SlideShare a Scribd company logo
Scientific Review
ISSN(e): 2412-2599, ISSN(p): 2413-8835
Vol. 2, No. 8, pp: 90-99, 2016
URL: http://arpgweb.com/?ic=journal&journal=10&info=aims
90
Academic Research Publishing Group
The Study of the Wiener Processes Base on Haar Wavelet
Xuewen Xia College of Science, Hunan Institute of Engineering, Xiangtan,411104, Hunan Normal University, Changsha,
410082, China
1. Introduction
Wiener processes are a sort of importment stochastic processes. Wiener square processes is a class of useful
stochastic processes in practies, its study is very value.
We will take wavelet and use them in a series expansion of signal or function. Wavelet has its energy
concentrated in time to give a tool for the analysis of transient, nonstationary, or time-varying phenomena. It still has
the oscillating wavelike characteristic but also has the ability to allow simultaneous time and frequency analysis with
a flexible mathematical foundation. We take wavelet and use them in a series expansion of signals or functions much
the same way a Fourier series the wave or sinusoid to represent a signal or function. In order to use the idea of
multiresolution, we will start by defining the scaling function and then define the wavelet in terms of it.
With the rapid development of computerized scientific instruments comes a wide variety of interesting problems
for data analysis and signal processing. In fields ranging from Extragalactic Astronomy to Molecular Spectroscopy
to Medical Imaging to computer vision, One must recover a signal, curve, image, spectrum, or density from
incomplete, indirect, and noisy data .Wavelets have contributed to this already intensely developed and rapidly
advancing field .
Wavelet analysis consists of a versatile collection of tools for the analysis and manipulation of signals such as
sound and images as well as more general digital data sets ,such as speech, electrocardiograms ,images .Wavelet
analysis is a remarkable tool for analyzing function of one or several variables that appear in mathematics or in
signal and image processing .With hindsight the wavelet transform can be viewed as diverse as mathematics ,physics
and electrical engineering .The basic idea is always to use a family of building blocks to represent the object at hand
in an efficient and insightful way, the building blocks themselves come in different sizes, and are suitable for
describing features with a resolution commensurate with their size .
There are two important aspects to wavelets, which we shall call “mathematical” and “algorithmical”
.Numerical algorithms using wavelet bases are similar to other transform methods in that vectors and operators are
expanded into a basis and the computations take place in the new system of coordinates .As with all transform
methods such as approach hopes to achieve that the computation is faster in the new system of coordinates than in
the original domain, wavelet based algorithms exhibit a number of new and important properties .Recently some
persons have studied wavelet problems of stochastic process or stochastic system ([1-18]).
2. Basic Definitions
Definition 1
Let
2
( ) ( ), 0X t W t t  (1)
W(t) is Wiener processes, we call X(t) is Wiener square processes.
We have
2 2 2
( ( ) ( ( )) ( ( ))E W t D W t E W t t  
Let s<t, we have
Abstract: The stochastic system is very importment in many aspacts. Wiener processes is a sort of importment
stochastic processes. Wiener square processes is a class of useful stochastic processes in practies,its study is very
value.In this paper,we study Wiener square processes using haar wavelet and wavelet transform.we study its some
properties and wavelet expansion. Index Wiener Integral processes is a class of useful stochastic processes in
practies,its study is very value.In this paper,we study it using haar wavelet and wavelet transform on [0,t].we study
its some properties and wavelet expansion.
Keywords: Wiener square processes; Wavelet; Haar; Expansion; Index Wiener Integral processes.
Scientific Review, 2016, 2(8): 90-99
91
2 2
2 2
( , ) ( ) ( ) ( ( ) ( ))
( ( )( ( ) ( ) ( ))
R s t EX t X s E W s W t
E W s W t W s W s
 
  
2 2 2
( ( )( ( ) ( )) ( ( ))E W s W t W s E W s  
2 2 4 2
4 4 2
( ) 3
( ) 3
s t s s
s t s s
  
 
  
  
(2)
Definition 2
Let {x(t) , t∈R}is a stochastic processes on probability space (Ω, g, P),we call
dt
s
tx
tx
s R
)()(
1
x)W(s,

  (3)
is wavelet transform of x(t) . where,ψ is mather wavelet([11]).
Then, we have
1
( , ) ( ) ( )
R
x t
w s x x t dt
s s

 
 
   (4)
Definition 3
Let mather waveletψ(x) is function:












other
x
x
,0
1
2
1
,1
2
1
0,1
(x) (5)
we call ψ(x) is the Haar wavelet.
Then, we have
1,
2( )
1,
2
s
x t x
x t
ss
x s t x


   
 
    

(6)
1,
2( )
1,
2
s
x t x
x t
ss
x s t x
 


 

      
 
      

(7)
3. Some Results about Density Degree
We have
1
1 1
( ) [ ( , ) ( , )]
1 1
[ ( ) ( ) ][ ( ) ( ) ]
R R
R E w s y w s y
y ty t
E x t dt x t dt
s s s s
 

 
 
 
  
2
1
1 12
1
[ ( ) ( ) ( ) ( ) ]
R
y ty t
E x t x t dtdt
s s s

 
 
 
1
1 12
1
[ ( ) ( )] ( ) ( )
y ty t
E x t x t dtdt
s s s

 
 
 
2
4 4 2
1 1 12
1
1
1
[ ( ) 3 ] ( )
( )
R
y t
t t t t
s s
y t
dtdt
s
  



  
 

Scientific Review, 2016, 2(8): 90-99
92
2
2
4 1
1 1 12
4 2 1
1 1
1
[ ( ) ( ) ( )
3 ( ) ( ) ]
R
R
y ty t
t t t dtdt
s s s
y ty t
t dtdt
s s

  

  
 
 
 



2
2
4 1
1 12
4 2 1
1 1
1
[ ( ) ( )
2 ( ) ( ) ]
R
R
y ty t
t t dtdt
s s s
y ty t
t dtdt
s s

  

  
 

 



1 2I I 
Where
2
2
4 1
1 1 12
4 2 1
2 1 12
1
( ) ( ) ,
1
2 ( ) ( )
R
R
y ty t
I t t dtdt
s s s
y ty t
I t dtdt
s s s

  

  
 

 



Then,we have
/2
4
1 1 1 1 12 /2 /2 /2
/2 /2 /2 /2
1 1 1 1/2
1
[
]
y y y y s
y s y s y s y s
y s y s y s y s
y s y s y s y s
I tdt t dt tdt t dt
s
tdt t dt tdt t dt
 
 

 

  
     
    
     
 
 
   
   
The same time, we have
2I  2
2 2 1
1 12
1
2 [ ( ) ( ) ]
R
y ty t
t dtdt
s s s

  
 

/2
2 2 2
1 1 1 12 /2 /2 /2
/2 /2 /2 /2
2 2
1 1 1 1/2
2
[
]
y y y y s
y s y s y s y s
y s y s y s y s
y s y s y s y s
dt t dt dt t dt
s
dt t dt dt t dt
 
 

 

  
     
    
     
 
 
   
   
