Theory Of Factorial Design Single And Multistratum Experiments Cheng
Theory Of Factorial Design Single And Multistratum Experiments Cheng
Theory Of Factorial Design Single And Multistratum Experiments Cheng
Theory Of Factorial Design Single And Multistratum Experiments Cheng
1. Theory Of Factorial Design Single And
Multistratum Experiments Cheng download
https://ebookbell.com/product/theory-of-factorial-design-single-
and-multistratum-experiments-cheng-4732308
Explore and download more ebooks at ebookbell.com
2. Here are some recommended products that we believe you will be
interested in. You can click the link to download.
A Modern Theory Of Factorial Designs 1st Edition Rahul Mukerjee
https://ebookbell.com/product/a-modern-theory-of-factorial-
designs-1st-edition-rahul-mukerjee-4271982
A Modern Theory Of Factorial Designs 1st Edition Rahul Mukerjee
https://ebookbell.com/product/a-modern-theory-of-factorial-
designs-1st-edition-rahul-mukerjee-1290848
Systems Factorial Technology A Theory Driven Methodology For The
Identification Of Perceptual And Cognitive Mechanisms 1st Edition
Daniel Little
https://ebookbell.com/product/systems-factorial-technology-a-theory-
driven-methodology-for-the-identification-of-perceptual-and-cognitive-
mechanisms-1st-edition-daniel-little-6614350
Functorial Knot Theory Categories Of Tangles Coherence Categorical
Deformations And Topological Invariants David N Yetter
https://ebookbell.com/product/functorial-knot-theory-categories-of-
tangles-coherence-categorical-deformations-and-topological-invariants-
david-n-yetter-2116664
3. Theory Of Isotropicorthotropic Elasticity K Bhaskar T K Varadan
https://ebookbell.com/product/theory-of-isotropicorthotropic-
elasticity-k-bhaskar-t-k-varadan-45138732
Theory Of Quantum Information With Memory Mouhsiung Chang
https://ebookbell.com/product/theory-of-quantum-information-with-
memory-mouhsiung-chang-45150002
Theory Of Modern Electronic Semiconductor Devices Kevin F Brennan
https://ebookbell.com/product/theory-of-modern-electronic-
semiconductor-devices-kevin-f-brennan-46163106
Theory Of Operator Algebras Iii Masamichi Takesaki
https://ebookbell.com/product/theory-of-operator-algebras-iii-
masamichi-takesaki-46233346
Theory Of Operator Algebras Ii Masamichi Takesaki
https://ebookbell.com/product/theory-of-operator-algebras-ii-
masamichi-takesaki-46233368
7. MONOGRAPHS ON STATISTICS AND APPLIED PROBABILITY
General Editors
F. Bunea, V. Isham, N. Keiding, T. Louis, R. L. Smith, and H. Tong
1. Stochastic Population Models in Ecology and Epidemiology M.S. Barlett (1960)
2. Queues D.R. Cox and W.L. Smith (1961)
3. Monte Carlo Methods J.M. Hammersley and D.C. Handscomb (1964)
4. The Statistical Analysis of Series of Events D.R. Cox and P.A.W. Lewis (1966)
5. Population Genetics W.J. Ewens (1969)
6. Probability, Statistics and Time M.S. Barlett (1975)
7. Statistical Inference S.D. Silvey (1975)
8. The Analysis of Contingency Tables B.S. Everitt (1977)
9. Multivariate Analysis in Behavioural Research A.E. Maxwell (1977)
10. Stochastic Abundance Models S. Engen (1978)
11. Some Basic Theory for Statistical Inference E.J.G. Pitman (1979)
12. Point Processes D.R. Cox and V. Isham (1980)
13. ,GHQWLÀFDWLRQRI2XWOLHUVD.M. Hawkins (1980)
14. Optimal Design S.D. Silvey (1980)
15. Finite Mixture Distributions B.S. Everitt and D.J. Hand (1981)
16. ODVVLÀFDWLRQA.D. Gordon (1981)
17. Distribution-Free Statistical Methods, 2nd edition J.S. Maritz (1995)
18. 5HVLGXDOVDQG,QÁXHQFHLQ5HJUHVVLRQR.D. Cook and S. Weisberg (1982)
19. Applications of Queueing Theory, 2nd edition G.F. Newell (1982)
20. Risk Theory, 3rd edition R.E. Beard, T. Pentikäinen and E. Pesonen (1984)
21. Analysis of Survival Data D.R. Cox and D. Oakes (1984)
22. An Introduction to Latent Variable Models B.S. Everitt (1984)
23. Bandit Problems D.A. Berry and B. Fristedt (1985)
24. Stochastic Modelling and Control M.H.A. Davis and R. Vinter (1985)
25. The Statistical Analysis of Composition Data J. Aitchison (1986)
26. Density Estimation for Statistics and Data Analysis B.W. Silverman (1986)
27. Regression Analysis with Applications G.B. Wetherill (1986)
28. Sequential Methods in Statistics, 3rd edition G.B. Wetherill and K.D. Glazebrook (1986)
29. Tensor Methods in Statistics P. McCullagh (1987)
30. Transformation and Weighting in Regression R.J. Carroll and D. Ruppert (1988)
31. Asymptotic Techniques for Use in Statistics O.E. Bandorff-Nielsen and D.R. Cox (1989)
32. Analysis of Binary Data, 2nd edition D.R. Cox and E.J. Snell (1989)
33. Analysis of Infectious Disease Data N.G. Becker (1989)
34. Design and Analysis of Cross-Over Trials B. Jones and M.G. Kenward (1989)
35. Empirical Bayes Methods, 2nd edition J.S. Maritz and T. Lwin (1989)
36. Symmetric Multivariate and Related Distributions K.T. Fang, S. Kotz and K.W. Ng (1990)
37. Generalized Linear Models, 2nd edition P. McCullagh and J.A. Nelder (1989)
38. Cyclic and Computer Generated Designs, 2nd edition J.A. John and E.R. Williams (1995)
39. Analog Estimation Methods in Econometrics C.F. Manski (1988)
40. Subset Selection in Regression A.J. Miller (1990)
41. Analysis of Repeated Measures M.J. Crowder and D.J. Hand (1990)
42. Statistical Reasoning with Imprecise Probabilities P. Walley (1991)
43. Generalized Additive Models T.J. Hastie and R.J. Tibshirani (1990)
44. Inspection Errors for Attributes in Quality Control N.L. Johnson, S. Kotz and X. Wu (1991)
45. The Analysis of Contingency Tables, 2nd edition B.S. Everitt (1992)
8. 46. The Analysis of Quantal Response Data B.J.T. Morgan (1992)
47. Longitudinal Data with Serial Correlation—A State-Space Approach R.H. Jones (1993)
48. Differential Geometry and Statistics M.K. Murray and J.W. Rice (1993)
49. Markov Models and Optimization M.H.A. Davis (1993)
50. Networks and Chaos—Statistical and Probabilistic Aspects
O.E. Barndorff-Nielsen, J.L. Jensen and W.S. Kendall (1993)
51. Number-Theoretic Methods in Statistics K.-T. Fang and Y. Wang (1994)
52. Inference and Asymptotics O.E. Barndorff-Nielsen and D.R. Cox (1994)
53. Practical Risk Theory for Actuaries C.D. Daykin, T. Pentikäinen and M. Pesonen (1994)
54. Biplots J.C. Gower and D.J. Hand (1996)
55. Predictive Inference—An Introduction S. Geisser (1993)
56. Model-Free Curve Estimation M.E. Tarter and M.D. Lock (1993)
57. An Introduction to the Bootstrap B. Efron and R.J. Tibshirani (1993)
58. Nonparametric Regression and Generalized Linear Models P.J. Green and B.W. Silverman (1994)
59. Multidimensional Scaling T.F. Cox and M.A.A. Cox (1994)
60. Kernel Smoothing M.P. Wand and M.C. Jones (1995)
61. Statistics for Long Memory Processes J. Beran (1995)
62. Nonlinear Models for Repeated Measurement Data M. Davidian and D.M. Giltinan (1995)
63. Measurement Error in Nonlinear Models R.J. Carroll, D. Rupert and L.A. Stefanski (1995)
64. Analyzing and Modeling Rank Data J.J. Marden (1995)
65. Time Series Models—In Econometrics, Finance and Other Fields
D.R. Cox, D.V. Hinkley and O.E. Barndorff-Nielsen (1996)
66. Local Polynomial Modeling and its Applications J. Fan and I. Gijbels (1996)
67. Multivariate Dependencies—Models, Analysis and Interpretation D.R. Cox and N. Wermuth (1996)
68. Statistical Inference—Based on the Likelihood A. Azzalini (1996)
69. Bayes and Empirical Bayes Methods for Data Analysis B.P. Carlin and T.A Louis (1996)
70. Hidden Markov and Other Models for Discrete-Valued Time Series I.L. MacDonald and W. Zucchini (1997)
71. Statistical Evidence—A Likelihood Paradigm R. Royall (1997)
72. Analysis of Incomplete Multivariate Data J.L. Schafer (1997)
73. Multivariate Models and Dependence Concepts H. Joe (1997)
74. Theory of Sample Surveys M.E. Thompson (1997)
75. Retrial Queues G. Falin and J.G.C. Templeton (1997)
76. Theory of Dispersion Models B. Jørgensen (1997)
77. Mixed Poisson Processes J. Grandell (1997)
78. Variance Components Estimation—Mixed Models, Methodologies and Applications P.S.R.S. Rao (1997)
79. Bayesian Methods for Finite Population Sampling G. Meeden and M. Ghosh (1997)
80. Stochastic Geometry—Likelihood and computation
O.E. Barndorff-Nielsen, W.S. Kendall and M.N.M. van Lieshout (1998)
81. Computer-Assisted Analysis of Mixtures and Applications—Meta-Analysis, Disease Mapping and Others
D. Böhning (1999)
82. ODVVLÀFDWLRQQGHGLWLRQA.D. Gordon (1999)
83. Semimartingales and their Statistical Inference B.L.S. Prakasa Rao (1999)
84. Statistical Aspects of BSE and vCJD—Models for Epidemics C.A. Donnelly and N.M. Ferguson (1999)
85. Set-Indexed Martingales G. Ivanoff and E. Merzbach (2000)
86. The Theory of the Design of Experiments D.R. Cox and N. Reid (2000)
87. Complex Stochastic Systems O.E. Barndorff-Nielsen, D.R. Cox and C. Klüppelberg (2001)
88. Multidimensional Scaling, 2nd edition T.F. Cox and M.A.A. Cox (2001)
89. Algebraic Statistics—Computational Commutative Algebra in Statistics
G. Pistone, E. Riccomagno and H.P. Wynn (2001)
90. Analysis of Time Series Structure—SSA and Related Techniques
N. Golyandina, V. Nekrutkin and A.A. Zhigljavsky (2001)
91. Subjective Probability Models for Lifetimes Fabio Spizzichino (2001)
92. Empirical Likelihood Art B. Owen (2001)
9. 93. Statistics in the 21st Century Adrian E. Raftery, Martin A. Tanner, and Martin T. Wells (2001)
94. Accelerated Life Models: Modeling and Statistical Analysis
Vilijandas Bagdonavicius and Mikhail Nikulin (2001)
95. Subset Selection in Regression, Second Edition Alan Miller (2002)
96. Topics in Modelling of Clustered Data Marc Aerts, Helena Geys, Geert Molenberghs, and Louise M. Ryan (2002)
97. Components of Variance D.R. Cox and P.J. Solomon (2002)
98. Design and Analysis of Cross-Over Trials, 2nd Edition Byron Jones and Michael G. Kenward (2003)
99. Extreme Values in Finance, Telecommunications, and the Environment
Bärbel Finkenstädt and Holger Rootzén (2003)
100. Statistical Inference and Simulation for Spatial Point Processes
Jesper Møller and Rasmus Plenge Waagepetersen (2004)
101. Hierarchical Modeling and Analysis for Spatial Data
Sudipto Banerjee, Bradley P. Carlin, and Alan E. Gelfand (2004)
102. Diagnostic Checks in Time Series Wai Keung Li (2004)
103. Stereology for Statisticians Adrian Baddeley and Eva B. Vedel Jensen (2004)
104. Gaussian Markov Random Fields: Theory and Applications +Ý
DYDUG5XHDQG/HRQKDUG+HOG(2005)
105. Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition
Raymond J. Carroll, David Ruppert, Leonard A. Stefanski, and Ciprian M. Crainiceanu (2006)
106. *HQHUDOL]HG/LQHDU0RGHOVZLWK5DQGRP(IIHFWV8QLÀHG$QDOVLVYLD+OLNHOLKRRG
Youngjo Lee, John A. Nelder, and Yudi Pawitan (2006)
107. Statistical Methods for Spatio-Temporal Systems
Bärbel Finkenstädt, Leonhard Held, and Valerie Isham (2007)
108. Nonlinear Time Series: Semiparametric and Nonparametric Methods Jiti Gao (2007)
109. Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis
Michael J. Daniels and Joseph W. Hogan (2008)
110. Hidden Markov Models for Time Series: An Introduction Using R
Walter Zucchini and Iain L. MacDonald (2009)
111. ROC Curves for Continuous Data Wojtek J. Krzanowski and David J. Hand (2009)
112. Antedependence Models for Longitudinal Data Dale L. Zimmerman and Vicente A. Núñez-Antón (2009)
113. Mixed Effects Models for Complex Data Lang Wu (2010)
114. Intoduction to Time Series Modeling Genshiro Kitagawa (2010)
115. Expansions and Asymptotics for Statistics Christopher G. Small (2010)
116. Statistical Inference: An Integrated Bayesian/Likelihood Approach Murray Aitkin (2010)
117. Circular and Linear Regression: Fitting Circles and Lines by Least Squares Nikolai Chernov (2010)
118. Simultaneous Inference in Regression Wei Liu (2010)
119. Robust Nonparametric Statistical Methods, Second Edition
Thomas P. Hettmansperger and Joseph W. McKean (2011)
120. Statistical Inference: The Minimum Distance Approach
Ayanendranath Basu, Hiroyuki Shioya, and Chanseok Park (2011)
121. Smoothing Splines: Methods and Applications Yuedong Wang (2011)
122. Extreme Value Methods with Applications to Finance Serguei Y. Novak (2012)
123. Dynamic Prediction in Clinical Survival Analysis Hans C. van Houwelingen and Hein Putter (2012)
124. Statistical Methods for Stochastic Differential Equations
Mathieu Kessler, Alexander Lindner, and Michael Sørensen (2012)
125. Maximum Likelihood Estimation for Sample Surveys
R. L. Chambers, D. G. Steel, Suojin Wang, and A. H. Welsh (2012)
126. Mean Field Simulation for Monte Carlo Integration Pierre Del Moral (2013)
127. Analysis of Variance for Functional Data Jin-Ting Zhang (2013)
128. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition Peter J. Diggle (2013)
129. Constrained Principal Component Analysis and Related Techniques Yoshio Takane (2014)
130. Randomised Response-Adaptive Designs in Clinical Trials Anthony C. Atkinson and Atanu Biswas (2014)
131. Theory of Factorial Design: Single- and Multi-Stratum Experiments Ching-Shui Cheng (2014)
10. Monographs on Statistics and Applied Probability 131
Theory of
Factorial Design
Single- and Multi-Stratum
Experiments
Ching-Shui Cheng
University of California, Berkeley, USA
and
Academia Sinica, Taiwan
13. Contents
Preface xv
1 Introduction 1
2 Linear Model Basics 15
2.1 Least squares 15
2.2 Estimation of σ2 17
2.3 F-test 18
2.4 One-way layout 19
2.5 Estimation of a subset of parameters 20
2.6 Hypothesis testing for a subset of parameters 22
2.7 Adjusted orthogonality 23
2.8 Additive two-way layout 24
2.9 The case of proportional frequencies 27
3 Randomization and Blocking 31
3.1 Randomization 31
3.2 Assumption of additivity and models for completely randomized
designs 32
3.3 Randomized block designs 33
3.4 Randomized row-column designs 34
3.5 Nested row-column designs and blocked split-plot designs 35
3.6 Randomization model∗
36
4 Factors 39
4.1 Factors as partitions 39
4.2 Block structures and Hasse diagrams 40
4.3 Some matrices and spaces associated with factors 42
4.4 Orthogonal projections, averages, and sums of squares 44
4.5 Condition of proportional frequencies 45
4.6 Supremums and infimums of factors 46
4.7 Orthogonality of factors 47
5 Analysis of Some Simple Orthogonal Designs 51
5.1 A general result 51
5.2 Completely randomized designs 55
ix
14. x
5.3 Null ANOVA for block designs 57
5.4 Randomized complete block designs 59
5.5 Randomized Latin square designs 60
5.6 Decomposition of the treatment sum of squares 62
5.7 Orthogonal polynomials 63
5.8 Orthogonal and nonorthogonal designs 65
5.9 Models with fixed block effects 67
6 Factorial Treatment Structure and Complete Factorial Designs 71
6.1 Factorial effects for two and three two-level factors 71
6.2 Factorial effects for more than three two-level factors 75
6.3 The general case 77
6.4 Analysis of complete factorial designs 81
6.5 Analysis of unreplicated experiments 83
6.6 Defining factorial effects via finite geometries 84
6.7 Defining factorial effects via Abelian groups 87
6.8 More on factorial treatment structure∗
90
7 Blocked, Split-Plot, and Strip-Plot Complete Factorial Designs 93
7.1 An example 93
7.2 Construction of blocked complete factorial designs 95
7.3 Analysis 98
7.4 Pseudo factors 99
7.5 Partial confounding 99
7.6 Design keys 100
7.7 A template for design keys 104
