max L(w, b, α) = w − αi y (i) (wT x(i) + b) − 1 w,b α:αi ≥0 2 i=1 ⇓ Under K.K.T condition, transforms to its Dual problem: m m 1 max W (α) = αi − y (i) y (j) αi αj x(i) , x(j) α 2 i=1 i,j=1 s.t. αi ≥ 0, i = 1, ..., m m αi y (i) = 0 i=1 Lucas Xu Introduction to Support Vector Machine September 4, 2012 13 / 20
  • 18. Convex Optimization Solutions: m ∗ w = αi y (i) x(i) i=1 maxi:y(i) =−1 w∗T x(i) + mini:y(i) =1 w∗T x(i) b∗ = − 2 Predict: g(x) = wT x + b m T = αi y (i) x(i) x+b i=1 m = αi y (i) x(i) , x + b i=1 Lucas Xu Introduction to Support Vector Machine September 4, 2012 14 / 20
  • 19. Kernel For most of αi , αi = 0. For those αi > 0, (x(i) , y (i) ) are called support vectors Only needs to compute x(i) , x (i) (i) (i) if we can map feature space (x1 , x2 , ...xk ) to another high (i) (i) (i) dimension space (z1 , z2 , ...zl ), z = φ(x) i.e. φ(x(i) , φ(x) we can easily compute z (i) , z = K(φ( x(i) , x )) Use a slightly different notation: K(x, y) = φ(x), φ(y) Intuitive Explanation: Measure of Similarities Lucas Xu Introduction to Support Vector Machine September 4, 2012 15 / 20
  • 20. Kernel Definition Mercer Kernel: K is positive semi-definite Lucas Xu Introduction to Support Vector Machine September 4, 2012 16 / 20
  • 21. Kernel Primitive x, y Lucas Xu Introduction to Support Vector Machine September 4, 2012 17 / 20
  • 22. Kernel Primitive x, y Polynomial ( x, y + 1)d Lucas Xu Introduction to Support Vector Machine September 4, 2012 17 / 20
  • 23. Kernel Primitive x, y Polynomial ( x, y + 1)d RBF exp(−γ||x − y||2 ) Lucas Xu Introduction to Support Vector Machine September 4, 2012 17 / 20
  • 24. Kernel Primitive x, y Polynomial ( x, y + 1)d RBF exp(−γ||x − y||2 ) Sigmoid tanh(κ x, y + c). Lucas Xu Introduction to Support Vector Machine September 4, 2012 17 / 20
  • 25. Kernel Primitive x, y Polynomial ( x, y + 1)d RBF exp(−γ||x − y||2 ) String Lucas Xu Introduction to Support Vector Machine September 4, 2012 17 / 20
  • 26. Kernel Primitive x, y Polynomial ( x, y + 1)d RBF exp(−γ||x − y||2 ) String Tree Lucas Xu Introduction to Support Vector Machine September 4, 2012 17 / 20
  • 27. Apply to Umeng Gender Classification Problem Description Classify the gender of a user based on apps (s)he installed and categories of apps. Kernel Design m K(x, y) = φ(xi , yj ) i,j=0   (1 + w)xi yj if i = j φ(xi , yj ) = xi yj if i = j but the same category 0 if not the same category  w ≥ 0 , the extra weight if two users have installed the same app. default to 1.0 Experiment Result Lucas Xu Introduction to Support Vector Machine September 4, 2012 18 / 20
  • 28. Apply to Umeng Gender Classification   x1  x2     .   .  . xm ⇓   w · x1  w · x2    .    .  .   w · xm     c1     c2     .   . .  c20 ci counts the number of apps belonging to category i Lucas Xu Introduction to Support Vector Machine September 4, 2012 19 / 20
  • 29. references Book: Christopher Bishop – PRML Chapter 7: Section 7.1 Slides: Andrew Moore – Support Vector Machines Video: Bernhard Scholkopf – Kernel Methods Video: Liva Ralaivola – Introduction to Kernel Methods Video: Colin Campbell – Introduction to Support Vector Machines Video: Alex Smola – Kernel Methods and Support Vector Machines Video: Partha Niyogi – Introduction to Kernel Methods Many more videos on kernel-related topics here http://www.seas.harvard.edu/courses/cs281/ Lucas Xu Introduction to Support Vector Machine September 4, 2012 20 / 20