We let 1  , through compute on above
Then, the zero density degree of W(s , y) is
2
(0)
(0)
R
R

can be obtained.
The average density degree of w(s, y) is
)0(
)0(
)2(2
)4(
R
R

can be obtain all.
4. Wavelet Expansion of System
In order to use the idea of multiresolution, we will start by defining the scaling function and then define the
wavelet in terms of it.
Let real function  is standard orthogonal element of multiresolution analysis ZjVj }{ (see [7]), then exist
2
lhk  , have
 
k
ktt )2(2)( 
Let   
k
k
k
ktht )2()1(2)( 1 
Then wavelet express of ( )y t in mean square is
2
2
( ) 2 (2 )
2 (2 )
J
J J
n
K
j
j j
n
j J n Z
y t C t n
d t n






 
 
 

 
Where
Scientific Review, 2016, 2(8): 90-99
93
2
2 ( ) (2 )
j
j j
n R
C x t t n dt


 
2
2 ( ) (2 )
j
j j
n R
d x t t n dt


 
Then have
 2
2
2 ( ) ( )
(2 ) (2 )
j k
j k
n m R
j k
E C C E x t x s
t n s m dsdt 


 
   
 

 2
2
2 ( ) ( )
(2 ) (2 )
j k
j k
n m R
j k
E d d E x t x s
t n s m dsdt 


 
   
 

Where
1, 2 (1/ 2 )2
(2 )
1,(1/ 2 )2 (1 )2
j j
j
j j
m t m
t m
m t m


 
   
  
    
(8)
1, 2 (1/ 2 )2
(2 )
1,(1/ 2 )2 (1 )2
k k
k
k k
n s n
s n
n s n

 
 
   
  
    
(9)
Use (8) and (10) ,we can obtain value of
j k
n mE d d   .
If we let normalized scaling function to have compact support over [0,1],then a solution is a scaling function that is a
simple rectangle function
1,0 1
( )
0,
t
t
otherwise

 
 

(10)
Now we consider function )(t that exist compact support set on 0,],,[ 2121  kkkk , and exist enough large M,
have 10,0)(  Mmdttt
R
m
 , then  exist compact support set on ],[ 43 kk satisfy
0,, 434321  kkkkkk .
Let ( , ) ( ), jkb j k y t  
( , ) ( ), jka j k y t  
Let J is a constant, then
Jj
j
j
J
J
ZkktZkkx













 ),2(2),2(2 22
 are a standard orthonormal basis of space )(2
RL ,
then have
2
2
( ) 2 ( , ) (2 )
2 ( , ) (2 )
J
J
K Z
j
j
j J K Z
y t a J K t K
b j K t K



 
 
 


(11)
Therefore, the self-correlation function of ),( mjb
 ),(),(),;,( nkbmjbEnmKjRb 
 2
2
2 ( ) ( ) (2 ) (2 )
j K
j K
R
E x t x s t m s n dtds 


   (12)
And have also the self-correlation function of ( , )a j m
 ( , ; , ) ( , ) ( , )aR j K m n E a j m a k n
 2
2
2 ( ) ( ) (2 ) (2 )
j K
j K
R
E x t x s t m s n dtds 


   (13)
Scientific Review, 2016, 2(8): 90-99
94
Then ,we use (8) and (9) have
2
2
( , ; ,
2 [ ( ) ( )] (2 ) (2 )
b
j k
j k
R
R j k m n
E x t x s t m s n dtds 


  
)
2
2
2 (2 ) (2 )
j k
j k
R
ts s n s m dtds 


  
2
22
2 2 (2 ) (2 )
j k
j k
R
t s n s m dtds 


  
2
2
( , ; , )
2 [ ( ) ( )] (2 ) (2 )
a
j k
j k
R
R j k m n
E x t x s t m s n dtds 


  
2
2
2 (2 ) (2 )
j k
j k
R
ts s n s m dtds 


   2
22
2 2 (2 ) (2 )
j k
j k
R
t s n s m dtds 


  
We have
(1/2 )2 (1/2 )2
2
2 2
( , ; , ) 2 [
j k
j k
j k
m n
b m n
R j k m n tdt sds
 
 

 
  
(1/2 )2 (1 )2 (1 )2 (1/2 )2
2 (1/2 )2 (1/2 )2 2
j k j k
j k j k
m n m n
m n m n
tdt sds tdt sds
   
   
   
 
    
(1 )2 (1 )2
(1/2 )2 (1/2 )2
]
j k
j k
m n
m n
tdt sds
 
 
 
 
 
(1/2 )2 (1/2 )2
22
2 2
2 [ 2
j k
j k
j k
m n
m n
t dt ds
 
 

 
  
(1/2 )2 (1 )2
2
2 (1/2 )2
(1 )2 (1/2 )2
2
(1/2 )2 2
2
2
j k
j k
j k
j k
m n
m n
m n
m n
t dt ds
t dt ds
 
 
 
 
 

 



 
 
(1 )2 (1 )2
2
(1/2 )2 (1/2 )2
2 ]
j k
j k
m n
m n
t dt ds
 
 
 
 
 
We obtain
1, 2 ( 1)2
(2 )
0,
j j
j n t n
t n
other

   
  

1, 2 ( 1)2
(2 )
0,
k k
k m s m
s m
other

   
  

Then ,we have
( , ; , )aR j k m n 2
2
2 (2 ) (2 )
j k
j k
R
ts s n s m dtds 


  
2
22
2 2 (2 ) (2 )
j k
j k
R
t s n s m dtds 


  
5. Basic Definitions of Wiener Processes
Definition 1
Let
 ( )
0
( ) ( ), 0, 0
t
a t u
X t e dw u t a R
   
W(u) is Wiener processes, we call X(t) is Index
Wiener Integral processes.
We have
( ) ( )
0 0
2
( ) ( )
2
( , ) ( ) ( )
( ) ( )
( )
2
1
s t
a s u a t u
a s t a t s
R s t EX t X s
E e dw u e dw u
e e
a
Let


 
 


 

 
Scientific Review, 2016, 2(8): 90-99
95
Definition 2
Let {x(t) , t∈R}is a stochastic processes on probability space (Ω, g, P),we call
W(s, x)= dt
s
tx
tx
s R
)()(
1 
 ψ
is wavelet transform of x(t) . where,ψ is mather wavelet([11]).
Then, we have
1
( , ) ( ) ( )
R
x t
w s x x t dt
s s

 
 
  
Definition 3
Let mather waveletψ(x) is function:












other
x
x
,0
1
2
1
,1
2
1
0,1
(x) (5)
we call ψ(x) is the Haar wavelet.
Then, we have
1,
2( )
1,
2
s
x t x
x t
ss
x s t x


   
 
    

1,
2( )
1,
2
s
x t x
x t
ss
x s t x
 


 

      
 
      

We have
1
1 1
( ) [ ( , ) ( , )]
1 1
[ ( ) ( ) ][ ( ) ( ) ]
R R
R E w s y w s y
y ty t
E x t dt x t dt
s s s s
 

 
 
 
  