7.8 Construction of blocking schemes via Abelian groups 106
7.9 Complete factorial experiments in row-column designs 108
7.10 Split-plot designs 110
7.11 Strip-plot designs 115
8 Fractional Factorial Designs and Orthogonal Arrays 117
8.1 Treatment models for fractional factorial designs 117
8.2 Orthogonal arrays 118
8.3 Examples of orthogonal arrays 122
8.4 Regular fractional factorial designs 124
8.5 Designs derived from Hadamard matrices 125
8.6 Mutually orthogonal Latin squares and orthogonal arrays 128
8.7 Foldover designs 128
8.8 Difference matrices 130
8.9 Enumeration of orthogonal arrays 133
8.10 Some variants of orthogonal arrays∗
134
15. xi
9 Regular Fractional Factorial Designs 139
9.1 Construction and defining relation 139
9.2 Aliasing and estimability 142
9.3 Analysis 145
9.4 Resolution 147
9.5 Regular fractional factorial designs are orthogonal arrays 147
9.6 Foldovers of regular fractional factorial designs 151
9.7 Construction of designs for estimating required effects 155
9.8 Grouping and replacement 157
9.9 Connection with linear codes 161
9.10 Factor representation and labeling 162
9.11 Connection with finite projective geometry∗
164
9.12 Foldover and even designs revisited∗
166
10 Minimum Aberration and Related Criteria 169
10.1 Minimum aberration 169
10.2 Clear two-factor interactions 170
10.3 Interpreting minimum aberration 171
10.4 Estimation capacity 173
10.5 Other justifications of minimum aberration 178
10.6 Construction and complementary design theory 179
10.7 Maximum estimation capacity: a projective geometric approach∗
183
10.8 Clear two-factor interactions revisited 185
10.9 Minimum aberration blocking of complete factorial designs 187
10.10 Minimum moment aberration 188
10.11 A Bayesian approach 190
11 Structures and Construction of Two-Level Resolution IV Designs 195
11.1 Maximal designs 195
11.2 Second-order saturated designs 196
11.3 Doubling 199
11.4 Maximal designs with N/4+1 ≤ n ≤ N/2 202
11.5 Maximal designs with n = N/4+1 204
11.6 Partial foldover 207
11.7 More on clear two-factor interactions 209
11.8 Applications to minimum aberration designs 211
11.9 Minimum aberration even designs 213
11.10 Complementary design theory for doubling 216
11.11 Proofs of Theorems 11.28 and 11.29∗
220
11.12 Coding and projective geometric connections∗
221
12 Orthogonal Block Structures and Strata 223
12.1 Nesting and crossing operators 223
12.2 Simple block structures 228
12.3 Statistical models 230
16. xii
12.4 Poset block structures 232
12.5 Orthogonal block structures 233
12.6 Models with random effects 234
12.7 Strata 236
12.8 Null ANOVA 238
12.9 Nelder’s rules 239
12.10 Determining strata from Hasse diagrams 242
12.11 Proofs of Theorems 12.6 and 12.7 244
12.12 Models with random effects revisited 245
12.13 Experiments with multiple processing stages 247
12.14 Randomization justification of the models for simple block
structures* 251
12.15 Justification of Nelder’s rules* 253
13 Complete Factorial Designs with Orthogonal Block Structures 257
13.1 Orthogonal designs 257
13.2 Blocked complete factorial split-plot designs 259
13.3 Blocked complete factorial strip-plot designs 263
13.4 Contrasts in the strata of simple block structures 265
13.5 Construction of designs with simple block structures 269
13.6 Design keys 271
13.7 Design key templates for blocked split-plot and strip-plot designs 273
13.8 Proof of Theorem 13.2 278
13.9 Treatment structures 279
13.10 Checking design orthogonality 280
13.11 Experiments with multiple processing stages: the nonoverlapping
case 282
13.12 Experiments with multiple processing stages: the overlapping case 288
14 Multi-Stratum Fractional Factorial Designs 291
14.1 A general procedure 291
14.2 Construction of blocked regular fractional factorial designs 292
14.3 Fractional factorial split-plot designs 295
14.4 Blocked fractional factorial split-plot designs 300
14.5 Fractional factorial strip-plot designs 302
14.6 Design key construction of blocked strip-plot designs 305
14.7 Post-fractionated strip-plot designs 306
14.8 Criteria for selecting blocked fractional factorial designs based on
modified wordlength patterns 308
14.9 Fixed block effects: surrogate for maximum estimation capacity 310
14.10 Information capacity and its surrogate 312
14.11 Selection of fractional factorial split-plot designs 317
14.12 A general result on multi-stratum fractional factorial designs 319
14.13 Selection of blocked fractional factorial split-plot designs 321
17. xiii
14.14 Selection of blocked fractional factorial strip-plot designs 322
14.15 Geometric formulation∗
323
15 Nonregular Designs 329
15.1 Indicator functions and J-characteristics 329
15.2 Partial aliasing 331
15.3 Projectivity 332
15.4 Hidden projection properties of orthogonal arrays 334
15.5 Generalized minimum aberration for two-level designs 338
15.6 Generalized minimum aberration for multiple and mixed levels 340
15.7 Connection with coding theory 341
15.8 Complementary designs 343
15.9 Minimum moment aberration 345
15.10 Proof of Theorem 15.18∗
347
15.11 Even designs and foldover designs 348
15.12 Parallel flats designs 349
15.13 Saturated designs for hierarchical models: an application of
algebraic geometry 353
15.14 Search designs 355
15.15 Supersaturated designs 356
Appendix 365
A.1 Groups 365
A.2 Finite fields 365
A.3 Vector spaces 367
A.4 Finite Euclidean geometry 368
A.5 Finite projective geometry 368
A.6 Orthogonal projections and orthogonal complements 369
A.7 Expectation of a quadratic form 369
A.8 Balanced incomplete block designs 370
References 371
Index 389
18. Preface
Factorial designs are widely used in many scientific and industrial investigations. The
objective of this book is to provide a rigorous, systematic, and up-to-date treatment
of the theoretical aspects of this subject. Despite its long history, research in factorial
design has grown considerably in the past two decades. Several books covering these
advances are available; nevertheless new discoveries continued to emerge. There are
also old useful results that seem to have been overlooked in recent literature and, in
my view, deserve to be better known.
Factorial experiments with multiple error terms (strata) that result from compli-
cated structures of experimental units are common in agriculture. In recent years, the
design of such experiments also received much attention in industrial applications. A
theory of orthogonal block structures that goes back to John Nelder provides a unify-
ing framework for the design and analysis of multi-stratum experiments. One feature
of the present book is to present this elegant and general theory which, once under-
stood, is simple to use, and can be applied to various structures of experimental units
in a unified and systematic way. The mathematics required to understand this theory
is perhaps what, in Rosemary Bailey’s words, “obscured the essential simplicity”
of the theory. In this book, I tried to minimize the mathematics needed, and did not
present the theory in the most general form as developed by Bailey and her coauthors.
To prepare readers for the general theory, a unified treatment of some simple designs
such as completely randomized designs, block designs, and row-column designs is
presented first. Therefore the book also covers these elementary non-factorial-design
topics. It is suitable as a reference book for researchers and as a textbook for grad-
uate students who have taken a first course in the design of experiments. Since the
book is self-contained and includes many examples, it should also be accessible to
readers with minimal previous exposure to experimental design as long as they have
good mathematical and statistical backgrounds. Readers are required to be familiar
with linear algebra. A review of linear model theory is given in Chapter 2, and a brief
survey of some basic algebraic results on finite groups and fields can be found in the
Appendix. Sections that can be skipped, at least on the first reading, without affecting
the understanding of the material in later parts of the book are marked with stars.
In addition to a general theory of multi-stratum factorial design, the book covers
many other topics and results that have not been reported in books. These include,
among others, the useful method of design key for constructing multi-stratum facto-
rial designs, the methods of partial foldover and doubling for constructing two-level
resolution IV designs, some results on the structures of two-level resolution IV de-
signs taken from the literature of projective geometry, the extension of minimum
xv
19. xvi PREFACE
aberration to nonregular designs, and the minimum moment aberration criterion,
which is equivalent to minimum aberration.
The book does not devote much space to the analysis of factorial designs due
to its theoretical nature, and also because excellent treatment of strategies for data
analysis can be found in several more applied books. Another subject that does not
receive a full treatment is the so-called nonregular designs. It is touched upon in
Chapter 8 when orthogonal arrays are introduced, and some selected topics are sur-
veyed in Chapter 15. The research on nonregular designs is still very active and
expands rapidly. It deserves another volume.
The writing of this book originated from a ten-lecture workshop on “Recent De-
velopments in Factorial Design” I gave in June 2002 at the Institute of Statistical
Science, Academia Sinica, in Taiwan. I thank Chen-Hsin Chen, Director of the insti-
tute at the time, for his invitation. The book was written over a long period of time
while I taught at the University of California, Berkeley, and also during visits to the
National Center for Theoretical Sciences in Hsinchu, Taiwan, and the Issac Newton
Institute for Mathematical Sciences in Cambridge, United Kingdom. The support
of these institutions and the US National Science Foundation is acknowledged. The
book could not have been completed without the help of many people. It contains re-
sults from joint works with Rosemary Bailey, Dursun Bulutoglu, Hegang Chen, Lih-
Yuan Deng, Mike Jacroux, Bobby Mee, Rahull Mukerjee, Nam-Ky Nguyen, David
Steinberg, Don Sun, Boxin Tang, Pi-Wen Tsai, Hongquan Xu, and Oksoun Yee. I had
the privilege of working with them. I also had the fortune to know Rosemary Bailey
early in my career. Her work has had a great impact on me, and this book uses the
framework she had developed. Boxin Tang read the entire book, and both Rosemary
Bailey and Don Ylvisaker read more than half of it. They provided numerous de-
tailed and very helpful comments as well as pointing out many errors. Hegang Chen,
Chen-Tuo Liao, and Hongquan Xu helped check the accuracy of some parts of the
book. As a LaTex novice, I am very grateful to Pi-Wen Tsai for her help whenever
I ran into problems with LaTex. She also read and commented on earlier versions
of several chapters. Yu-Ting Chen and Chiun-How Kao helped fix some figures. I
would also like to acknowledge our daughter Adelaide for her endearing love and
support as well as her upbeat reminder to always see the bright side. Last but not
least, I am most grateful to my wife Suzanne Pan for her thankless support and care
over the years and for patiently reading this “Tian Shu” from cover to cover.
Additional material for the book will be maintained at http://www.crcpress.com/
product/isbn/9781466505575/ and http://www.stat.sinica.edu.tw/factorial-design/.
20. Chapter 1
Introduction
Many of the fundamental ideas and principles of experimental design were devel-
oped by Sir R. A. Fisher at the Rothamsted Experimental Station (Fisher, 1926). This
agricultural background is reflected in some terminology of experimental design that
is still being used today. Agricultural experiments are conducted, e.g., to compare
different varieties of a certain crop or different fertilizers. In general, those that are
under comparison in an experiment are called treatments. Manufacturing processes
in industrial experiments and drugs in pharmaceutical studies are examples of treat-
ments. In an agricultural experiment, the varieties or fertilizers are assigned to plots,
and the yields are compared after harvesting. Each plot is called an experimental unit
(or unit). In general, an experimental unit can be defined as the smallest division of
the experimental material such that different units may receive different treatments
(Cox, 1958, p. 2). At the design stage, a treatment is chosen for each experimental
unit.
One fundamental difficulty in such comparative experiments is inherent variabil-
ity of the experimental units. No two plots have exactly the same soil quality, and
there are other variations beyond the experimenter’s control such as weather condi-
tions. Consequently, effects of the treatments may be biased by uncontrolled vari-
ations. A solution is to assign the treatments randomly to the units. In addition to
guarding against potential systematic biases, randomization also provides a basis for
appropriate statistical analysis.
The simplest kind of randomized experiment is one in which treatments are as-
signed to units completely at random. In a completely randomized experiment, the
precision of a treatment comparison depends on the overall variability of the experi-
mental units. When the experimental units are highly variable, the treatment compar-
isons do not have good precision. In this case, the method of blocking is an effective
way to reduce experimental error. The idea is to divide the experimental units into
more homogeneous groups called blocks. When the treatments are compared on the
units within each block, the precision is improved since it depends on the smaller
within-block variability.
Suppose the experimental units are grouped into b blocks of size k. Even though
efforts are made for the units in the same block to be as alike as possible, they are
still not the same. Given an initial assignment of the treatments to the bk unit labels
based on statistical, practical and/or other considerations, randomization is carried
1
21. 2 INTRODUCTION
out by randomly permuting the unit labels within each block (done independently
from block to block), and also randomly permuting the block labels. The additional
step of randomly permuting block labels is to assure that an observation intended on
a given treatment is equally likely to occur at any of the experimental units.
Under a completely randomized experiment, the experimental units are consid-
ered to be unstructured. The structure of the experimental units under a block design
is an example of nesting. Suppose there are b blocks each consisting of k units; then
each experimental unit can be labeled by a pair (i, j), i = 1,...,b, j = 1,...,k. This
involves two factors with b and k levels, respectively. Here if i = i
, unit (i, j) bears
no relation to unit (i
, j); indeed, within-block randomization renders positions of the
units in each block immaterial. We say that the k-level factor is nested in the b-level
factor, and denote this structure by b/k or block/unit if the two factors involved are
named “block” and “unit,” respectively.