2
1
1 12
1
[ ( ) ( ) ( ) ( ) ]
R
y ty t
E x t x t dtdt
s s s

 
 
 
1
1 12
1
[ ( ) ( )] ( ) ( )
y ty t
E x t x t dtdt
s s s

 
 
 
1 1
2
( ) ( )
2
1
1
1 1
( ) ( )
2
( )
a t t a t t
R
y t
e e
s a s
y t
dtdt
s



  
 
 

1
2
1
2
( ) 1
12
( ) 1
1
1 1
[ ( ) ( )
2
1
( ) ( ) ]
2
a t t
R
a t t
R
y ty t
e dtdt
s a s s
y ty t
e dtdt
a s s

 

 


 

 



1 2I I 
Where
1
2
1
2
( ) 1
1 12
( ) 1
2 1
1 1
[ ( ) ( ) ,
2
1
( ) ( ) ]
2
a t t
R
a t t
R
y ty t
I e dtdt
s a s s
y ty t
I e dtdt
a s s

 

 


 

 



Then,we have
Scientific Review, 2016, 2(8): 90-99
96
1
1
1
1
1 12 /2 /2
/2
1/2
/2 /2
1/2
/2 /2
1
1
[
2
]
y y
atat
y s y s
y y s
atat
y s y s
y s y s
atat
y s y s
y s y s
atat
y s y s
I e dt e dt
as
e dt e dt
e dt e dt
e dt e dt








  
 
  
 
  
  
  




 
 
 
 
The same time, we have
2I  1
2
1
12
1
( ) ( ) ]
2
at at
R
y ty t
e dtdt
as s s

   

1
1
1
1
12 /2 /2
/2
1/2
/2 /2
1/2
/2 /2
1
1
[
2
]
y y
atat
y s y s
y y s
atat
y s y s
y s y s
atat
y s y s
y s y s
atat
y s y s
e dt e dt
as
e dt e dt
e dt e dt
e dt e dt









  
 

  
 

  
  

  




 
 
 
 
Then, the zero density degree of W(s, y) is
2
(0)
(0)
R
R

can be obtained.
The average density degree of w(s, y) is
)0(
)0(
)2(2
)4(
R
R

can be obtain all.
We consider wavelet expansions of stochastics processes and show that for certain wavelets, the coefficients of
the expansion have negligible correlation for different scales. we can introduce a modification of the wavelets.
Certain nonstationary processes the wavelets may be chose to give uncorrelated coefficients.
In order to use the idea of multiresolution , we will start by defining the scaling function and then define the
wavelet in terms of it.
Let real function  is standard orthogonal element of multiresolution analysis ZjVj }{ (see [7]), then exist
2
lhk  , have
 
k
ktt )2(2)( 
Let   
k
k
k
ktht )2()1(2)( 1 
Then wavelet express of ( )y t in mean square is
2
2
( ) 2 (2 )
2 (2 )
J
J J
n
K
j
j j
n
j J n Z
y t C t n
d t n






 
 
 

 
Where, 2
2 ( ) (2 )
j
j j
n R
C x t t n dt


 
2
2 ( ) (2 )
j
j j
n R
d x t t n dt


 
Then have
Scientific Review, 2016, 2(8): 90-99
97
 2
2
2 ( ) ( ) (2 ) (2 )
j k
n m
j k
j k
R
E C C
E x t x s t n s m dsdt 


 
  
  
 2
2
2 ( ) ( ) (2 ) (2 )
j k
n m
j k
j k
R
E d d
E x t x s t n s m dsdt 


 
  
  
Where
1, 2 (1/ 2 )2
(2 )
1,(1/ 2 )2 (1 )2
j j
j
j j
m t m
t m
m t m


 
   
  
    
(8)
1, 2 (1/ 2 )2
(2 )
1,(1/ 2 )2 (1 )2
k k
k
k k
n s n
s n
n s n

 
 
   
  
    
(9)
Use (8) and (10) , we can obtain value of
j k
n mE d d   .
If we let normalized scaling function to have compact support over [0,1],then a solution is a scaling function
that is a simple rectangle function
1,0 1
( )
0,
t
t
otherwise

 
 

(10) Now we consider function )(t that exist compact support set on
0,],,[ 2121  kkkk , and exist enough large M, have 10,0)(  Mmdttt
R
m
 , then  exist compact
support set on ],[ 43 kk satisfy 0,, 434321  kkkkkk .
Let ( , ) ( ), jkb j k y t  ,
( , ) ( ), jka j k y t  
Let J is a constant, then
Jj
j
j
J
J
ZkktZkkx













 ),2(2),2(2 22
 are a standard orthonormal basis of space )(2
RL ,
then have
2
2
( ) 2 ( , ) (2 )
2 ( , ) (2 )
J
J
K Z
j
j
j J K Z
y t a J K t K
b j K t K



 
 
 


(11)
Therefore, the self-correlation function of ),( mjb
 ),(),(),;,( nkbmjbEnmKjRb 
 2
2
2 ( ) ( ) (2 ) (2 )
j K
j K
R
E x t x s t m s n dtds 


   (12)
And have also the self-correlation function of ( , )a j m
 ( , ; , ) ( , ) ( , )aR j K m n E a j m a k n  2
2
2 ( ) ( ) (2 ) (2 )
j K
j K
R
E x t x s t m s n dtds 


  
(13)
Then , we use (8) and (9) have
2
2
( , ; , )
2 [ ( ) ( )] (2 ) (2 )
b
j k
j k
R
R j k m n
E x t x s t m s n dtds 


  
2
( )2
2 (2 ) (2 )
j k
a t s j k
R
e s n s m dtds 



  
2
( )2
2 (2 ) (2 )
j k
a t s j k
R
e s n s m dtds 



  
Scientific Review, 2016, 2(8): 90-99
98
2
2
( , ; , )
2 [ ( ) ( )] (2 ) (2 )
a
j k
j k
R
R j k m n
E x t x s t m s n dtds 


  
2
( )2
2 (2 ) (2 )
j k
a s t j k
R
e s n s m dtds 



   2
( )2
2 (2 ) (2 )
j k
a t s j k
R
e s n s m dtds 



  
We have
(1/2 )2 (1/2 )2
2
2 2
( , ; , )
2 [
j k
j k
b
j k
m n
at as
m n
R j k m n
e dt e ds
 
 

 
  
(1/2 )2 (1 )2
2 (1/2 )2
(1 )2 (1/2 )2
(1/2 )2 2
j k
j k
j k
j k
m n
at as
m n
m n
at as
m n
e dt e ds
e dt e ds
 
 
 
 
 

 



 
 
(1 )2 (1 )2
(1/2 )2 (1/2 )2
]
j k
j k
m n
at as
m n
e dt e ds
 
 
 
 
 
(1/2 )2 (1/2 )2
2
2 2
2 [
j k
j k
j k
m n
at as
m n
e dt e ds
 
 

 

  
(1/2 )2 (1 )2
2 (1/2 )2
(1 )2 (1/2 )2
(1/2 )2 2
j k
j k
j k
j k
m n
at as
m n
m n
at as
m n
e dt e ds
e dt e ds
 
 
 
 
 


 




 
 
(1 )2 (1 )2
(1/2 )2 (1/2 )2
]
j k
j k
m n
at as
m n
e dt e ds
 
 
 

 
 
We obtain
1, 2 ( 1)2
(2 )
0,
j j
j n t n
t n
other

   
  

1, 2 ( 1)2
(2 )
0,
k k
k m s m
s m
other

   
  

Then, we have
( , ; , )aR j k m n 2
( )2
2 (2 ) (2 )
j k
a t s j k
R
e s n s m dtds 



  
2
( )2
2 (2 ) (2 )
j k
a t s j k
R
e s n s m dtds 



  
References
[1] Adam Bobrowski, 2007. Functional analysis for probability and stochastic processes. Cambridge
University Press.
[2] Cambancs, 1994. "Wavelet approximation of deterministic and random signals." IEEE Tran.on Information
Theory, vol. 40, pp. 1013-1029.
[3] Flandrin, 1992. "Wavelet analysis and synthesis of fractional brownian motion." IEEE Tran.on Information
Theory, vol. 38, pp. 910-916.
[4] Haobo Ren, 2002. "Wavelet estimation for jumps on a heterosedastic regression model." Acta Mathematica
Scientia, vol. 22, pp. 269-277.
[5] Hendi, A., 2009. "New exact travelling wave solutions for some nonlinear evolution equations."
International Journal of Nonlinear Science, vol. 7, pp. 259-267.
[6] Krim, 1995. "Multire solution analysis of a class nstationary processes." IEEE Tran.on Information Theory,
vol. 41, pp. 1010-1019.
[7] Meyer, Y., 1990. "In Ondelettes et operatears(M), Hermann."
[8] Pairick Flandrin, 1992. "Wavelet analysis and synthesis of fractional brownian motion." IEEE Tran.,On
Information Theory, vol. 38, pp. 910-916.
[9] Paul Malliavin, 2003. Stochastic analysis. Springer-Verlag.
[10] Xia Xuewen, 2012. "The study of Wiener Processes with linear-trend base on wavelet." Studies in
Mathematical Science, vol. 2012, p. 2.
[11] Xia Xuewen, 2012. "The energy of stochastic vibration system of a class of protein base on wavelet."
Advances in Nature Science, vol. 5, pp. 68-70.
[12] Xia Xuewen and Dai Ting, 2012. "The energy of convolution of 2-dimension exponential random variables
base on Haar wavelet." Progress in Applied Mathematics, vol. 3, pp. 35-38.
[13] Xuewen Xia, 2005. "Wavelet analysis of the stochastic system with coular stationary noise." Engineering
Science, vol. 3, pp. 43-46.
[14] Xuewen Xia, 2007. "Wavelet analysis of Browain motion." World Journal of Modelling and Simulation,
vol. 3, pp. 106-112.
Scientific Review, 2016, 2(8): 90-99
99
[15] Xuewen Xia, 2008. "Wavelet density degree of continuous parameter AR model." International Journal
Nonlinear Science, vol. 7, pp. 237-242.
[16] Xuewen Xia, 2010. "The morlet wavelet density degree of the linear regress processes with random
coefficient." International Journal of Nonlinear Science, vol. 9, pp. 349-351.
[17] Xuewen Xia, 2011. "The study of a class of the fractional brownian motion based on wavelet." Inter.J.of
Nonlinear Science, vol. 11, pp. 290-294.
[18] Xuewen Xia and Ting Dai, 2009. "Wavelet density degree of a class of Wiener processes." International
Journal of Nonlinear Science, vol. 7, pp. 327-332.
A Project supported by Hunan Provinial Natural Science Foundation of China (12JJ9004);
A Project Supported by Scientific Research Found of Hunan Provincial Education Department (12A033).

More Related Content

PDF
Quantum gravity
PDF
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
PDF
Positive and negative solutions of a boundary value problem for a fractional ...
PDF
[IJCT-V3I2P19] Authors: Jieyin Mai, Xiaojun Li
PDF
D028036046
PPTX
Presentation1 yash maths
PDF
IRJET- On Certain Subclasses of Univalent Functions: An Application
PPTX
Indefinite Integral 3
Quantum gravity
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Positive and negative solutions of a boundary value problem for a fractional ...
[IJCT-V3I2P19] Authors: Jieyin Mai, Xiaojun Li
D028036046
Presentation1 yash maths
IRJET- On Certain Subclasses of Univalent Functions: An Application
Indefinite Integral 3

What's hot (7)

PDF
IRJET- Characteristic Exponent of Collinear Libration Point in L2 in Photo – ...
PDF
K044046872
PDF
Quantum formula sheet
PDF
Fast Algorithm for Computing the Discrete Hartley Transform of Type-II
PDF
A New Sub Class of Univalent Analytic Functions Associated with a Multiplier ...
PDF
Optimizing Parallel Reduction in CUDA : NOTES
PDF
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
IRJET- Characteristic Exponent of Collinear Libration Point in L2 in Photo – ...
K044046872
Quantum formula sheet
Fast Algorithm for Computing the Discrete Hartley Transform of Type-II
A New Sub Class of Univalent Analytic Functions Associated with a Multiplier ...
Optimizing Parallel Reduction in CUDA : NOTES
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Ad

Similar to The Study of the Wiener Processes Base on Haar Wavelet (20)

PDF
International Journal of Mathematics and Statistics Invention (IJMSI)
PDF
A02402001011
PDF
SPSF04 - Euler and Runge-Kutta Methods
PDF
International Journal of Mathematics and Statistics Invention (IJMSI)
PDF
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
PDF
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
PDF
On Some Double Integrals of H -Function of Two Variables and Their Applications
PDF
RNN, LSTM and Seq-2-Seq Models
PDF
C024015024
PDF
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
PDF
A Stochastic Model Approach for Reaching Probabilities of Message Flow in Spa...
PDF
C023014030
PDF
C023014030
PDF
Boundary value problem and its application in i function of multivariable
PDF
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
PDF
Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...
PDF
Lecture 2 sapienza 2017
PDF
International journal of applied sciences and innovation vol 2015 - no 1 - ...
PDF
International journal of engineering issues vol 2015 - no 1 - paper4
PPT
STate Space Analysis
International Journal of Mathematics and Statistics Invention (IJMSI)
A02402001011
SPSF04 - Euler and Runge-Kutta Methods
International Journal of Mathematics and Statistics Invention (IJMSI)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
On Some Double Integrals of H -Function of Two Variables and Their Applications
RNN, LSTM and Seq-2-Seq Models
C024015024
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Stochastic Model Approach for Reaching Probabilities of Message Flow in Spa...
C023014030
C023014030
Boundary value problem and its application in i function of multivariable
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...
Lecture 2 sapienza 2017
International journal of applied sciences and innovation vol 2015 - no 1 - ...
International journal of engineering issues vol 2015 - no 1 - paper4
STate Space Analysis
Ad

More from Scientific Review SR (20)