Another commonly encountered structure of the experimental units involves two
blocking factors. For example, in agricultural experiments the plots may be laid out
in rows and columns, and we try to eliminate from the treatment comparisons the spa-
tial variations due to row-to-row and column-to-column differences. In experiments
that are carried out on several different days and in several different time slots on
each day, the observed responses might be affected by day-to-day and time-to-time
variations. In this case each experimental run can be represented by a cell of a rect-
angular grid with those corresponding to experimental runs taking place on the same
day (respectively, in the same time slot) falling in the same row (respectively, the
same column). In general, suppose rc experimental units can be arranged in r rows
and c columns such that any two units in the same row have a definite relation, and so
do those in the same column. Then we have an example of crossing. This structure of
experimental units is denoted by r×c or row × column if the two factors involved are
named “row” and “column,” respectively. In such a row-column experiment, given an
initial assignment of the treatments to the rc unit labels, randomization is carried out
by randomly permuting the row labels and, independently, randomly permuting the
column labels. This assures that the structure of the experimental units is preserved:
two treatments originally assigned to the same row (respectively, column) remain in
the same row (respectively, column) after randomization.
For example, suppose there are four different manufacturing processes compared
in four time slots on each of four days. With the days represented by rows and times
represented by columns, a possible design is
1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1
where the four numbers 1, 2, 3, and 4 are labels of the treatments assigned to the
units represented by the 16 row-column combinations. We see that each of the four
numbers appears once in each row and once in each column. Under such a design,
called a Latin square, all the treatments can be compared on each of the four days
22. INTRODUCTION 3
as well as in each of the four time slots. If the random permutation is such that the
first, second, third, and fourth rows of the Latin square displayed above are mapped
to the first, fourth, second, and third rows, respectively, and the first, second, third,
and fourth columns are mapped to the fourth, third, first, and second columns, re-
spectively, then it results in the following Latin square to be used in actual experi-
mentation.
3 4 2 1
1 2 4 3
2 1 3 4
4 3 1 2
The structures of experimental units are called block structures. Block and row-
column designs are based on the two simplest block structures involving nesting and
crossing, respectively. Nelder (1965a) defined simple block structures to be those
that can be obtained by iterations of nesting (/) and crossing (×) operators. For ex-
ample, n1/(n2 ×n3) represents the block structure under a nested row-column design,
where n1n2n3 experimental units are grouped into n1 blocks of size n2n3, and within
each block the n2n3 units are arranged in n2 rows and n3 columns. Randomization
of such an experiment can be done by randomly permuting the block labels and car-
rying out the appropriate randomization for the block structure n2 × n3 within each
block, that is, randomly permuting the row labels and column labels separately. In
an experiment with the block structure n1/(n2/n3), n1n2n3 experimental units are
grouped into n1 blocks, and within each block the n2n3 units are further grouped into
n2 smaller blocks (often called whole-plots) of n3 units (often called subplots). To
randomize such a blocked split-plot experiment, we randomly permute the block la-
bels and carry out the appropriate randomization for the block structure n2/n3 within
each block, that is, randomly permute the whole-plot labels within each block, and
randomly permute the subplot labels within each whole-plot. Note that n1/(n2/n3) is
the same as (n1/n2)/n3.
In general, randomization of an experiment with a simple block structure is car-
ried out according to the appropriate randomization for nesting or crossing at each
stage of the block structure formula.
Like experimental units, the treatments may also have a structure. One can com-
pare treatments by examining the pairwise differences of treatment effects. When the
treatments do not have a structure (for example, when they are different varieties of
a crop), one may be equally interested in all the pairwise comparisons of treatment
effects. However, if they do have a certain structure, then some comparisons may be
more important than others. For example, suppose one of the treatments is a control.
Then one may be more interested in the comparisons between the control and new
treatments.
In this book, treatments are to have a factorial structure: each treatment is a com-
bination of multiple factors (variables) called treatment factors. Suppose there are n
treatment factors and the ith factor has si values or settings to be studied. Each of
these values or settings is called a level. The treatments, also called treatment com-
23. 4 INTRODUCTION
binations in this context, consist of all s1 ··· sn possible combinations of the factor
levels. The experiment is called an s1 × ··· × sn factorial experiment, and is called
an sn experiment when s1 = ··· = sn = s. For example, a fertilizer may be a combi-
nation of the levels of three factors N (nitrogen), P (phosphate), and K (potash), and
a chemical process might involve temperature, pressure, concentration of a catalyst,
etc. Fisher (1926) introduced factorial design to agricultural experiments, and Yates
(1935, 1937) made significant contributions to its early development.
When the treatments have a factorial structure, typically we are interested in the
effects of individual factors, as well as how the factors interact with one another.
Special functions of the treatment effects, called main effects and interactions, can
be defined to represent such effects of interest. We say that the treatment factors do
not interact if, when the levels of a factor are changed while those of the other factors
are kept constant, the changes in the treatment effects only depend on the levels of the
varying factor. In this case, we can separate the effects of individual factors, and the
effect of each treatment combination can be obtained by summing up these individual
effects. Under such additivity of the treatment factors, for example, to determine the
combination of N, P, and K with the highest average yield, one can simply find the
best level of each of the three factors separately. Otherwise, the factors need to be
considered simultaneously. Roughly speaking, the main effect of a treatment factor
is its effects averaged over the levels of the other factors, and the interaction effects
measure departures from additivity. Precise definitions of these effects, collectively
called factorial effects, will be given in Chapter 6.
A factorial experiment with each treatment combination observed once is called
a complete factorial experiment. We also refer to it as a single-replicate complete
factorial experiment. The analysis of completely randomized experiments in which
each treatment combination is observed the same number of times, to be presented
in Chapter 6, is straightforward. It becomes more involved if the experimental units
have a more complicated block structure and/or if not all the treatment combinations
can be observed.
When a factorial experiment is blocked, with each block consisting of one repli-
cate of all the treatment combinations, the analysis is still very simple. As will be
discussed in Chapter 6, in this case all the treatment main effects and interactions
can be estimated in the same way as if there were no blocking, except that the vari-
ances of these estimators depend on the within-block variability instead of the overall
variability of the experimental units. Since the total number of treatment combina-
tions increases rapidly as the number of factors becomes large, a design that accom-
modates all the treatment combinations in each block requires large blocks whose
homogeneity is difficult to control. In order to achieve smaller within-block vari-
ability, we cannot accommodate all the treatment combinations in the same block
and must use incomplete blocks. It may also be impractical to carry out experiments
in large blocks. Then, since not all the treatment combinations appear in the same
block, the estimates of some treatment factorial effects cannot be based on within-
block comparisons alone. This may result in less precision for such estimates. For
example, suppose an experiment on two two-level factors A1 and A2 is to be run on
two different days with the two combinations (0,0) and (1,1) of the levels of A1 and
24. INTRODUCTION 5
A2 observed on one day, and the other two combinations (0,1) and (1,0) observed
on the other day, where 0 and 1 are the two factor levels. Then estimates of the main
effect (comparison of the two levels) of factor A1 and the main effect of A2 are based
on within-block comparisons, but as will be seen in Chapter 7, the interaction of the
two factors would have to be estimated by comparing the observations on the first day
with thoseon the second day, resulting in less precision. We say that this two-factor
interaction is confounded with blocks.
When a factorial experiment must be run in incomplete blocks, we choose a de-
sign in such a way that only those factorial effects that are less important or are
known to be negligible are confounded with blocks. Typically the main effects are
deemed more important, and one would avoid confounding them with blocks. How-
ever, due to practical constraints, sometimes one must confound certain main effects
with blocks. For instance, it may be difficult to change the levels of some factors.
In the aforementioned example, if a factor must be kept at the same level on each
day, then the main effect of that factor can only be estimated by a more variable
between-day comparison.
Often the number of treatment combinations is so large that it is practically pos-
sible to observe only a small subset of the treatment combinations. This is called a
fractional factorial design. Then, since not all the treatment combinations are ob-
served, some factorial effects are mixed up and cannot be distinguished. We say that
they are aliased. For example, when only 16 treatment combinations are to be ob-
served in an experiment involving six two-level factors, there are 63 factorial effects
(6 main effects, 15 two-factor interactions, 20 three-factor interactions, 15 four-factor
interactions, 6 five-factor interactions, and 1 six-factor interaction), but only 15 de-
grees of freedom are available for estimating them. This is possible if many of the
factorial effects are negligible. One design issue is which 16 of the 64 treatment
combinations are to be selected.
An important property of a fractional factorial design, called resolution, pertains
to the extent to which the lower-order effects are mixed up with higher-order effects.
For example, under a design of resolution III, no main effect is aliased with other
main effects, but some main effects are aliased with two-factor interactions; under
a design of resolution IV, no main effect is aliased with other main effects or two-
factor interactions, but some two-factor interactions are aliased with other two-factor
interactions; under a design of resolution V, no main effects and two-factor inter-
actions are aliased with one another. When the experimenter has little knowledge
about the relative importance of the factorial effects, it is common to assume that the
lower-order effects are more important than higher-order effects (the main effects
are more important than interactions, and two-factor interactions are more important
than three-factor interactions, etc.), and effects of the same order are equally impor-
tant. Under such a hierarchical assumption, it is desirable to have a design with high
resolution. A popular criterion of selecting fractional factorial designs and a refine-
ment of maximum resolution, called minimum aberration, is based on the idea of
minimizing the aliasing among the more important lower-order effects.
When the experimental units have a certain block structure, in addition to pick-
ing a fraction of the treatment combinations, we also have to decide how to assign
25. 6 INTRODUCTION
the selected treatment combinations to the units. In highly fractionated factorial ex-
periments with complicated block structures, we have complex aliasing of treatment
factorial effects as well as multiple levels of precision for their estimates. The bulk of
this book is about the study of such designs, including their analysis, selection, and
construction. The term “multi-stratum” in the subtitle of the book refers to multiple
sources of errors that arise from complicated block structures, while “single-stratum”
is synonymous with “complete randomization” where there is one single error term.
Treatment and block structures are two important components of a randomized
experiment. Nelder (1965a,b) emphasized their distinction and developed a theory
for the analysis of randomized experiments with simple block structures. Simple
block structures cover most, albeit not all the block structures that are commonly
encountered in practice. Speed and Bailey (1982) and Tjur (1984) further developed
the theory to cover the more general orthogonal block structures. This theory, an
account of which can be found in Bailey (2008), provides the basis for the approach
adopted in this book.
We turn to five examples of factorial experiments to motivate some of the topics
to be discussed in the book. The first three examples involve simple block structures.
The block structures in Examples 1.4 and 1.5 are not simple block structures, but the
theory developed by Speed and Bailey (1982) and Tjur (1984) is applicable. We will
return to these examples from time to time in later chapters to illustrate applications
of the theory as it is developed.
Our first example is a replicated complete factorial experiment with a relatively
complicated block structure.
Example 1.1. Loughin (2005) studied the design of an experiment on weed control.
Herbicides can kill the weeds that reduce soybean yields, but they can also kill soy-
beans. On the other hand, soybean varieties can be bred or engineered to be resistant
to certain herbicides. An experiment is to be carried out to study what factors in-
fluence weed control and yield of genetically altered soybean varieties. Four factors
studied in the experiment are soybean variety/herbicide combinations in which the
herbicide is safe for the soybean variety, dates and rates of herbicide application,
and weed species. There are three variety/herbicide combinations, two dates (early
and late), three rates (1/4, 1/2, and 1), and seven weed species, giving a total of 126
treatments with a 3 × 2 × 3 × 7 factorial structure. Soybeans and weeds are planted
together and a herbicide safe for the soybean variety is sprayed at the designated
time and rate. Then weed properties (numbers, density, mass) and soybean yields are
measured. However, there are some practical constraints on how the experiment can
be run. Due to herbicide drift, different varieties cannot be planted too close together
and buffer zones between varieties are needed, but the field size is not large enough to
allow for 126 plots of adequate size with large buffers between each pair of adjacent
plots. Therefore, for efficient use of space, one needs to plant all of a given soybean
variety contiguously so that fewer buffers are needed. Additional drift concerns lead
to a design described as follows. First the field is divided into four blocks to accom-
modate four replications:
26. INTRODUCTION 7
Each block is split into three plots with two buffer zones, and the variety/herbicide
combinations are randomly assigned to the plots within blocks:
Var 1 Var 3 Var 2
Each plot is then split into two subplots, with application times randomly assigned
to subplots within plots:
Late Early Early Late Late Early
Furthermore each subplot is split into three sub-subplots, with application rates ran-
domly assigned to sub-subplots within subplots:
1
2
1
4 1 1 1
4
1
2
1
2 1 1
4 1 1
2
1
4 1 1
2
1
4
1
4 1 1
2
Each block is divided into seven horizontal strips, with the weed species randomly
assigned to the strips within blocks:
27. 8 INTRODUCTION
We end up with 504 combinations of sub-subplots and strips:
Each of the 126 treatment combinations appears once in each of the four blocks. To
summarize, we have four replicates of a complete 3×2×3×7 factorial experiment
with the block structure 4/[(3/2/3)×7]. Both subplots in the same plot are assigned
the same variety/herbicide combination, all the sub-subplots in the same subplot are
assigned the same herbicide application time, and all the sub-subplot and strip inter-
sections in the same strip are assigned the same weed species. Various aspects of the
analysis of this design will be discussed in Sections 12.1, 12.9, 12.10, and 13.10.
In Example 1.1, there are 18 sub-subplots in each block. If different soybean
varieties were to be assigned to neighboring sub-subplots, then 17 buffer zones
would be needed in each block. With only two buffer zones per block under the
proposed design, comparisons of soybean varieties are based on between-plot com-
parisons, which are expected to be more variable than those between subplots and
sub-subplots. The precision of the estimates of such effects is sacrificed in order to
satisfy the practical constraints.
Example 1.2. McLeod and Brewster (2004) discussed an experiment for identifying
key factors that would affect the quality of a chrome-plating process. Suppose six
two-level treatment factors are to be considered in the experiment: A, chrome con-
centration; B, chrome to sulfate ratio; C, bath temperature; S, etching current density;
T, plating current density; and U, part geometry. The response variables include, e.g.,
the numbers of pits and cracks. The chrome plating is done in a bath (tank), which
contains several rectifiers, but only two will be used. On any given day the levels of
A, B, and C cannot be changed since they represent characteristics of the bath. On the
other hand, the levels of factors S, T, and U can be changed at the rectifier level. The
experiment is to be run on 16 days, with four days in each of four weeks. Therefore
there are a total of 32 runs with the block structure (4 weeks)/(4 days)/(2 runs), and
28. INTRODUCTION 9
one has to choose 32 out of the 26 = 64 treatment combinations. Weeks, days, and
runs can be considered as blocks, whole-plots, and subplots, respectively. The three
factors A, B, and C must have constant levels on the two experimental runs on the
same day, and are called whole-plot treatment factors. The other three factors S, T,
and U are not subject to this constraint and are called subplot treatment factors. We
will return to this example in Sections 12.9, 13.2, 13.4, 13.5, 13.7, 14.4, and 14.13.