PDF
Scientific Management of Equipment in Medical Innovation Laboratory
PDF
Internationalization and Sustainable Operations: A Broad Investigation of Chi...
PDF
Mechanical Engineering in Ancient Egypt, Part 92: Tomb Inscription During the...
PDF
Usability Engineering, Human Computer Interaction and Allied Sciences: With R...
PDF
Concentration Distribution and Ecological Risk Assessment of Polycyclic Aroma...
PDF
Volume Fractions of Tantalum Carbides Deduced from the Ta Contents in the Mat...
PDF
Assessment of the Coliform Bacterial Load of Some Drinking Water Sources in D...
PDF
Bio Inspired Self-Curing Composite: A Leap into Augmented Enactment
PDF
Influence of Information and Communication Technology (ICT) in Tourism Sector...
PDF
Reinforcement of Bakelite Moulding Powder in Acrylonitrile Butadiene Rubber (...
PDF
Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...
PDF
Design of Quad-Wheeled Robot for Multi-Terrain Navigation
PDF
Geometrical Analysis and Design of Tension-Actuated Ackermann Steering System...
PDF
A Study of Propensity Score on Influencing Factors of Length of Stay in Hospi...
PDF
Effects of Carbonation on the Properties of Concrete
PDF
Biogas Synthesis as Means of Solid Waste Management in Kampala, Uganda
PDF
The Influence of Partial Replacement of Some Selected Pozzolans on the Drying...
PDF
Study on the Granulation of FLY Ash from Thermal Power Station
PDF
Machining Versus Molding Tolerances in Manufacturing Automotive Sealing Systems
PDF
Sinthesis and Properties of Marble-Like Glass-Ceramics Using of Ash from Ther...
Scientific Management of Equipment in Medical Innovation Laboratory
Internationalization and Sustainable Operations: A Broad Investigation of Chi...
Mechanical Engineering in Ancient Egypt, Part 92: Tomb Inscription During the...
Usability Engineering, Human Computer Interaction and Allied Sciences: With R...
Concentration Distribution and Ecological Risk Assessment of Polycyclic Aroma...
Volume Fractions of Tantalum Carbides Deduced from the Ta Contents in the Mat...
Assessment of the Coliform Bacterial Load of Some Drinking Water Sources in D...
Bio Inspired Self-Curing Composite: A Leap into Augmented Enactment
Influence of Information and Communication Technology (ICT) in Tourism Sector...
Reinforcement of Bakelite Moulding Powder in Acrylonitrile Butadiene Rubber (...
Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismuta...
Design of Quad-Wheeled Robot for Multi-Terrain Navigation
Geometrical Analysis and Design of Tension-Actuated Ackermann Steering System...
A Study of Propensity Score on Influencing Factors of Length of Stay in Hospi...
Effects of Carbonation on the Properties of Concrete
Biogas Synthesis as Means of Solid Waste Management in Kampala, Uganda
The Influence of Partial Replacement of Some Selected Pozzolans on the Drying...
Study on the Granulation of FLY Ash from Thermal Power Station
Machining Versus Molding Tolerances in Manufacturing Automotive Sealing Systems
Sinthesis and Properties of Marble-Like Glass-Ceramics Using of Ash from Ther...

Recently uploaded (20)

PPT
Fundamentals of Financial Management Chapter 3
PDF
Financial discipline for educational purpose
PDF
USS pension Report and Accounts 2025.pdf
PPT
KPMG FA Benefits Report_FINAL_Jan 27_2010.ppt
PPT
features and equilibrium under MONOPOLY 17.11.20.ppt
PDF
Principal of magaement is good fundamentals in economics
PDF
How to join illuminati agent in Uganda Kampala call 0782561496/0756664682
PPT
Chap 1PP.ppt introductory micro economics
PDF
Statistics for Management and Economics Keller 10th Edition by Gerald Keller ...
PPTX
social-studies-subject-for-high-school-globalization.pptx
PPTX
kyc aml guideline a detailed pt onthat.pptx
PPTX
PPT-Lesson-2-Recognize-a-Potential-Market-2-3.pptx
PDF
CLIMATE CHANGE AS A THREAT MULTIPLIER: ASSESSING ITS IMPACT ON RESOURCE SCARC...
PDF
DTC TRADIND CLUB MAKE YOUR TRADING BETTER
PPTX
OAT_ORI_Fed Independence_August 2025.pptx
PDF
NAPF_RESPONSE_TO_THE_PENSIONS_COMMISSION_8 _2_.pdf
PDF
HCWM AND HAI FOR BHCM STUDENTS(1).Pdf and ptts
PDF
Fintech Regulatory Sandbox: Lessons Learned and Future Prospects
PDF
Pitch Deck.pdf .pdf all about finance in
Fundamentals of Financial Management Chapter 3
Financial discipline for educational purpose
USS pension Report and Accounts 2025.pdf
KPMG FA Benefits Report_FINAL_Jan 27_2010.ppt
features and equilibrium under MONOPOLY 17.11.20.ppt
Principal of magaement is good fundamentals in economics
How to join illuminati agent in Uganda Kampala call 0782561496/0756664682
Chap 1PP.ppt introductory micro economics
Statistics for Management and Economics Keller 10th Edition by Gerald Keller ...
social-studies-subject-for-high-school-globalization.pptx
kyc aml guideline a detailed pt onthat.pptx
PPT-Lesson-2-Recognize-a-Potential-Market-2-3.pptx
CLIMATE CHANGE AS A THREAT MULTIPLIER: ASSESSING ITS IMPACT ON RESOURCE SCARC...
DTC TRADIND CLUB MAKE YOUR TRADING BETTER
OAT_ORI_Fed Independence_August 2025.pptx
NAPF_RESPONSE_TO_THE_PENSIONS_COMMISSION_8 _2_.pdf
HCWM AND HAI FOR BHCM STUDENTS(1).Pdf and ptts
Fintech Regulatory Sandbox: Lessons Learned and Future Prospects
Pitch Deck.pdf .pdf all about finance in

The Study of the Wiener Processes Base on Haar Wavelet

  • 1. Scientific Review ISSN(e): 2412-2599, ISSN(p): 2413-8835 Vol. 2, No. 8, pp: 90-99, 2016 URL: http://arpgweb.com/?ic=journal&journal=10&info=aims 90 Academic Research Publishing Group The Study of the Wiener Processes Base on Haar Wavelet Xuewen Xia College of Science, Hunan Institute of Engineering, Xiangtan,411104, Hunan Normal University, Changsha, 410082, China 1. Introduction Wiener processes are a sort of importment stochastic processes. Wiener square processes is a class of useful stochastic processes in practies, its study is very value. We will take wavelet and use them in a series expansion of signal or function. Wavelet has its energy concentrated in time to give a tool for the analysis of transient, nonstationary, or time-varying phenomena. It still has the oscillating wavelike characteristic but also has the ability to allow simultaneous time and frequency analysis with a flexible mathematical foundation. We take wavelet and use them in a series expansion of signals or functions much the same way a Fourier series the wave or sinusoid to represent a signal or function. In order to use the idea of multiresolution, we will start by defining the scaling function and then define the wavelet in terms of it. With the rapid development of computerized scientific instruments comes a wide variety of interesting problems for data analysis and signal processing. In fields ranging from Extragalactic Astronomy to Molecular Spectroscopy to Medical Imaging to computer vision, One must recover a signal, curve, image, spectrum, or density from incomplete, indirect, and noisy data .Wavelets have contributed to this already intensely developed and rapidly advancing field . Wavelet analysis consists of a versatile collection of tools for the analysis and manipulation of signals such as sound and images as well as more general digital data sets ,such as speech, electrocardiograms ,images .Wavelet analysis is a remarkable tool for analyzing function of one or several variables that appear in mathematics or in signal and image processing .With hindsight the wavelet transform can be viewed as diverse as mathematics ,physics and electrical engineering .The basic idea is always to use a family of building blocks to represent the object at hand in an efficient and insightful way, the building blocks themselves come in different sizes, and are suitable for describing features with a resolution commensurate with their size . There are two important aspects to wavelets, which we shall call “mathematical” and “algorithmical” .Numerical algorithms using wavelet bases are similar to other transform methods in that vectors and operators are expanded into a basis and the computations take place in the new system of coordinates .As with all transform methods such as approach hopes to achieve that the computation is faster in the new system of coordinates than in the original domain, wavelet based algorithms exhibit a number of new and important properties .Recently some persons have studied wavelet problems of stochastic process or stochastic system ([1-18]). 2. Basic Definitions Definition 1 Let 2 ( ) ( ), 0X t W t t  (1) W(t) is Wiener processes, we call X(t) is Wiener square processes. We have 2 2 2 ( ( ) ( ( )) ( ( ))E W t D W t E W t t   Let s<t, we have Abstract: The stochastic system is very importment in many aspacts. Wiener processes is a sort of importment stochastic processes. Wiener square processes is a class of useful stochastic processes in practies,its study is very value.In this paper,we study Wiener square processes using haar wavelet and wavelet transform.we study its some properties and wavelet expansion. Index Wiener Integral processes is a class of useful stochastic processes in practies,its study is very value.In this paper,we study it using haar wavelet and wavelet transform on [0,t].we study its some properties and wavelet expansion. Keywords: Wiener square processes; Wavelet; Haar; Expansion; Index Wiener Integral processes.
  • 2. Scientific Review, 2016, 2(8): 90-99 91 2 2 2 2 ( , ) ( ) ( ) ( ( ) ( )) ( ( )( ( ) ( ) ( )) R s t EX t X s E W s W t E W s W t W s W s      2 2 2 ( ( )( ( ) ( )) ( ( ))E W s W t W s E W s   2 2 4 2 4 4 2 ( ) 3 ( ) 3 s t s s s t s s            (2) Definition 2 Let {x(t) , t∈R}is a stochastic processes on probability space (Ω, g, P),we call dt s tx tx s R )()( 1 x)W(s,    (3) is wavelet transform of x(t) . where,ψ is mather wavelet([11]). Then, we have 1 ( , ) ( ) ( ) R x t w s x x t dt s s         (4) Definition 3 Let mather waveletψ(x) is function:             other x x ,0 1 2 1 ,1 2 1 0,1 (x) (5) we call ψ(x) is the Haar wavelet. Then, we have 1, 2( ) 1, 2 s x t x x t ss x s t x               (6) 1, 2( ) 1, 2 s x t x x t ss x s t x                         (7) 3. Some Results about Density Degree We have 1 1 1 ( ) [ ( , ) ( , )] 1 1 [ ( ) ( ) ][ ( ) ( ) ] R R R E w s y w s y y ty t E x t dt x t dt s s s s             2 1 1 12 1 [ ( ) ( ) ( ) ( ) ] R y ty t E x t x t dtdt s s s        1 1 12 1 [ ( ) ( )] ( ) ( ) y ty t E x t x t dtdt s s s        2 4 4 2 1 1 12 1 1 1 [ ( ) 3 ] ( ) ( ) R y t t t t t s s y t dtdt s            
  • 3. Scientific Review, 2016, 2(8): 90-99 92 2 2 4 1 1 1 12 4 2 1 1 1 1 [ ( ) ( ) ( ) 3 ( ) ( ) ] R R y ty t t t t dtdt s s s y ty t t dtdt s s                  2 2 4 1 1 12 4 2 1 1 1 1 [ ( ) ( ) 2 ( ) ( ) ] R R y ty t t t dtdt s s s y ty t t dtdt s s                 1 2I I  Where 2 2 4 1 1 1 12 4 2 1 2 1 12 1 ( ) ( ) , 1 2 ( ) ( ) R R y ty t I t t dtdt s s s y ty t I t dtdt s s s                 Then,we have /2 4 1 1 1 1 12 /2 /2 /2 /2 /2 /2 /2 1 1 1 1/2 1 [ ] y y y y s y s y s y s y s y s y s y s y s y s y s y s y s I tdt t dt tdt t dt s tdt t dt tdt t dt                                         The same time, we have 2I  2 2 2 1 1 12 1 2 [ ( ) ( ) ] R y ty t t dtdt s s s        /2 2 2 2 1 1 1 12 /2 /2 /2 /2 /2 /2 /2 2 2 1 1 1 1/2 2 [ ] y y y y s y s y s y s y s y s y s y s y s y s y s y s y s dt t dt dt t dt s dt t dt dt t dt                                         We let 1  , through compute on above Then, the zero density degree of W(s , y) is 2 (0) (0) R R  can be obtained. The average density degree of w(s, y) is )0( )0( )2(2 )4( R R  can be obtain all. 4. Wavelet Expansion of System In order to use the idea of multiresolution, we will start by defining the scaling function and then define the wavelet in terms of it. Let real function  is standard orthogonal element of multiresolution analysis ZjVj }{ (see [7]), then exist 2 lhk  , have   k ktt )2(2)(  Let    k k k ktht )2()1(2)( 1  Then wavelet express of ( )y t in mean square is 2 2 ( ) 2 (2 ) 2 (2 ) J J J n K j j j n j J n Z y t C t n d t n                Where