Example 1.3. Miller (1997) described a laundry experiment for investigating meth-
ods of reducing the wrinkling of clothes. Suppose the experiment is to be run in
two blocks, with four washers and four dryers to be used. After four cloth samples
have been washed in each washer, the 16 samples are divided into four groups with
each group containing one sample from each washer. Each of these groups is then
assigned to one dryer. The extent of wrinkling on each sample is evaluated at the end
of the experiment. This results in 32 experimental runs that can be thought to have
the 2/(4×4) block structure shown in Figure 1.1, where each cell represents a cloth
sample, rows represent sets of samples that are washed together, and columns repre-
sent sets of samples that are dried together. There are ten two-level treatment factors,
Figure 1.1 A 2/(4×4) block structure
six of which (A, B, C, D, E, F) are configurations of washers and four (S, T, U, V)
are configurations of dryers. One has to choose 32 out of the 210 = 1024 treatment
combinations. Furthermore, since the experimental runs on the cloth samples in the
same row are conducted in the same washing cycle, each of A, B, C, D, E, F must
have a constant level in each row. Likewise, each of S, T, U, V must have a constant
level in each column. Thus in each block, four combinations of the levels of A, B, C,
D, E, F are chosen, one for each row, and four combinations of the levels of S, T,
U, V are chosen, one for each column. The four combinations of washer settings are
then coupled with the four combinations of dryer settings to form 16 treatment com-
binations of the ten treatment factors in the same block. An experiment run in this
way requires only four washer loads and four dryer loads in each block. If one were
to do complete randomization in each block, then four washer loads and four dryer
loads could produce only four observations. The trade-off is that the main effect of
each treatment factor is confounded with either rows or columns. Construction and
analysis of designs for such blocked strip-plot experiments will be discussed in Sec-
tions 12.2, 12.9, 12.10, 13.3, 13.4, 13.5, 13.6, 13.7, 14.5, 14.6, and 14.14.
Federer and King (2006) gave a comprehensive treatment of split-plot and strip-
29. 10 INTRODUCTION
plot designs and their many variations. In this book, we present a unifying theory that
can be systematically applied to a very general class of multi-stratum experiments.
Example 1.3 is an experiment with two processing stages: washing and drying.
Many industrial experiments involve a sequence of processing stages, with the levels
of various treatment factors assigned and processed at different stages. At each stage
the experimental units are partitioned into disjoint classes. Those in the same class,
which will be processed together, are assigned the same level of each of the treatment
factors that are to be processed at that stage. We call the treatment factors processed at
the ith stage the ith-stage treatment factors. In Example 1.3, levels of the six washer
factors are set at the first stage and those of the four dryer factors are set at the
second stage. So the washer configurations are first-stage treatment factors and the
dryer configurations are second-stage treatment factors. Such an experiment with
two processing stages can be thought to have experimental units with a row-column
structure.
In Examples 1.1–1.3, the experimental units can be represented by all the level
combinations of some unit factors. In the next two examples, we present experiments
in which the experimental units are a fraction of unit-factor level combinations.
Example 1.4. Mee and Bates (1998) discussed designs of experiments with multiple
processing stages in the fabrication of integrated circuits. Suppose that at the first
stage 16 batches of material are divided into four groups of equal size, with the
same level of each first-stage treatment factor assigned to all the batches in the same
group. At the second stage they are rearranged into another four groups of equal size,
again with the same level of each second-stage treatment factor assigned to all the
batches in the same group. As in Example 1.3, the groupings at the two stages can
be represented by rows and columns. Then each of the first-stage groups and each
of the second-stage groups have exactly one batch in common. This is a desirable
property whose advantage will be explained in Section 12.13. Now suppose there
is a third stage. Then we need a third grouping of the batches. One possibility is to
group according to the numbers in the Latin square shown earlier:
1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1
One can assign the same level of each third-stage treatment factor to all the units
(batches) corresponding to the same number in the Latin square. One advantage is
that each of the third-stage groups has exactly one unit in common with any group at
the first two stages. If a fourth stage is needed, then one may group according to the
following Latin square:
30. INTRODUCTION 11
1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2
This and the previous Latin square have the property that when one is superimposed
on the other, each of the 16 pairs of numbers (i, j), 1 ≤ i, j ≤ 4, appears in exactly
one cell. We say that these two Latin squares are orthogonal to each other. If the
fourth-stage grouping is done according to the numbers in the second Latin square,
then each of the fourth-stage groups also has exactly one unit in common with each
group at any of the first three stages. This kind of block structure cannot be obtained
by iterations of nesting and crossing operators. To be a simple block structure, with
four groups at each of three or four stages, one would need 43 = 64 or 44 = 256 units,
respectively. Thus the 16 units can be regarded as a quarter or one-sixteenth fraction
of the combinations of three or four 4-level factors, respectively. The following is
a complete 24 design which can be used for experiments in which the levels of the
four treatment factors are set at four stages, one factor per stage: the first factor has a
constant level in each row, the second factor has a constant level in each column, the
third factor has a constant level in each cell occupied by the same number in the first
Latin square, and the fourth factor has a constant level in each cell occupied by the
same number in the second Latin square.
0000 0011 0101 0110
0010 0001 0111 0100
1001 1010 1100 1111
1011 1000 1110 1101
We will return to this example in Sections 12.5, 12.10, 12.13, and 13.11.
Example 1.5. Bingham, Sitter, Kelly, Moore, and Olivas (2008) discussed experi-
ments with multiple processing stages where more groups are needed at each stage,
which makes it impossible for all the groups at different stages to share common
units. For example, in an experiment with two processing stages, suppose 32 exper-
imental units are to be partitioned into 8 groups of size 4 at each of the two stages.
One possibility is to partition the 32 units as in Figure 1.1. The eight rows of size 4,
four of which from each of the two blocks, together constitute the eight first-stage
groups, and the eight columns in the two blocks together constitute the eight second-
stage groups. As shown in the following figure, the 32 starred experimental units are
a fraction of the 64 units in a completely crossed 8×8 square.
31. 12 INTRODUCTION
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
As in Example 1.4, the 32 units do not have a simple block structure. An important
difference, however, is that in the current setting not all the first-stage groups can
meet with every second-stage group, causing some complications in the design and
analysis (to be discussed in Section 13.12). The figure shows that the 32 units are
divided into two groups of size 16, which we call pseudo blocks since they are not
part of the originally intended block structure. We will revisit this example in Sec-
tions 12.13 and 13.12, and show that it can be treated as an experiment with the block
structure 2/(4×4). A similar problem was studied in Vivacqua and Bisgaard (2009),
to be discussed in Section 14.7.
An overview
Some introductory material is presented in Chapters 2–5. Chapter 2 is a review
of some results on linear models, with emphasis on one-way and two-way layout
models and a geometric characterization of the condition of proportional frequencies
between two factors. Under the assumption of treatment-unit additivity, randomiza-
tion models are developed in Chapter 3 for some designs with simple block struc-
tures, including block designs and row-column designs. In Chapter 4, the condition
of proportional frequencies is extended to a notion of orthogonal factors that plays an
important role in the block structures studied in this book. Some mathematical results
on factors that are needed throughout the book are also gathered there. A condition
that entails simple analysis of a randomized design (Theorem 5.1) is established in
Chapter 5. This result is used to present a unified treatment of the analyses of three
classes of orthogonal designs (completely randomized designs, complete block de-
signs, and Latin square designs) under the randomization models derived in Chapter
3. It is also a key result for developing, in later chapters, a general theory of orthog-
onal designs for experiments with more complicated block structures.
The treatment factorial structure is introduced in Chapter 6. It is shown how cer-
tain special functions of the treatment effects can be defined to represent main effects
and interactions of the treatment factors. Unless all the treatment factors have two
levels, the choices of such functions are not unique. Several methods of construct-
ing them based on orthogonal polynomials, finite Euclidean geometry, and Abelian
groups are presented. The discussion of complete factorial designs is continued in
Chapter 7, for experiments that are conducted in incomplete blocks or row-column
32. INTRODUCTION 13
layouts, including split-plot and strip-plot designs. In this case, there is more than one
error term and some factorial effects are confounded with blocks, rows, or columns.
A construction method based on design keys is presented in addition to a commonly
used method, and is shown to enjoy several advantages.
Fractional factorial designs under complete randomization are treated in Chap-
ters 8–11. In Chapter 8, the important combinatorial structure of orthogonal arrays
is introduced. Some basic properties of orthogonal arrays as fractional factorial de-
signs, including upper bounds on the number of factors that can be accommodated by
orthogonal arrays of a given run size, are derived. We also present several methods
of constructing orthogonal arrays, in particular the foldover method and the con-
struction via difference matrices. The chapter is concluded with a brief discussion
of applications of orthogonal arrays to computer experiments and three variants of
orthogonal arrays recently introduced for this purpose. The emphasis of this book is
mainly on the so-called regular fractional factorial designs, which are easy to con-
struct and analyze, and have nice structures and a rich theory. In Chapter 9 we provide
a treatment of their basics, including design construction, aliasing and estimability of
factorial effects, resolution, a search algorithm for finding designs under which some
required effects can be estimated, and the connection with the linear codes of coding
theory. The criterion of minimum aberration and some related criteria for selecting
regular fractional factorial designs are discussed in Chapter 10. The statistical mean-
ing of minimum aberration is clarified via its implications on the aliasing pattern of
factorial effects. It is shown that this criterion produces designs with good properties
under model uncertainty and good lower-dimensional projections. The connection
to coding theory provides two powerful tools for constructing minimum aberration
designs: the MacWilliams identities can be used to establish a complementary de-
sign theory that is useful for determining minimum aberration designs when there
are many factors; the Pless power moment identities lead to the criterion of mini-
mum moment aberration, which is equivalent to minimum aberration. Besides the
theoretical interest, this equivalence is useful for analytical characterization and al-
gorithmic construction of minimum aberration designs. A Bayesian approach to the
design and analysis of factorial experiments, also applicable to nonregular designs, is
presented at the end of Chapter 10. Regular designs are also closely related to finite
projective geometries. The connection is made in two optional sections in Chapter 9,
and is used to characterize and construct minimum aberration designs in Chapter 10.
The geometric connection culminates in an elegant theory of the construction and
structures of resolution IV designs in Chapter 11. While foldover is a well-known
method of constructing resolution IV designs, many resolution IV designs cannot be
constructed by this method. We translate the geometric results into design language,
and among other topics, present the methods of doubling and partial foldover for
constructing them.
In Chapters 12–14, we turn to factorial designs with more complicated block
structures called multi-stratum designs. Some basic results on Nelder’s simple block
structures and the more general orthogonal block structures are derived in Chapter
12. A general theory for the design and analysis of orthogonal multi-stratum com-
plete factorial designs is developed in Chapter 13. This theory is applied to several
33. 14 INTRODUCTION
settings, including blocked split-plot designs, blocked strip-plot designs, and design
of experiments with multiple processing stages. Chapter 14 is devoted to the con-
struction of multi-stratum fractional factorial designs and criteria for their selection
under model uncertainty in the spirit of minimum aberration. The five motivating
examples presented above are revisited.
We survey a few nonregular design topics in Chapter 15. Under nonregular de-
signs, the factorial effects are aliased in a complicated way, but their run sizes are
more flexible than regular designs. At the initial stage of experimentation, often only
a small number of the potential factors are important. Due to their run-size economy,
nonregular designs are suitable for conducting factor screening experiments under
the factor sparsity principle. In this context, it is useful to study the property of the
design when it is projected onto small subsets of factors. We also discuss the rele-
vant topics of search designs and supersaturated designs. The objective of a search
design is to identify and discriminate nonnegligible effects under the assumption that
the number of nonnegligible effects is small. Supersaturated designs have more un-
known parameters than the degrees of freedom available for estimating them and are
useful for screening active factors. In addition to these and other miscellaneous top-
ics, we show how some of the results presented in earlier chapters can be extended
to nonregular designs. For example, coding theory again proves useful for providing
a way to extend minimum aberration to nonregular designs.
Throughout this book, the starred sections can be skipped, at least on the first
reading. Relevant exercises are also marked with stars.
34. Chapter 2
Linear Model Basics
In this chapter we review some basic results from linear model theory, including
least squares estimation, the Gauss–Markov Theorem, and tests of linear hypothe-
ses, with applications to the analysis of fixed-effect one-way and additive two-way
layout models. We show how the analysis of an additive two-way layout model is
simplified when certain vector spaces associated with the two factors are orthogonal.
This geometric condition is shown to be equivalent to that the two factors satisfy the
condition of proportional frequencies.
2.1 Least squares
Consider the linear model
yi =
p
∑
j=1
xijθj +εi, i = 1,...,N, (2.1)
where xij,1 ≤ i ≤ N,1 ≤ j ≤ p, are known constants, θ1,...,θp are unknown param-
eters, and ε1,...,εN are uncorrelated random variables with zero mean and common
variance σ2. Let y = (y1,...,yN)T , θ
θ
θ = (θ1,...,θp)T , ε
ε
ε = (ε1,...,εN)T , and X be the
N × p matrix with the (i, j)th entry equal to xij, where T stands for “transpose.” Then
(2.1) can be written as
y = Xθ
θ
θ +ε
ε
ε, (2.2)
with
E(ε
ε
ε) = 0, and cov(ε
ε
ε) = σ2
IN, (2.3)
where E(ε
ε
ε) = (E(ε1),..., E(εN))T , cov(ε
ε
ε) is the covariance matrix of ε
ε
ε, 0 is the vector
of zeros, and IN is the identity matrix of order N. We call X the model matrix.
Least squares estimators
θ1,...,
θp of θ1,...,θp are obtained by minimizing
∑
N
i=1(yi −∑
p
j=1 xijθj)2 = y−Xθ
θ
θ
2
.
Let E(y) = (E(y1),..., E(yN))T . Then under (2.2) and (2.3), E(y) = Xθ
θ
θ. This im-
plies that E(y) is a linear combination of the column vectors of X. Let R(X), called
the column space of X, be the linear space generated by the column vectors of X.
Then E(y) ∈ R(X). The least squares method is to find a vector
y = X
θ
θ
θ in R(X) such
that y−
y is minimized. This is achieved if
y is the orthogonal projection of y onto
15
35. 16 LINEAR MODEL BASICS
R(X). Denoting the orthogonal projection matrix onto a space V by PV , we have
y = X
θ
θ
θ = PR(X)y.
Here y−X
θ
θ
θ, called the residual, is the orthogonal projection of y onto R(X)⊥
, where
R(X)⊥
= {x ∈ RN : x is orthogonal to all the vectors in R(X)} is the orthogonal
complement of R(X) in RN. Therefore y−X
θ
θ
θ is orthogonal to all the column vectors
of X, and it follows that
XT
y−X
θ
θ
θ
= 0
or
XT
X
θ
θ
θ = XT
y. (2.4)
Equation (2.4) is called the normal equation. If XT X is invertible, then
θ
θ
θ =
(XT X)−1XT y, with
E(
θ
θ
θ) = θ
θ
θ and cov(
θ
θ
θ) = σ2
(XT
X)−1
. (2.5)
Let the rank of X be r. Then XT X is invertible if and only if r = p. Unless r = p, not
all the parameters in θ
θ
θ are identifiable, and solutions to (2.4) are not unique. In this
case, (2.4) can be solved by using generalized inverses.
A generalized inverse of a matrix A is defined as any matrix A−
such that
AA−
A = A. For any generalized inverse (XT X)−
of XT X,
θ
θ
θ = (XT X)−
XT y is a
solution to the normal equation. Even though
θ
θ
θ may not be unique, since y has a
unique orthogonal projection onto R(X), X
θ
θ
θ = X(XT X)−
XT y is unique and does not
depend on the choice of (XT X)−
. A byproduct of this is an explicit expression for
the orthogonal projection matrix onto the column space of any matrix.