  • 4. Scientific Review, 2016, 2(8): 90-99 93 2 2 ( ) (2 ) j j j n R C x t t n dt     2 2 ( ) (2 ) j j j n R d x t t n dt     Then have  2 2 2 ( ) ( ) (2 ) (2 ) j k j k n m R j k E C C E x t x s t n s m dsdt              2 2 2 ( ) ( ) (2 ) (2 ) j k j k n m R j k E d d E x t x s t n s m dsdt             Where 1, 2 (1/ 2 )2 (2 ) 1,(1/ 2 )2 (1 )2 j j j j j m t m t m m t m                 (8) 1, 2 (1/ 2 )2 (2 ) 1,(1/ 2 )2 (1 )2 k k k k k n s n s n n s n                  (9) Use (8) and (10) ,we can obtain value of j k n mE d d   . If we let normalized scaling function to have compact support over [0,1],then a solution is a scaling function that is a simple rectangle function 1,0 1 ( ) 0, t t otherwise       (10) Now we consider function )(t that exist compact support set on 0,],,[ 2121  kkkk , and exist enough large M, have 10,0)(  Mmdttt R m  , then  exist compact support set on ],[ 43 kk satisfy 0,, 434321  kkkkkk . Let ( , ) ( ), jkb j k y t   ( , ) ( ), jka j k y t   Let J is a constant, then Jj j j J J ZkktZkkx               ),2(2),2(2 22  are a standard orthonormal basis of space )(2 RL , then have 2 2 ( ) 2 ( , ) (2 ) 2 ( , ) (2 ) J J K Z j j j J K Z y t a J K t K b j K t K            (11) Therefore, the self-correlation function of ),( mjb  ),(),(),;,( nkbmjbEnmKjRb   2 2 2 ( ) ( ) (2 ) (2 ) j K j K R E x t x s t m s n dtds       (12) And have also the self-correlation function of ( , )a j m  ( , ; , ) ( , ) ( , )aR j K m n E a j m a k n  2 2 2 ( ) ( ) (2 ) (2 ) j K j K R E x t x s t m s n dtds       (13)
  • 5. Scientific Review, 2016, 2(8): 90-99 94 Then ,we use (8) and (9) have 2 2 ( , ; , 2 [ ( ) ( )] (2 ) (2 ) b j k j k R R j k m n E x t x s t m s n dtds       ) 2 2 2 (2 ) (2 ) j k j k R ts s n s m dtds       2 22 2 2 (2 ) (2 ) j k j k R t s n s m dtds       2 2 ( , ; , ) 2 [ ( ) ( )] (2 ) (2 ) a j k j k R R j k m n E x t x s t m s n dtds       2 2 2 (2 ) (2 ) j k j k R ts s n s m dtds       2 22 2 2 (2 ) (2 ) j k j k R t s n s m dtds       We have (1/2 )2 (1/2 )2 2 2 2 ( , ; , ) 2 [ j k j k j k m n b m n R j k m n tdt sds           (1/2 )2 (1 )2 (1 )2 (1/2 )2 2 (1/2 )2 (1/2 )2 2 j k j k j k j k m n m n m n m n tdt sds tdt sds                    (1 )2 (1 )2 (1/2 )2 (1/2 )2 ] j k j k m n m n tdt sds           (1/2 )2 (1/2 )2 22 2 2 2 [ 2 j k j k j k m n m n t dt ds           (1/2 )2 (1 )2 2 2 (1/2 )2 (1 )2 (1/2 )2 2 (1/2 )2 2 2 2 j k j k j k j k m n m n m n m n t dt ds t dt ds                     (1 )2 (1 )2 2 (1/2 )2 (1/2 )2 2 ] j k j k m n m n t dt ds           We obtain 1, 2 ( 1)2 (2 ) 0, j j j n t n t n other          1, 2 ( 1)2 (2 ) 0, k k k m s m s m other          Then ,we have ( , ; , )aR j k m n 2 2 2 (2 ) (2 ) j k j k R ts s n s m dtds       2 22 2 2 (2 ) (2 ) j k j k R t s n s m dtds       5. Basic Definitions of Wiener Processes Definition 1 Let  ( ) 0 ( ) ( ), 0, 0 t a t u X t e dw u t a R     W(u) is Wiener processes, we call X(t) is Index Wiener Integral processes. We have ( ) ( ) 0 0 2 ( ) ( ) 2 ( , ) ( ) ( ) ( ) ( ) ( ) 2 1 s t a s u a t u a s t a t s R s t EX t X s E e dw u e dw u e e a Let             
  • 6. Scientific Review, 2016, 2(8): 90-99 95 Definition 2 Let {x(t) , t∈R}is a stochastic processes on probability space (Ω, g, P),we call W(s, x)= dt s tx tx s R )()( 1   ψ is wavelet transform of x(t) . where,ψ is mather wavelet([11]). Then, we have 1 ( , ) ( ) ( ) R x t w s x x t dt s s         Definition 3 Let mather waveletψ(x) is function:             other x x ,0 1 2 1 ,1 2 1 0,1 (x) (5) we call ψ(x) is the Haar wavelet. Then, we have 1, 2( ) 1, 2 s x t x x t ss x s t x               1, 2( ) 1, 2 s x t x x t ss x s t x                         We have 1 1 1 ( ) [ ( , ) ( , )] 1 1 [ ( ) ( ) ][ ( ) ( ) ] R R R E w s y w s y y ty t E x t dt x t dt s s s s             2 1 1 12 1 [ ( ) ( ) ( ) ( ) ] R y ty t E x t x t dtdt s s s        1 1 12 1 [ ( ) ( )] ( ) ( ) y ty t E x t x t dtdt s s s        1 1 2 ( ) ( ) 2 1 1 1 1 ( ) ( ) 2 ( ) a t t a t t R y t e e s a s y t dtdt s            1 2 1 2 ( ) 1 12 ( ) 1 1 1 1 [ ( ) ( ) 2 1 ( ) ( ) ] 2 a t t R a t t R y ty t e dtdt s a s s y ty t e dtdt a s s                 1 2I I  Where 1 2 1 2 ( ) 1 1 12 ( ) 1 2 1 1 1 [ ( ) ( ) , 2 1 ( ) ( ) ] 2 a t t R a t t R y ty t I e dtdt s a s s y ty t I e dtdt a s s                 Then,we have
  • 7. Scientific Review, 2016, 2(8): 90-99 96 1 1 1 1 1 12 /2 /2 /2 1/2 /2 /2 1/2 /2 /2 1 1 [ 2 ] y y atat y s y s y y s atat y s y s y s y s atat y s y s y s y s atat y s y s I e dt e dt as e dt e dt e dt e dt e dt e dt                                        The same time, we have 2I  1 2 1 12 1 ( ) ( ) ] 2 at at R y ty t e dtdt as s s       1 1 1 1 12 /2 /2 /2 1/2 /2 /2 1/2 /2 /2 1 1 [ 2 ] y y atat y s y s y y s atat y s y s y s y s atat y s y s y s y s atat y s y s e dt e dt as e dt e dt e dt e dt e dt e dt                                            Then, the zero density degree of W(s, y) is 2 (0) (0) R R  can be obtained. The average density degree of w(s, y) is )0( )0( )2(2 )4( R R  can be obtain all. We consider wavelet expansions of stochastics processes and show that for certain wavelets, the coefficients of the expansion have negligible correlation for different scales. we can introduce a modification of the wavelets. Certain nonstationary processes the wavelets may be chose to give uncorrelated coefficients. In order to use the idea of multiresolution , we will start by defining the scaling function and then define the wavelet in terms of it. Let real function  is standard orthogonal element of multiresolution analysis ZjVj }{ (see [7]), then exist 2 lhk  , have   k ktt )2(2)(  Let    k k k ktht )2()1(2)( 1  Then wavelet express of ( )y t in mean square is 2 2 ( ) 2 (2 ) 2 (2 ) J J J n K j j j n j J n Z y t C t n d t n                Where, 2 2 ( ) (2 ) j j j n R C x t t n dt     2 2 ( ) (2 ) j j j n R d x t t n dt     Then have