Theorem 2.1. The orthogonal projection matrix onto R(X) is X(XT X)−
XT , where
(XT X)−
is any generalized inverse of XT X.
A linear function cTθ
θ
θ = ∑
p
i=1 ciθi of the unknown parameters is said to be es-
timable if there exists an N × 1 vector a such that E(aT y) = cTθ
θ
θ for all θ
θ
θ. Such an
estimator of cTθ
θ
θ is called a a linear unbiased estimator. Since E(aT y) = aT Xθ
θ
θ, it
is equal to cTθ
θ
θ for all θ
θ
θ if and only if c = XT
a. This shows that cTθ
θ
θ is estimable
if and only if c ∈ R(XT ). From matrix algebra, it is known that R(XT ) = R(XT X).
Therefore,
cT
θ
θ
θ is estimable if and only if c ∈ R(XT
X). (2.6)
If cTθ
θ
θ is estimable, then cT
θ
θ
θ does not depend on the solution to the normal equation.
Theorem 2.2. (Gauss–Markov Theorem) Under (2.2)–(2.3), if cTθ
θ
θ is estimable, then
for any solution
θ
θ
θ to (2.4), cT
θ
θ
θ has the smallest variance among all the linear unbi-
ased estimators of cTθ
θ
θ.
36. ESTIMATION OF σ2 17
It is common to refer to cT
θ
θ
θ as the best linear unbiased estimator, or BLUE, of
cTθ
θ
θ.
For any estimable function cTθ
θ
θ, we have
var
cT
θ
θ
θ
= σ2
cT
(XT
X)−
c,
where (XT X)−
is any generalized inverse of XT X. We call XT X the information
matrix for θ
θ
θ.
Suppose the model matrix X is design dependent. We say that a design is D-, A-,
or E-optimal if it minimizes, respectively, the determinant, trace, or the largest eigen-
value of the covariance matrix of
θ
θ
θ among all the competing designs. By (2.5), these
optimality criteria, which are referred to as the D-, A-, and E-criterion, respectively,
are equivalent to maximizing det(XT X), minimizing tr(XT X)−1, and maximizing the
smallest eigenvalue of XT X, respectively.
2.2 Estimation of σ2
We have
y = X
θ
θ
θ +(y−X
θ
θ
θ), (2.7)
where X
θ
θ
θ and y−X
θ
θ
θ are orthogonal to each other. By the Pythagorean Theorem,
y
2
=
X
θ
θ
θ
2
+
y−X
θ
θ
θ
2
.
The last term in this identity,
y−X
θ
θ
θ
2
, is called the residual sum of squares. Since
y−X
θ
θ
θ = PR(X)⊥ y,
E
y−X
θ
θ
θ
2
= E
PR(X)⊥ y
T
PR(X)⊥ y
= E yT
PR(X)⊥ y
= [E(y)]T
PR(X)⊥ [E(y)]+σ2
tr PR(X)⊥
= σ2
tr PR(X)⊥
= σ2
dim R(X)⊥
= σ2
(N −r),
where the second equality follows from (A.2) and (A.3) in the Appendix, the third
equality follows from (A.5), the fourth equality holds since E(y) ∈ R(X) and R(X) ⊥
R(X)⊥
, and the fifth equality follows from (A.4).
Let s2 =
y−X
θ
θ
θ
2
/(N − r). Then s2, called the residual mean square, is an
unbiased estimator of σ2. The dimension of R(X)⊥
, N − r, is called the degrees of
freedom associated with the residual sum of squares.
37. 18 LINEAR MODEL BASICS
Under the assumption that y has a normal distribution, 1
σ2
y−X
θ
θ
θ
2
has a χ2-
distribution with N −r degrees of freedom. Thus, for any estimable function cTθ
θ
θ,
cT
θ
θ
θ
s cT (XT X)−c
has a t-distribution with N −r degrees of freedom.
Therefore a 100(1 − α)% confidence interval for cTθ
θ
θ is cT
θ
θ
θ ± tN−r;1−α/2s ·
cT (XT X)−c, where tN−r;1−α/2 is the (1−α/2)th quantile of the t-distribution with
N −r degrees of freedom.
In the rest of the book, we often abbreviate degrees of freedom, sum of squares,
and mean square as d.f., SS, and MS, respectively.
2.3 F-test
We have seen that under linear model (2.2)–(2.3), E(y) ∈ R(X). Suppose V is a sub-
space of R(X) with dim(V) = q. Let R(X) V = {y ∈ R(X) : y is orthogonal to V}
be the orthogonal complement of V relative to R(X). Then R(X)V has dimension
r −q, and X
θ
θ
θ = PR(X)y can be decomposed as
PR(X)y = PV y+PR(X)V y. (2.8)
By combining (2.7) and (2.8), we have
y−PV y = PR(X)V y+PR(X)⊥ y, (2.9)
where the two components on the right side are orthogonal. Thus
y−PV y
2
= PR(X)V y
2
+
PR(X)⊥ y
2
. (2.10)
Under the assumption that y has a normal distribution, a test of the null hypothesis
H0: E(y) ∈ V against the alternative hypothesis that E(y) /
∈ V is based on the ratio
F =
PR(X)V y
2
/(r −q)
PR(X)⊥ y
2
/(N −r)
. (2.11)
It can be shown that the likelihood ratio test is to reject H0 for large values of F.
Under H0, F has an F-distribution with r−q and N −r degrees of freedom. Therefore
the null hypothesis is rejected at level α if F Fr−q,N−r;1−α , where Fr−q,N−r;1−α is
the (1−α)th quantile of the F-distribution with r −q and N −r degrees of freedom.
The left side of (2.10) is the residual sum of squares when H0 is true, and the
second term on the right side is the residual sum of squares under the full model
(2.2). Thus the sum of squares PR(X)V y
2
that appears in the numerator of the
test statistic in (2.11) is the difference of the residual sums of squares under the full
model and the reduced model specified by H0.
38. ONE-WAY LAYOUT 19
2.4 One-way layout
Let y = (y11,...,y1r1
,...,yt1,...,ytrt )T , where y11,...,y1r1
,...,yt1,...,ytrt are uncor-
related random variables with constant variance σ2, and E(ylh) = αl, for all 1≤ h ≤ rl,
1 ≤ l ≤ t. Then we can express y as in (2.2)–(2.3), with θ
θ
θ = (α1,...,αt)T , and
X =
⎡
⎢
⎢
⎢
⎣
1r1
0 ··· 0
0 1r2
··· 0
.
.
.
.
.
.
...
.
.
.
0 0 0 1rt
⎤
⎥
⎥
⎥
⎦
,
where 1rl
is the rl × 1 vector of ones. This model arises, for example, when
yl1,...,ylrl
are a random sample from a population with mean αl and variance σ2.
It is also commonly used as a model for analyzing a completely randomized exper-
iment, where the lth treatment, 1 ≤ l ≤ t, is replicated rl times, yl1,...,ylrl
are the
observations on the lth treatment, and α1,...,αt are effects of the treatments.
Clearly XT X = diag(r1,...,rt), the t × t diagonal matrix with r1,...,rt as the
diagonal entries; therefore (2.4) has a unique solution:
αl = yl·, where yl· = 1
rl
∑
rl
h=1 ylh.
For any function ∑
t
l=1 clαl, we have ∑
t
l=1 cl
αl = ∑
t
l=1 clyl·, with
var
t
∑
l=1
cl
αl
= σ2
t
∑
l=1
c2
l
rl
.
The projection PR(X)y = X
θ
θ
θ has its first r1 components equal to y1·, the next r2 com-
ponents equal to y2·,..., etc. Therefore the residual sum of squares can be expressed
as
y−X
θ
θ
θ
2
=
t
∑
l=1
rl
∑
h=1
(ylh −yl·)2
.
Call this the within-group sum of squares and denote it by W. We have N = ∑
t
l=1 rl,
and rank(X) = t. Therefore the residual sum of squares has N −t degrees of freedom,
and so if s2 = W/(N −t), then E(s2) = σ2.
Now we impose the normality assumption and consider the test of H0: α1 = ··· =
αt. Under H0, E(y) ∈ V, where V is the one-dimensional space consisting of all the
vectors with constant entries. Then PV y is the vector with all the entries equal to the
overall average y·· = 1
N ∑
t
l=1 ∑
rl
h=1 ylh. Componentwise, (2.9) can be expressed as
ylh −y·· = (yl· −y··)+(ylh −yl·)
and, in the present context, (2.10) reduces to
t
∑
l=1
rl
∑
h=1
(ylh −y··)2
=
t
∑
l=1
rl(yl· −y··)2
+
t
∑
l=1
rl
∑
h=1
(ylh −yl·)2
.
Thus PR(X)V y
2
= ∑
t
l=1 rl(yl· − y··)2, which has t − 1 degrees of freedom and is
called the between-group sum of squares. Denote it by B. Then the F-test statistic
39. 20 LINEAR MODEL BASICS
is B/(t−1)
W/(N−t) . In the application to completely randomized experiments, the between-
group sum of squares is also called the treatment sum of squares.
These results can be summarized in Table 2.1, called an ANOVA (Analysis of
Variance) table.
Table 2.1 ANOVA table for one-way layout
source sum of squares d.f. mean square
Between groups ∑
t
l=1 rl(yl· −y··)2 t −1 1
t−1 ∑
t
l=1 rl(yl· −y··)2
Within groups ∑
t
l=1 ∑
rl
h=1(ylh −yl·)2 N −t 1
N−t ∑
t
l=1 ∑
rl
h=1(ylh −yl·)2
Total ∑
t
l=1 ∑
rl
h=1(ylh −y··)2 N −1
Remark 2.1. If we write the model as E(ylh) = μ +αl, then the model matrix X has
an extra column of 1’s and p = t + 1. Since rank(X) = t p, the parameters them-
selves are not identifiable. By using (2.6), one can verify that ∑
t
l=1 clαl is estimable if
and only if ∑
t
l=1 cl = 0. Such functions are called contrasts. The pairwise differences
αl − αl , 1 ≤ l = l
≤ t, are examples of contrasts and are referred to as elemen-
tary contrasts. Because of the constraint ∑
t
l=1 cl = 0, the treatment contrasts form a
(t −1)-dimensional vector space that is generated by the elementary contrasts. Func-
tions such as α1 − 1
2 (α2 +α3) and 1
2 (α1 +α2)− 1
3 (α3 +α4 +α5) are also contrasts. If
∑
t
l=1 clαl is a contrast, then ∑
t
l=1 clαl = ∑
t
l=1 cl(μ + αl), and it can be shown that, as
before, ∑
t
l=1 cl
αl = ∑
t
l=1 clyl·. Therefore, if the interest is in estimating the contrasts,
then it does not matter whether E(ylh) is written as αl or μ +αl. A contrast ∑
t
l=1 clαl
is said to be normalized if ∑
t
l=1 c2
l = 1.
2.5 Estimation of a subset of parameters
Suppose θ
θ
θ is partitioned as θ
θ
θ = (θ
θ
θT
1 θ
θ
θT
2 )T , where θ
θ
θ1 is q × 1 and θ
θ
θ2 is (p − q) × 1;
e.g., the parameters in θ
θ
θ2 are nuisance parameters, or the components of θ
θ
θ1 and θ
θ
θ2
are effects of the levels of two different factors. Partition X as [X1 X2] accordingly.
Then (2.2) can be written as
y = X1θ
θ
θ1 +X2θ
θ
θ2 +ε
ε
ε, (2.12)
and (2.4) is the same as
XT
1 X1
θ
θ
θ1 +XT
1 X2
θ
θ
θ2 = XT
1 y, (2.13)
and
XT
2 X1
θ
θ
θ1 +XT
2 X2
θ
θ
θ2 = XT
2 y. (2.14)
If R(X1) and R(X2) are orthogonal, (XT
1 X2 = 0), then
θ
θ
θ1 and
θ
θ
θ2 can be computed
by solving XT
1 X1
θ
θ
θ1 = XT
1 y and XT
2 X2
θ
θ
θ2 = XT
2 y separately. In this case, least squares
estimators of estimable functions of θ
θ
θ1 are the same regardless of whether θ
θ
θ2 is
40. ESTIMATION OF A SUBSET OF PARAMETERS 21
in the model. Likewise, dropping θ
θ
θ1 from (2.12) does not change the least squares
estimators of estimable functions of θ
θ
θ2.
If R(X1) and R(X2) are not orthogonal, then for estimating θ
θ
θ1 one needs to adjust
for θ
θ
θ2, and vice versa. By (2.14),
θ
θ
θ2 can be written as
θ
θ
θ2 = XT
2 X2
−
XT
2 y−XT
2 X1
θ
θ
θ1 . (2.15)
We eliminate
θ
θ
θ2 by substituting the right side of (2.15) for the
θ
θ
θ2 in (2.13). Then
θ
θ
θ1
can be obtained by solving
XT
1 X1 −XT
1 X2 XT
2 X2
−
XT
2 X1
θ
θ
θ1 = XT
1 y−XT
1 X2 XT
2 X2
−
XT
2 y
or
XT
1
I−X2 XT
2 X2
−
XT
2 X1
θ
θ
θ1 = XT
1
I−X2 XT
2 X2
−
XT
2 y. (2.16)
This is called the reduced normal equation for θ
θ
θ1.
We write the reduced normal equation as
C1
θ
θ
θ1 = Q1, (2.17)
where
C1 = XT
1
I−X2 XT
2 X2
−
XT
2 X1, (2.18)
and
Q1 = XT
1
I−X2 XT
2 X2
−
XT
2 y. (2.19)
Since X2(XT
2 X2)−
XT
2 is the orthogonal projection matrix onto R(X2), I−
X2(XT
2 X2)−
XT
2 is the orthogonal projection matrix onto R(X2)⊥
, and
C1 = XT
1 PR(X2)⊥ X1.
If we put
X̃1 = PR(X2)⊥ X1,
then we can express C1 as
C1 = X̃T
1 X̃1,
and the reduced normal equation (2.16) can be written as
X̃T
1 X̃1
θ
θ
θ1 = X̃T
1 ỹ,
where ỹ = PR(X2)⊥ y. Therefore the least squares estimators of estimable functions of
θ
θ
θ1 are functions of ỹ = PR(X2)⊥ y: to eliminate θ
θ
θ2, (2.12) is projected onto R(X2)⊥
to
become
ỹ = X̃1θ
θ
θ1 +ε̃,
where ε̃
ε
ε = PR(X2)⊥ε
ε
ε.
41. 22 LINEAR MODEL BASICS
Theorem 2.3. Under (2.12) and (2.3), a linear function cT
1 θ
θ
θ1 of θ
θ
θ1 is estimable
if and only if c1 is a linear combination of the column vectors of C1. If cT
1 θ
θ
θ1 is
estimable, then cT
1
θ
θ
θ1 is its best linear unbiased estimator, and
var
cT
1
θ
θ
θ1
= σ2
cT
1 C−
1 c1,
where
θ
θ
θ1 is any solution to (2.17), and C−
1 is any generalized inverse of C1.
In particular, if C1 is invertible, then all the parameters in θ
θ
θ1 are estimable, with
cov
θ
θ
θ1
= σ2
C−1
1 . (2.20)
The matrix C1 is called the information matrix for θ
θ
θ1.