  • 8. Scientific Review, 2016, 2(8): 90-99 97  2 2 2 ( ) ( ) (2 ) (2 ) j k n m j k j k R E C C E x t x s t n s m dsdt             2 2 2 ( ) ( ) (2 ) (2 ) j k n m j k j k R E d d E x t x s t n s m dsdt            Where 1, 2 (1/ 2 )2 (2 ) 1,(1/ 2 )2 (1 )2 j j j j j m t m t m m t m                 (8) 1, 2 (1/ 2 )2 (2 ) 1,(1/ 2 )2 (1 )2 k k k k k n s n s n n s n                  (9) Use (8) and (10) , we can obtain value of j k n mE d d   . If we let normalized scaling function to have compact support over [0,1],then a solution is a scaling function that is a simple rectangle function 1,0 1 ( ) 0, t t otherwise       (10) Now we consider function )(t that exist compact support set on 0,],,[ 2121  kkkk , and exist enough large M, have 10,0)(  Mmdttt R m  , then  exist compact support set on ],[ 43 kk satisfy 0,, 434321  kkkkkk . Let ( , ) ( ), jkb j k y t  , ( , ) ( ), jka j k y t   Let J is a constant, then Jj j j J J ZkktZkkx               ),2(2),2(2 22  are a standard orthonormal basis of space )(2 RL , then have 2 2 ( ) 2 ( , ) (2 ) 2 ( , ) (2 ) J J K Z j j j J K Z y t a J K t K b j K t K            (11) Therefore, the self-correlation function of ),( mjb  ),(),(),;,( nkbmjbEnmKjRb   2 2 2 ( ) ( ) (2 ) (2 ) j K j K R E x t x s t m s n dtds       (12) And have also the self-correlation function of ( , )a j m  ( , ; , ) ( , ) ( , )aR j K m n E a j m a k n  2 2 2 ( ) ( ) (2 ) (2 ) j K j K R E x t x s t m s n dtds       (13) Then , we use (8) and (9) have 2 2 ( , ; , ) 2 [ ( ) ( )] (2 ) (2 ) b j k j k R R j k m n E x t x s t m s n dtds       2 ( )2 2 (2 ) (2 ) j k a t s j k R e s n s m dtds        2 ( )2 2 (2 ) (2 ) j k a t s j k R e s n s m dtds       
  • 9. Scientific Review, 2016, 2(8): 90-99 98 2 2 ( , ; , ) 2 [ ( ) ( )] (2 ) (2 ) a j k j k R R j k m n E x t x s t m s n dtds       2 ( )2 2 (2 ) (2 ) j k a s t j k R e s n s m dtds        2 ( )2 2 (2 ) (2 ) j k a t s j k R e s n s m dtds        We have (1/2 )2 (1/2 )2 2 2 2 ( , ; , ) 2 [ j k j k b j k m n at as m n R j k m n e dt e ds           (1/2 )2 (1 )2 2 (1/2 )2 (1 )2 (1/2 )2 (1/2 )2 2 j k j k j k j k m n at as m n m n at as m n e dt e ds e dt e ds                     (1 )2 (1 )2 (1/2 )2 (1/2 )2 ] j k j k m n at as m n e dt e ds           (1/2 )2 (1/2 )2 2 2 2 2 [ j k j k j k m n at as m n e dt e ds            (1/2 )2 (1 )2 2 (1/2 )2 (1 )2 (1/2 )2 (1/2 )2 2 j k j k j k j k m n at as m n m n at as m n e dt e ds e dt e ds                       (1 )2 (1 )2 (1/2 )2 (1/2 )2 ] j k j k m n at as m n e dt e ds            We obtain 1, 2 ( 1)2 (2 ) 0, j j j n t n t n other          1, 2 ( 1)2 (2 ) 0, k k k m s m s m other          Then, we have ( , ; , )aR j k m n 2 ( )2 2 (2 ) (2 ) j k a t s j k R e s n s m dtds        2 ( )2 2 (2 ) (2 ) j k a t s j k R e s n s m dtds        References [1] Adam Bobrowski, 2007. Functional analysis for probability and stochastic processes. Cambridge University Press. [2] Cambancs, 1994. "Wavelet approximation of deterministic and random signals." IEEE Tran.on Information Theory, vol. 40, pp. 1013-1029. [3] Flandrin, 1992. "Wavelet analysis and synthesis of fractional brownian motion." IEEE Tran.on Information Theory, vol. 38, pp. 910-916. [4] Haobo Ren, 2002. "Wavelet estimation for jumps on a heterosedastic regression model." Acta Mathematica Scientia, vol. 22, pp. 269-277. [5] Hendi, A., 2009. "New exact travelling wave solutions for some nonlinear evolution equations." International Journal of Nonlinear Science, vol. 7, pp. 259-267. [6] Krim, 1995. "Multire solution analysis of a class nstationary processes." IEEE Tran.on Information Theory, vol. 41, pp. 1010-1019. [7] Meyer, Y., 1990. "In Ondelettes et operatears(M), Hermann." [8] Pairick Flandrin, 1992. "Wavelet analysis and synthesis of fractional brownian motion." IEEE Tran.,On Information Theory, vol. 38, pp. 910-916. [9] Paul Malliavin, 2003. Stochastic analysis. Springer-Verlag. [10] Xia Xuewen, 2012. "The study of Wiener Processes with linear-trend base on wavelet." Studies in Mathematical Science, vol. 2012, p. 2. [11] Xia Xuewen, 2012. "The energy of stochastic vibration system of a class of protein base on wavelet." Advances in Nature Science, vol. 5, pp. 68-70. [12] Xia Xuewen and Dai Ting, 2012. "The energy of convolution of 2-dimension exponential random variables base on Haar wavelet." Progress in Applied Mathematics, vol. 3, pp. 35-38. [13] Xuewen Xia, 2005. "Wavelet analysis of the stochastic system with coular stationary noise." Engineering Science, vol. 3, pp. 43-46. [14] Xuewen Xia, 2007. "Wavelet analysis of Browain motion." World Journal of Modelling and Simulation, vol. 3, pp. 106-112.
  • 10. Scientific Review, 2016, 2(8): 90-99 99 [15] Xuewen Xia, 2008. "Wavelet density degree of continuous parameter AR model." International Journal Nonlinear Science, vol. 7, pp. 237-242. [16] Xuewen Xia, 2010. "The morlet wavelet density degree of the linear regress processes with random coefficient." International Journal of Nonlinear Science, vol. 9, pp. 349-351. [17] Xuewen Xia, 2011. "The study of a class of the fractional brownian motion based on wavelet." Inter.J.of Nonlinear Science, vol. 11, pp. 290-294. [18] Xuewen Xia and Ting Dai, 2009. "Wavelet density degree of a class of Wiener processes." International Journal of Nonlinear Science, vol. 7, pp. 327-332. A Project supported by Hunan Provinial Natural Science Foundation of China (12JJ9004); A Project Supported by Scientific Research Found of Hunan Provincial Education Department (12A033).