Suppose the parameters in θ
θ
θ2 are nuisance parameters, and we are only interested
in estimating θ
θ
θ1. Then a design is said to be Ds-, As-, or Es-optimal if it minimizes,
respectively, the determinant, trace, or the largest eigenvalue of the covariance ma-
trix of
θ
θ
θ1 among all the competing designs. By (2.20), these optimality criteria are
equivalent to maximizing det(C1), minimizing tr(C−1
1 ), and maximizing the smallest
eigenvalue of C1, respectively. Here s refers to a subset of parameters.
2.6 Hypothesis testing for a subset of parameters
Under (2.12) and (2.3), suppose we further assume that ε
ε
ε has a normal distribution.
Consider testing the null hypothesis
H0: E(y) = X2θ
θ
θ2.
Under (2.12), E(y) ∈ R(X1)+R(X2), and under H0, E(y) ∈ R(X2). By (2.11), the
F-test statistic in this case is
F =
P[R(X1)+R(X2)]R(X2)y
2
/dim([R(X1)+R(X2)]R(X2))
P[R(X1)+R(X2)]⊥ y
2
/(N −dim[R(X1)+R(X2)])
.
This is based on the decomposition
RN
= R(X2)⊕([R(X1)+R(X2)]R(X2))⊕[R(X1)+R(X2)]⊥
. (2.21)
It can be shown that
P[R(X1)+R(X2)]R(X2)y
2
=
θ
θ
θ
T
1 Q1, (2.22)
and
dim([R(X1)+R(X2)]R(X2)) = rank(C1). (2.23)
We leave the proofs of these as an exercise.
A test of the null hypothesis H0: E(y) = X1θ
θ
θ1 is based on the decomposition
RN
= R(X1)⊕([R(X1)+R(X2)]R(X1))⊕[R(X1)+R(X2)]⊥
. (2.24)
42. ADJUSTED ORTHOGONALITY 23
In this case,
P[R(X1)+R(X2)]R(X1)y
2
=
θ
θ
θ
T
2 Q2,
where
Q2 = XT
2
I−X1 XT
1 X1
−
XT
1 y.
When XT
1 X2 = 0, both (2.21) and (2.24) reduce to
RN
= R(X1)⊕R(X2)⊕[R(X1)⊕R(X2)]⊥
.
2.7 Adjusted orthogonality
Consider the model
y = X1θ
θ
θ1 +X2θ
θ
θ2 +X3θ
θ
θ3 +ε
ε
ε, (2.25)
with
E(ε
ε
ε) = 0, and cov(ε
ε
ε) = σ2
IN.
Suppose the parameters in θ
θ
θ2 are nuisance parameters. To estimate θ
θ
θ1 and θ
θ
θ3, we
eliminate θ
θ
θ2 by projecting y onto R(X2)⊥
. This results in a reduced normal equation
for
θ
θ
θ1 and
θ
θ
θ3:
X̃T
1 X̃1 X̃T
1 X̃3
X̃T
3 X̃1 X̃T
3 X̃3
θ
θ
θ1
θ
θ
θ3
=
X̃T
1 ỹ
X̃T
3 ỹ
,
where
X̃i = PR(X2)⊥ Xi,i = 1,3, and ỹ = PR(X2)⊥ y.
If X̃T
1 X̃3 = 0, then
θ
θ
θ1 and
θ
θ
θ3 can be computed by solving the equations X̃T
1 X̃1
θ
θ
θ1 =
X̃T
1 ỹ and X̃T
3 X̃3
θ
θ
θ3 = X̃T
3 ỹ separately. In this case, least squares estimators of estimable
functions of θ
θ
θ1 under (2.25) are the same regardless of whether θ
θ
θ3 is in the model.
Likewise, dropping θ
θ
θ1 from (2.25) does not change the least squares estimators of
estimable functions of θ
θ
θ3. Loosely we say that θ
θ
θ1 and θ
θ
θ3 are orthogonal adjusted for
θ
θ
θ2.
Note that X̃T
1 X̃3 = 0 is equivalent to
PR(X2)⊥ [R(X1)] is orthogonal to PR(X2)⊥ [R(X3)]. (2.26)
Under normality, the F-test statistic for the null hypothesis that E(y) = X2θ
θ
θ2 +X3θ
θ
θ3
is
P[R(X1)+R(X2)+R(X3)][R(X2)+R(X3)]y
2
/dim([R(X1)+R(X2)+R(X3)][R(X2)+R(X3)])
P[R(X1)+R(X2)+R(X3)]⊥ y
2
/(N −dim[R(X1)+R(X2)+R(X3)])
.
If (2.26) holds, then we have
R(X1)+R(X2)+R(X3) = R(X2)⊕PR(X2)⊥ [R(X1)]⊕PR(X2)⊥ [R(X3)].
43. 24 LINEAR MODEL BASICS
In this case,
[R(X1)+R(X2)+R(X3)][R(X2)+R(X3)] = PR(X2)⊥ [R(X1)]
= [R(X1)+R(X2)]R(X2).
So the sum of squares in the numerator of the F-test statistic is equal to the quantity
θ
θ
θ
T
1 Q1 given in (2.22), with its degrees of freedom equal to rank(C1), where C1 and
Q1 are as in (2.18) and (2.19), respectively. A similar conclusion can be drawn for
testing the hypothesis that E(y) = X1θ
θ
θ1 +X2θ
θ
θ2.
2.8 Additive two-way layout
In a two-way layout, the observations are classified according to the levels of two
factors. Suppose the two factors have t and b levels, respectively. At each level com-
bination (i, j), 1 ≤ i ≤ t, 1 ≤ j ≤ b, there are nij observations yijh, 0 ≤ h ≤ nij, such
that
yijh = αi +βj +εijh, (2.27)
where the εijh’s are uncorrelated random variables with zero mean and constant vari-
ance σ2. We require ∑
b
j=1 nij 0 for all i, and ∑
t
i=1 nij 0 for all j, so that there
is at least one observation on each level of the two factors, but some nij’s may be
zero. This is called an additive two-way layout model, which is commonly used for
analyzing block designs, where each yijh is an observation on the ith treatment in the
jth block. With this in mind, we call the two factors treatment and block factors, and
denote them by T and B, respectively; then α1,...,αt are the treatment effects and
β1,...,βb are the block effects. Let N = ∑
t
i=1 ∑
b
j=1 nij, and think of the observations
as taken on N units that are grouped into b blocks. Define an N ×t matrix XT with
0 and 1 entries such that the (v,i)th entry of XT , 1 ≤ v ≤ N, 1 ≤ i ≤ t, is 1 if and
only if the ith treatment is assigned to the vth unit. Similarly, let XB be the N × b
matrix with 0 and 1 entries such that the (v, j)th entry of XB, 1 ≤ v ≤ N, 1 ≤ j ≤ b,
is 1 if and only if the vth unit is in the jth block. The two matrices XT and XB are
called unit-treatment and unit-block incidence matrices, respectively. Then we can
write (2.27) as
y = XT α
α
α +XBβ
β
β +ε
ε
ε,
where α
α
α = (α1,...,αt)T and β
β
β = (β1,...,βb)T .
We use the results in Sections 2.5 and 2.6 to derive the analysis for such models.
Then we apply the results in Section 2.7 to show in Section 2.9 that the analysis can
be much simplified when certain conditions are satisfied.
Let N be the t × b matrix whose (i, j)th entry is nij, ni+ = ∑
b
j=1 nij, and n+j =
∑
t
i=1 nij. For block designs, ni+ is the number of observations on the ith treatment, and
n+j is the size of the jth block. Also, let yi++ = ∑
b
j=1 ∑h yijh and y+j+ = ∑
t
i=1 ∑h yijh,
the ith treatment total and jth block total, respectively. Then XT
T XT is the diagonal
matrix with diagonal entries n1+,...,nt+, XT
BXB is the diagonal matrix with diagonal
entries n+1,...,n+b, XT
T y = (y1++,...,yt++)T , XT
By = (y+1+,...,y+b+)T , and
XT
T XB = N. (2.28)
44. ADDITIVE TWO-WAY LAYOUT 25
By (2.17), (2.18), and (2.19), the reduced normal equations for α
α
α and β
β
β are, respec-
tively,
CT
α
α
α = QT (2.29)
and
CB
β
β
β = QB,
where
CT =
⎡
⎢
⎣
n1+ ··· 0
.
.
.
...
.
.
.
0 ··· nt+
⎤
⎥
⎦−N
⎡
⎢
⎢
⎣
1
n+1
··· 0
.
.
.
...
.
.
.
0 ··· 1
n+b
⎤
⎥
⎥
⎦NT
,
QT =
⎡
⎢
⎣
y1++
.
.
.
yt++
⎤
⎥
⎦−N
⎡
⎢
⎢
⎣
1
n+1
··· 0
.
.
.
...
.
.
.
0 ··· 1
n+b
⎤
⎥
⎥
⎦
⎡
⎢
⎣
y+1+
.
.
.
y+b+
⎤
⎥
⎦,
CB =
⎡
⎢
⎣
n+1 ··· 0
.
.
.
...
.
.
.
0 ··· n+b
⎤
⎥
⎦−NT
⎡
⎢
⎣
1
n1+
··· 0
.
.
.
...
.
.
.
0 ··· 1
nt+
⎤
⎥
⎦N,
and
QB =
⎡
⎢
⎣
y+1+
.
.
.
y+b+
⎤
⎥
⎦−NT
⎡
⎢
⎣
1
n1+
··· 0
.
.
.
...
.
.
.
0 ··· 1
nt+
⎤
⎥
⎦
⎡
⎢
⎣
y1++
.
.
.
yt++
⎤
⎥
⎦.
It can be verified that both CT and CB have zero column sums. Therefore
rank(CT ) ≤ t −1, rank(CB) ≤ b−1, and, by Theorem 2.3, if ∑
t
i=1 ciαi is estimable,
then ∑
t
i=1 ci = 0. All such contrasts are estimable if and only if rank(CT ) = t −1. Sim-
ilarly, if ∑
b
j=1 djβj is estimable, then ∑
b
j=1 dj = 0, and all such contrasts are estimable
if and only if rank(CB) = b−1.
Theorem 2.4. All the contrasts of α1,...,αt are estimable if and only if for any
1 ≤ i = i
≤ t, there is a sequence
i1, j1, i2, j2, ..., ik, jk, ik+1
such that i1 = i, ik+1 = i
, and for all 1 ≤ s ≤ k, nis js 0 and nis+1, js 0.
Proof. Suppose the condition in the theorem holds. We need to show that all the
contrasts of α1,...,αt are estimable. Since the space of all the contrasts is generated
by the pairwise differences, it suffices to show that all the pairwise differences αi −
αi are estimable.
45. 26 LINEAR MODEL BASICS
Let yij be any of the observations at the level combination (i, j). Then
E(yi1 j1
−yi2 j1
+yi2 j2
−···+yik jk
−yik+1 jk
)
= (αi1
+βj1
)−(αi2
+βj1
)+(αi2
+βj2
)−···+(αik
+βjk
)−(αik+1
+βjk
)
= αi1
−αik+1
= αi −αi .
This shows that αi −αi is estimable.
Conversely, if the condition in the theorem does not hold, then the treatments
can be partitioned into two disjoint sets such that any treatment from one set never
appears in the same block with any treatment from the other set. Then it can be seen
that CT is of the form
C1 0
0 C2
.
Since CT has zero column sums, both C1 and C2 also have zero column sums. It
follows that rank(CT ) = rank(C1) + rank(C2) ≤ t −2; therefore not all the contrasts
of α1,...,αt are estimable.
If any two treatments can be connected by a chain of alternating treatments and
blocks as in Theorem 2.4, then any two blocks can also be connected by such a se-
quence. Therefore the condition in Theorem 2.4 is also a necessary and sufficient
condition for all the contrasts of β1,...,βb to be estimable. In particular, all the con-
trasts of α1,...,αt are estimable if and only if all the contrasts of β1,...,βb are
estimable.
Throughout the rest of this section, we assume that the condition in Theorem 2.4
holds; therefore rank(CT ) = t −1 and rank(CB) = b−1. This is the case, for example,
when there is at least one observation at each level combination of the two factors. In
view of Theorem 2.4, designs with rank(CT ) = t −1 are called connected designs.
Suppose we would like to test the hypothesis that α1 = ··· = αt. Under the null
hypothesis, let the common value of the αi’s be α; then E(yijh) = α +βj. This reduces
(2.27) to a one-way layout model. Absorb α into βj (see Remark 2.1); then it is the
same as to test that E(y) = XBβ
β
β. Therefore the results in Section 2.6 can be applied.
In particular, the sum of squares that appears in the numerator of the F-test statistic
is equal to
α
α
α
T
QT =
α
α
α
T
CT
α
α
α, with t − 1 degrees of freedom. The residual sum of
squares can be computed by subtracting
α
α
α
T
QT from the residual (within-group)
sum of squares under the one-way layout model containing block effects only. Let
yi·· = 1
ni+
∑
b
j=1 ∑h yijh, y· j· = 1
n+j
∑
t
i=1 ∑h yijh, and y··· = 1
N ∑
t
i=1 ∑
b
j=1 ∑h yijh be the ith
treatment mean, jth block mean, and overall mean, respectively. Then we have the
ANOVA in Table 2.2.
A test of the hypothesis that E(y) = XT α
α
α can be based on an ANOVA similar to
that in Table 2.2 with the roles of treatments and blocks reversed.
46. THE CASE OF PROPORTIONAL FREQUENCIES 27
Table 2.2 ANOVA table for an additive two-way layout
source sum of squares d.f. mean square
Blocks ∑j n+ j(y· j· −y...)2
b−1 1
b−1 ∑j n+ j(y· j· −y...)2
(ignoring treatments)
Treatments
αT
QT t −1 1
t−1
αT
QT
(adjusted for blocks)
Residual By subtraction N −b−t +1 1
N−b−t+1 (Residual SS)
Total ∑i ∑j ∑h(yijh −y...)2
N −1
2.9 The case of proportional frequencies
As explained in Remark 2.1, model (2.27) can be written as
yijh = μ +αi +βj +εijh (2.30)
without changing the least squares estimators of estimable functions of (α1,...,αt)T ,
least squares estimators of estimable functions of (β1,...,βb)T , and the reduced
normal equations. Write (2.30) in the form of (2.25) with θ
θ
θ1 = (α1,...,αt)T ,θ
θ
θ3 =
(β1,...,βb)T , and θ
θ
θ2 = μ. Then X1 = XT , X3 = XB, and X2 = 1N. In this case, the
adjusted orthogonality condition (2.26) is that
PR(1N)⊥ [R(XT )] is orthogonal to PR(1N)⊥ [R(XB)]. (2.31)
Since only one treatment can be assigned to each unit, each row of XT has ex-
actly one entry equal to 1, and all the other entries are zero. It follows that the
sum of all the columns of XT is equal to 1N. Therefore R(1N) ⊆ R(XT ), and hence
PR(1N)⊥ [R(XT )] = R(XT )R(1N). Likewise, PR(1N)⊥ [R(XB)] = R(XB)R(1N).
We say that T and B satisfy the condition of proportional frequencies if
nij =
ni+n+j
N
for all i, j; (2.32)
here nij/ni+ does not depend on i, and nij/n+j does not depend on j. In particular, if
nij is a constant for all i and j, then (2.32) holds; in the context of block designs, this
means that all the treatments appear the same number of times in each block.
Theorem 2.5. Factors T and B satisfy the condition of proportional frequencies if
and only if R(XT )R(1N) is orthogonal to R(XB)R(1N).
Proof. We first note that (2.31) is equivalent to
PR(1N)⊥ XT
T
PR(1N)⊥ XB = 0. (2.33)
47. 28 LINEAR MODEL BASICS
Since PR(1N) = 1N(1T
N1N)−11T
N = 1
N JN, where JN is the N ×N matrix of 1’s, we have
PR(1N)⊥ = I− 1
N JN. Then (2.33) is the same as
XT
T
I−
1
N
JN
XB = 0
or
XT
T XB =
1
N
XT
T JNXB. (2.34)
By (2.28), the left-hand side of (2.34) is N. The (i,j)th entry of the right-hand side is
ni+n+j/N. Therefore (2.33) holds if and only if the two factors satisfy the condition
of proportional frequencies.
By the results in Section 2.7 and Theorem 2.5, if the treatment and block factors
satisfy the condition of proportional frequencies, then the least squares estimator of
any contrast ∑
t
i=1 ciαi is the same as that under the one-way layout
yijh = μ +αi +εijh.
So ∑
t
i=1 ci
αi = ∑
t
i=1 ciyi··, with variance σ2(∑
t
i=1 c2
i /ni+). Likewise, the least squares
estimator of any contrast ∑
b
j=1 djβj is ∑
b
j=1 djy· j·, with variance σ2(∑
b
j=1 d2
j /n+j).
In this case, we have the decomposition
RN
= R(1N)⊕[R(XT )R(1N)]⊕[R(XB)R(1N)]⊕[R(XT )+R(XB)]⊥
.
Thus
y−PR(1N)y = PR(XT )R(1N)y+PR(XB)R(1N)y+P[R(XT )+R(XB)]⊥ y.
Componentwise, we have
yijh −y... = (yi·· −y...)+(y· j· −y...)+(yijh −yi·· −y· j· +y...).
The identity
y−PR(1N)y
2
=
PR(XT )R(1N)y
2
+
PR(XB)R(1N)y
2
+
P[R(XT )+R(XB)]⊥ y
2
gives
∑
i
∑
j
∑
h
(yijh −y...)2
= ∑
i
ni+(yi·· −y...)2
+∑
j
n+j(y· j· −y...)2
+∑
i
∑
j
∑
h
(yijh −yi·· −y· j· +y...)2
.
This leads to a single ANOVA table.
48. THE CASE OF PROPORTIONAL FREQUENCIES 29
source sum of squares d.f. mean square
Blocks ∑j n+ j(y· j· −y...)2
b−1 1
b−1 ∑j n+ j(y· j· −y...)2
Treatments ∑i ni+(yi·· −y...)2
t −1 1
t−1 ∑i ni+(yi·· −y...)2
Residual By subtraction N −b−t +1 1
N−b−t+1 (Residual SS)
Total ∑i ∑j ∑h(yijh −y...)2
N −1
Exercises
2.1 Prove (2.22) and (2.23).
2.2 Suppose
θ
θ
θ1 and
θ
θ
θ2 are the least squares estimators of θ
θ
θ1 and θ
θ
θ2 under the
model y = X1θ
θ
θ1 + X2θ
θ
θ2 +ε
ε
ε, and θ
θ
θ∗
1 is the least squares estimator of θ
θ
θ1 under
y = X1θ
θ
θ1 +ε
ε
ε. Show that X1θ
θ
θ∗
1, the prediction of y based on the model y =
X1θ
θ
θ1 +ε
ε
ε, is equal to
X1
θ
θ
θ1 +X1 XT
1 X1
−
XT
1 X2
θ
θ
θ2.
Comment on this result.
2.3 Show that the two matrices CT and CB defined in Section 2.8 have zero col-
umn sums. Therefore, if ∑
t
i=1 ciαi is estimable, then ∑
t
i=1 ci = 0, and if ∑
b
j=1 djβj
is estimable, then ∑
b
j=1 dj = 0.
2.4 (Optimality of complete block designs) In the setting of Section 2.8, suppose
n+j = k for all j = 1,...,b. Such a two-way layout can be considered as a block
design with b blocks of constant size k. Suppose rank(CT ) = t −1.
(a) Let CT = ∑
t−1
i=1 μiξ
ξ
ξiξ
ξ
ξT
i , where μ1,...,μt−1 are the nonzero eigenvalues of
CT , and ξ
ξ
ξ1,...,ξ
ξ
ξt−1 are the associated orthonormal eigenvectors. Show
that ∑
t−1
i=1 μ−1
i ξ
ξ
ξiξ
ξ
ξT
i is a generalized inverse of CT .
(b) Use the generalized inverse given in (a) to show that
∑
1≤ii≤t
var
αi −
αi = σ2
t
t−1
∑
i=1
μ−1
i .
(c) Consider the case k = t. In this case, a design with nij = 1 for all i, j is
called a complete block design. Show that for a complete block design,
μ1 = ··· = μt−1.
(d) Show that a complete block design maximizes tr(CT ) = ∑
t−1
i=1 μi among all
the block designs with n+j = k (= t) for all 1 ≤ j ≤ b.
(e) Use (b), (c), (d), and the fact that f(x) = x−1 is a convex function to show
that a complete block design minimizes ∑1≤ii≤tvar(
αi −
αi ) among all
the block designs with n+j = k (= t) for all 1 ≤ j ≤ b.
2.5 (Balanced incomplete block designs and their optimality) Continuing Exercise
2.4, suppose k t.
49. 30 LINEAR MODEL BASICS
(a) Show that if nij = 0 or 1 for all i, j, then the ith diagonal entry of CT is
equal to (k −1)qi/k, and the (i,i
)th off-diagonal entry is equal to −λii /k,
where qi is the number of times the ith treatment appears, and λii is the
number of blocks in which both the ith and i
th treatments appear.
(b) In addition to nij = 0 or 1 for all i, j, suppose qi = q for all i, and λii = λ
for all 1 ≤ i = i
≤ t. Such designs are called balanced incomplete block
designs; see Section A.8. Use Exercise 2.3 to show that (t −1)λ = (k−1)q.
(c) Show that under a balanced incomplete block design, k
tλ It is a generalized
inverse of CT . Use this to provide an expression for the least squares es-
timator of a pairwise comparison αi − αi of treatment effects, and show
that var(
αi −
αi ) = 2k
tλ σ2 for all 1 ≤ i = i
≤ t.
(d) Show that the properties in (c) and (d) of Exercise 2.4 also hold for
balanced incomplete block designs, and hence for given b, t, and k,
if there exists a balanced incomplete block design, then it minimizes
∑1≤ii≤tvar(
αi −
αi ) among all the block designs with n+j = k for all
1 ≤ j ≤ b. [Kiefer (1958, 1975)]
2.6 (Löwner ordering of matrices and comparison of experiments) Given two sym-
metric matrices A1 and A2, we say that A1 ≥ A2 if A1 − A2 is nonnegative
definite. Consider two linear models
model 1: E(y) = X1θ
θ
θ, cov(y) = σ2IN,
model 2: E(y) = X2θ
θ
θ, cov(y) = σ2IN.
Show that XT
1 X1≥ XT
2 X2 if and only if
(a) all linear functions cTθ
θ
θ of θ
θ
θ that are estimable under model 2 are also
estimable under model 1, and
(b) for any cTθ
θ
θ that is estimable under model 2, the variance of its least
squares estimator under model 2 is at least as large as that under model
1. [Ehrenfeld (1956)]
2.7 Consider the linear models
model 1: E(y) = X1θ
θ
θ1 +X2θ
θ
θ2, cov(y) = σ2IN,
model 2: E(y) = X1θ
θ
θ1 +X2θ
θ
θ2 +X3θ
θ
θ3, cov(y) = σ2IN.
Let C1 and C∗
1 be the information matrices for θ
θ
θ1 under models 1 and 2, re-
spectively. Show that C1 ≥ C∗
1, and C1 = C∗
1 if (2.26) holds.
2.8 Consider the linear model
E(y) = Xθ, cov(y) = σ2
IN,
where X is N × p and θ
θ
θ is p×1. Suppose x ≤ a for all columns x of X, where
x
2
= xT x. Show that for any unknown parameter θi, var(
θi) ≥ 1
a2 σ2, and that
the equality is attained if XT X = a2Ip. In particular, if |xij| ≤ 1 for all the entries
xij of X, then var(
θi) ≥ 1
N σ2, and the equality is attained if XT X = NIp. Such
a matrix must have all its entries equal to 1 or −1. (An N ×N matrix X with 1
and −1 entries such that XT X = NIN is called a Hadamard matrix.)
50. Chapter 3
Randomization and Blocking
We begin with a discussion of randomization and blocking, and present statistical
models for completely randomized designs, randomized block designs, row-column
designs, nested row-column designs, and blocked split-plot designs. Based on an as-
sumption of additivity between treatments and experimental units, these models can
be justified by appropriate randomizations that preserve the block structures (Grundy
and Healy, 1950; Nelder, 1965a; Bailey, 1981, 1991). The same approach can be ap-
plied to experiments with more general block structures, including all the simple
block structures, to be discussed in Chapter 12.
3.1 Randomization
Throughout this book, we denote the set of experimental units by Ω and the set
of treatments by T. We also denote the number of treatments and the number of
experimental units by t and N, respectively. The units can be labeled by integers
1,...,N, and the treatments are labeled by 1,...,t. For any finite set A, we denote the
number of elements in A by |A|.
Under complete randomization, the allocation of treatments to the units is com-
pletely random. Suppose the lth treatment is to be assigned to rl units, where
l = 1,...,t, with ∑
t
l=1 rl = N. One can choose r1 of the N units randomly and assign
to them the first treatment, then choose r2 of the remaining N − r1 units randomly
and assign to them the second treatment, etc. A mathematically equivalent method
that can be generalized conveniently to more complicated block structures is to start
with an arbitrary initial design in which the lth treatment is assigned to rl unit labels,
l = 1,...,t. One permutation of the N unit labels is then drawn randomly from the N!
possible permutations. The chosen random permutation is used to determine which
rl units will actually receive the lth treatment.
In general, given an initial assignment of the treatment labels to unit labels, a
random permutation of the unit labels is applied to obtain a randomized experimen-
tal plan for use in actual experimentation. The experimental units are considered to
be unstructured under complete randomization. When they have a certain structure,
we restrict to permutations of unit labels that preserve the structure. Such permuta-
tions are called allowable permutations. Randomization is carried out by drawing a
permutation randomly from the set of allowable permutations only.
Each initial design can be described by an N ×t unit-treatment incidence matrix
31
51. 32 RANDOMIZATION AND BLOCKING
XT whose rows correspond to unit labels and columns correspond to treatment la-
bels, with the (w,l)th entry equal to 1 if the lth treatment label is assigned to the wth
unit label, and 0 otherwise. For example, under the completely randomized design
described above, XT is an arbitrary N ×t matrix with 0 and 1 entries such that there
is one 1 in each row and rl 1’s in the lth column.
3.2 Assumption of additivity and models for completely randomized designs
We make the assumption of additivity between treatments and units: an observation
on unit w when treatment l is applied there, 1 ≤ w ≤ N, 1≤ l ≤ t, is assumed to be
αl +δw, (3.1)
where αl is an unknown constant representing the effect of the lth treatment, and δw
is the effect of the wth unit. The treatment effects α1,...,αt are parameters of inter-
est. We allow δw to be a random variable, incorporating measurement errors, uncon-
trolled variations, etc. It is also assumed that δw has a finite variance and cov(δw,δw )
only depends on the units.
Let φ(w),1 ≤ φ(w) ≤ t, be the treatment applied to the wth unit, and yw be the
observation on that unit. Then yw can be expressed as
yw = αφ(w) +δw,w = 1,...,N. (3.2)
Some simplifying assumptions on the joint distribution of the δw’s are needed
to carry out statistical inference for the treatment effects. A common assumption
for completely randomized designs is that δ1,...,δN are uncorrelated and identically
distributed. Under this assumption, with μ = E(δw),σ2 = var(δw), and εw = δw − μ,
we have
yw = μ +αφ(w) +εw,w = 1,...,N, (3.3)
where
E(εw) = 0 and var(εw) = σ2
, cov(εw,εw ) = 0 for all w = w
. (3.4)
This is the usual one-way layout model discussed in Section 2.4.
A more general model replaces the assumption that the εw’s are uncorrelated with
cov(εw,εw ) = ρσ2
for all w = w
.
In matrix notation, we have
y = μ1N +XT α
α
α +ε
ε
ε, (3.5)
and
E(ε
ε
ε) = 0,V = cov(ε
ε
ε) = σ2
(1−ρ)IN +ρσ2
JN. (3.6)
In the future, we will omit the subscripts in IN and JN when the dimension is obvious
from the context. Note that model (3.3)–(3.4) is a special case with ρ = 0.
Model (3.5)–(3.6) can be justified by complete randomization; see Section 3.6.
52. RANDOMIZED BLOCK DESIGNS 33
3.3 Randomized block designs
Suppose the experimental units are grouped into b blocks of size k. Given an ini-
tial assignment of the treatments to the bk unit labels, randomization is carried out
by randomly permuting the unit labels within each block (done independently from
block to block), and also randomly permuting the block labels. This is equivalent
to drawing a permutation randomly, not from all the N! permutations of the N = bk
unit labels as in the case of complete randomization, but from the (b!)(k!)b allowable
permutations that preserve the structure of the units: two unit labels are in the same
block if and only if they remain in the same block after permutation.
A commonly used linear model for block designs assumes that the δw’s in (3.2)
are uncorrelated random variables with a constant variance and that E(δw) only de-
pends on the block to which the unit belongs. Let yij, i = 1, ..., b, j = 1, ..., k, be the
observation on the jth unit in the ith block. Then such a model can be expressed as
yij = μ +αφ(i,j) +βi +εij, (3.7)
where φ(i, j) is the treatment applied to the jth unit in the ith block, β1,··· ,βb are
unknown constants, and {εij} are mutually uncorrelated random variables with
E(εij) = 0 and var(εij) = σ2
. (3.8)
This is the usual fixed-effect additive two-way layout model discussed in Section 2.8.
Another model assumes that E(δw) = 0 and var(δw) = σ2, but cov(δw,δw ) = ρ1σ2
for any two units w and w
in the same block, and cov(δw,δw ) = ρ2σ2 if units w and
w
are in different blocks. Such a model can be written as
yij = μ +αφ(i,j) +δij, (3.9)
where
E(δij) = 0, cov(δij,δi j ) =
⎧
⎪
⎨
⎪
⎩
σ2, if i = i
, j = j
;
ρ1σ2, if i = i
, j = j
;
ρ2σ2, if i = i
.
(3.10)
Typically the units in the same block are more alike than those in different blocks;
then one would have
ρ1 ρ2. (3.11)
The patterns-of-covariance form of (3.10) arises, e.g., when {βi} and {εij} in
(3.7) are mutually uncorrelated random variables with
E(βi) = E(εij) = 0, and var(βi) = σ2
B, var(εij) = σ2
E . (3.12)
Let δij = βi +εij. Then (3.9) and (3.10) hold with
σ2
= σ2
B +σ2
E , ρ1 =
σ2
B
σ2
B +σ2
E
, and ρ2 = 0. (3.13)
In this case, we do have (3.11).
We show in Section 3.6 that model (3.9)–(3.10) can be justified by randomization.
53. 34 RANDOMIZATION AND BLOCKING
Remark 3.1. Both the model induced by randomization and model (3.7) with ran-
dom effects satisfying (3.12) can be expressed in the same mathematical form as
in (3.9) and (3.10). However, they are philosophically different. For example, under
the latter, we have ρ1 ρ2. Such a constraint, however, may not hold for a general
randomization model.
Remark 3.2. The between-block randomization is possible only if all the blocks are
of the same size. For unequal block sizes, (3.10) cannot be justified by randomization
and has to be assumed.
3.4 Randomized row-column designs
Suppose the experimental units are arranged in r rows and c columns. Given an initial
assignment of the treatment labels to the rc unit labels, randomization can be carried
out by randomly permuting the row labels and, independently, randomly permuting
the column labels. This is equivalent to drawing a permutation of the unit labels
randomly from the r!c! allowable permutations: two unit labels are in the same row
(column) if and only if they remain in the same row (column, respectively) after
permutation.
As in the case of block designs, we present two commonly used models for row-
column designs, one with fixed and the other with random row and column effects.
Let yij, i = 1, ..., r, j = 1, ..., c, be the observation on the unit at the intersection of
the ith row and jth column. Then a model with fixed row and column effects assumes
that
yij = μ +αφ(i,j) +βi +γj +εij, (3.14)
where φ(i, j) is the treatment assigned to the unit at the intersection of the ith row and
the jth column, βi and γj are unknown constants, and {εij} are mutually uncorrelated
random variables with
E(εij) = 0 and var(εij) = σ2
. (3.15)
Another model assumes that
yij = μ +αφ(i,j) +δij, (3.16)
where
E(δij) = 0, cov(δij,δi j ) =
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩
σ2, if i = i
, j = j
;
ρ1σ2, if i = i
, j = j
;
ρ2σ2, if i = i
, j = j
;
ρ3σ2, if i = i
, j = j
.
(3.17)
That is, all the observations have the same variance, and there are three correlations
ρ1, ρ2, and ρ3 depending on whether the two observations involved are in the same
row and different columns, same column and different rows, or different rows and
different columns. Typically, we expect to have
ρ1 ρ3 and ρ2 ρ3. (3.18)
54. NESTED ROW-COLUMN AND BLOCKED SPLIT-PLOT DESIGNS 35
For example, if {βi}, {γj}, and {εij} in (3.14) are mutually uncorrelated random
variables with
E(βi) = E(γj) = E(εij) = 0, var(βi) = σ2
R, var(γj) = σ2
C, var(εij) = σ2
E ,
and δij = βi +γj +εij, then (3.16) and (3.17) hold with
σ2
= σ2
R +σ2
C +σ2
E , ρ1 =
σ2
R
σ2
R +σ2
C +σ2
E
, ρ2 =
σ2
C
σ2
R +σ2
C +σ2
E
, and ρ3 = 0. (3.19)
In this case, we do have (3.18).
We show in Section 3.6 that (3.16)–(3.17) can be justified by randomization.
3.5 Nested row-column designs and blocked split-plot designs
Consider a randomized experiment with the block structure n1/(n2 ×n3). Let yijk be
the observation on the unit at the intersection of the jth row and kth column in the
ith block. We assume the following model for such a randomized experiment.
yijk = μ +αφ(i,j,k) +εijk,1 ≤ i ≤ n1,1 ≤ j ≤ n2,1 ≤ k ≤ n3, (3.20)
where φ(i, j,k) is the treatment applied to unit (i, j,k), and
E(εijk) = 0, cov(εijk,εi jk ) =
⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩
σ2, if i = i
, j = j
, k = k
;
ρ1σ2, if i = i
, j = j
, k = k
;
ρ2σ2, if i = i
, j = j
, k = k
;
ρ3σ2, if i = i
, j = j
, k = k
;
ρ4σ2, if i = i
.
(3.21)
Thus there are four correlations depending on whether the two observations involved
are in the same row and different columns of the same block, the same column and
different rows of the same block, different rows and different columns of the same
block, or different blocks. These reflect four different relations between any pair of
experimental units.
On the other hand, in an experiment with the block structure (n1/n2)/n3, let yijk
be the observation on the kth subplot of the jth whole-plot in the ith block. Then a
commonly used model assumes that
yijk = μ +αφ(i,j,k) +εijk,1 ≤ i ≤ n1,1 ≤ j ≤ n2,1 ≤ k ≤ n3, (3.22)
where φ(i, j,k) is the treatment applied to unit (i, j,k), and
E(εijk) = 0, cov(εijk, εi jk ) =
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩
σ2, if i = i
, j = j
, k = k
;
ρ1σ2, if i = i
, j = j
, k = k
;
ρ2σ2, if i = i
, j = j
;
ρ3σ2, if i = i
.
(3.23)
56. — Mihin minä johdan? — kysyi Lajevski.
— Jos teille sanoo esimerkiksi: kuinka viinirypäleterttu on kaunis!
niin te tokaisette: mutta kuinka ruma se on, kun se pureksitaan ja
sulatetaan vatsassa. Mitä toimittaa sellainen puhuminen? Ei se ole
mitään uutta … yleensä vain kummallinen tapa.
Lajevski tiesi, ettei hän ollut von Corenin suosiossa, ja sentähden
pelkäsi häntä ja tunsi hänen ollessaan läsnä ikäänkuin kaikkien olisi
ollut ahdasta ja ikäänkuin selän takana olisi seisonut joku. Hän ei
vastannut mitään, vaan astui syrjään ja katui, että oli lähtenyt
mukaan.
— Herrat, mars hakemaan risuja valkeaan! — komensi
Samoilenko.
Kaikki hajaantuivat, kuka minnekin, ja paikalle jäivät vain Kirilin,
Atshmianov ja Nikodim Aleksandritsh. Kerbalai toi tuoleja, levitti
nurmelle maton ja laski sille muutamia viinipulloja. Kirilin,
pitkäkasvuinen, muhkea mies, joka ilmoista huolimatta käytti
palttinamekkonsa päällä upseeriviittaa, muistutti ylpeällä ryhdillään,
arvokkaalla astunnallaan sekä matalalla, hieman käheällä äänellään
nuorenpuoleisia pikkukaupungin poliisimestareita. Hänen kasvonsa
näyttivät murheellisilta ja unisilta, ikäänkuin hänet vastikään olisi
vasten tahtoaan herätetty.
— Mitä sinä toit sieltä, aasi? — kysyi hän Kerbalailta, lausuen
verkkaan joka sanan. — Käskin sinun tuoda kvareli-viiniä, mutta mitä
sinä toit, tataarilaiskuono? Häh?
— Meillä on paljon omaa viiniä, Jegor Alekseitsh, — huomautti
arasti ja kohteliaasti Nikodim Aleksandritsh.
57. — Kuinka? Mutta minä tahoon, että minunkin viiniäni pitää olla.
Otan osaa kekkereihin ja otaksun siis, että minullakin on oikeus
maksaa osaltani. Niin otaksun! Tuo kymmenen pulloa kvarelia!
— Miksi niin paljon? — ihmetteli Nikodim Aleksandritsh tietäen,
ettei
Kirinillä ollut rahaa.
— Kaksikymmentä pulloa! Kolmekymmentä! — huusi Kirilin.
— Antaa olla, tuokoon, — kuiskasi Atshmianov Nikorim
Aleksandritshille, — minä maksan.
Nadeshda Feodorovna oli iloisella, vallattomalla päällä. Häntä
halutti hyppiä, nauraa, huutaa, ärsyttää, keikailla. Yllään
huokeahintainen, sinisilmäisestä pumpulikankaasta tehty puku,
jalassa punaiset tohvelit ja ennenmainittu olkihattu päässä hän oli
mielestänsä pieni, yksinkertainen, kevyt ja leijaileva kuin perhonen.
Hän juoksi notkuvalle sillalle ja katseli kotvasen veteen, jotta olisi
alkanut päätä huimata, sitten hän huudahti ja juoksi nauraen toiselle
rannalle kuivuuvajan luo, ja hänestä näytti, että kaikki mieshenkilöt,
yksinpä Kerbalaikin, ihaillen katselivat häntä. Kun äkkiä yllättäneessä
hämärässä puut ja vuoret, hevoset ja ajoneuvot sulivat yhteen ja
tataarilaismökin ikkunoista pilkahti esille tulta, kiipesi hän kivien ja
okaisten pensasten välitse polveilevaa polkua pitkin vuorelle ja istahti
kivelle. Alhaalla paloi jo nuotio. Sen ääressä liikkui, hihat ylös
käärittyinä, diakoni, ja hänen pitkä, musta varjonsa kierteli säteenä
valkean ympärillä, kun hän heitteli nuotioon risuja ja hämmenteli
pataa pitkään keppiin sidotulla lusikalla. Samoilenko, kasvot
kuparinpunaisina, hääräili siellä myös kuin omassa keittiössään ja
huusi tuikeasti:
58. — Missä suola on, hyvät herrat? Unohtui tietenkin? Ja mitä te
kaikki siinä istua nökötätte kuin mitkäkin paroonit, ja minä saan
tässä yksin puuhata?
Tuulenkaatopuulla istuivat rinnakkain Lajevski ja Nikodim
Aleksandritsh ja katselivat miettiväisinä. Maria Konstantinovna, Katja
ja Kostja ottivat esille korista teevehkeet ja lautaset. Von Coren
käsivarret ristissä ja toinen jalka kivellä seisoi rannalla lähellä
vedenrajaa ja mietti jotakin. Nuotion luomat punaiset läikät yhdessä
varjojen kanssa kiertelivät maanpinnalla tummien ihmishahmojen
vaiheilla, värähtelivät vuorilla, puissa, sillalla; toisella puolella jyrkkä,
veden uurtama rantaäyräs oli kokonaan valaistu, näytti iskevän
silmää ja kuvastui veteen, ja vuolaasti virtaava, myllertävä vesi repi
kappaleiksi heijastuksen.
Diakoni lähti noutamaan kaloja, joita Kerbalai rannalla puhdisti ja
pesi, mutta puolitiessä hän pysähtyi ja katseli ympärilleen.
Voi sentään, kuinka ihanaa! ajatteli hän. Ihmiset, kivet, tuli,
hämärä, maassa lojuva puu — ei mitään sen enempää, mutta kuinka
ihanaa silti!
Toisella rannalla ilmestyi kuivuuvajan luo joitakin tuntemattomia
ihmisiä. Kun valo häilähteli ja savu painautui sille puolelle, ei näitä
ihmisiä voinut heti täysin eroittaa, vaan siellä näkyi milloin karvalakki
ja harmaa parta, milloin sininen paita, milloin ryysyt olkapäästä
polviin ja tikari poikkipuolin vatsalla, milloin taas nuoret,
tummaveriset kasvot mustine kulmakarvoineen, jotka olivat niin
tuuheat ja silmäänpistävät kuin hiilellä piirustetut. Viisi heistä istahti
piiriin nurmelle, toiset viisi menivät kuivuuvajaan. Yksi pysähtyi
ovessa selin tuleen ja pannen kädet selän taakse alkoi kertoa jotakin
hyvin mielenkiintoista, sillä Samoilenkon heitettyä risuja tuleen, joka
59. siitä leimahtaen räiskäytti säkeniä ja kirkkaasti valaisi kuivuuvajan,
näkyi ovesta tuijottamassa kaksi rauhallista naamaa, ilmaisten
innostunutta tarkkaavaisuutta, ja piiriin istuutuneet kääntyivät
taaksepäin kuuntelemaan kertomusta. Vähän myöhemmin virittivät
piirissä istujat hiljaisin äänin soinnukkaan pitkäveteisen laulun, joka
muistutti suuren paaston aikana kirkossa veisattavaa virttä…
Kuunnellessaan heitä diakoni ajatteli, mikä hän on miehiään
kymmenen vuoden kuluttua, kun hän palaa tutkimusretkeltä: nuori
lähetyspappi, kirjailija, jolla on kuuluisa nimi ja kunniakas
menneisyys; hänestä tehdään arkkimandriitti, sitten piispa; hän
toimittaa tuomiokirkossa jumalanpalvelusta: päässä kultahiippa hän
astuu pyhimyskuvaa kantaen alttarin eteen lavalle, korottaa
kolmihaaraisen ja kaksihaaraisen kynttilänjalan, valaisee niillä suurta
kansanpaljoutta ja julistaa: Holho taivaasta, Herra, tätä
viinipensasta, katso lempeästi sen puoleen ja lähesty sitä, ja oikea
kätesi istuttakoon sen! Ja enkelimäisin äänin lapset veisaavat
vastaan: Pyhä jumala…
— Diakoni, missä kalat ovat? — kuului Samoilenkon ääni.
Palattuaan nuotion luo diakoni kuvitteli, että kuumana heinäkuun
päivänä astuu pölyistä tietä kirkollinen juhlakulkue: edellä talonpojat
kantavat kirkkolippuja, eukot ja tytöt pyhäinkuvia, heti seuraavat
kuoripojat ja lukkari poski sidottuna ja oljenkorsia hiuksissa, sitten
järjestyksessä hän, diakoni, hänen jäljestään pappi kalotti päässä
ristiä kantaen, ja takana pöllyttää joukko ukkoja, akkoja, poikia;
joukossa ovat papin ja diakonin vaimot huivit päässä. Kuoripojat
laulavat, lapset kirkuvat, peltopyyt piipottavat, leivot visertävät…
Kulkue pysähtyy, ja siunattua vettä vihmotaan karjan päälle…
Kuljetaan edelleen ja polvistumalla rukoillaan sadetta. Sitten
syödään, jutellaan…
61. VII.
Kirilin ja Atshmianov kiipesivät vuorelle polkua myöten, Atshmianov
jättäytyi jälkeen ja pysähtyi, mutta Kirilin astui Nadeshda
Feodorovnan luo.
— Hyvää iltaa! — virkkoi hän tervehtien sotilaan tapaan.
— Hyvää iltaa.
— Niinpä niin! — lausui Kirilin, katsoen taivasta kohden ja
miettien.
— Mitä niinpä niin? — kysyi Nadeshda Feodorovna, oltuaan hetken
vaiti ja huomattuaan, että Atshmianov piti heitä kumpaakin silmällä.
— Niinpä siis, — puheli upseeri verkkaan, — rakkautenne kuihtuu
ennenkuin on ehtinyt kukkaan puhjeta, niin sanoakseni. Miten on
tämä ymmärrettävä? Oliko se teidän puoleltanne keimailua tavallaan,
vai pidättekö minua tyhjäntoimittajana, jota kohtaan voi menetellä
mielensä mukaan?
— Se oli hairahdus! Jättäkää minut! — lausui Nadeshda
Feodorovna jyrkästi, katsoen häneen pelokkaasti tänä ihanana,
62. hurmaavana iltana ja kysyen itseltään hämillään: onko todella ollut
hetki, jolloin tuo mies minua miellytti ja pääsi niin läheiseksi?
— Niin vainen! — virkkoi Kirilin; hän seisoi kotvan mätään
puhumatta, mietti ja jatkoi: — Mitähän tuosta? Odottakaamme,
kunnes tulette paremmalle päälle, mutta toistaiseksi rohkenen
vakuuttaa teille, että olen kunnon ihminen enkä salli kenenkään sitä
epäillä. Minun kanssani ei leikitellä! Hyvästi!
Hän tervehti sotilaallisesti ja astui syrjään, raivaten tietä pensasten
läpi. Hetken kuluttua lähestyi arastellen Atshmianov.
— Tänään on kaunis ilta! — virkkoi hän hieman murtaen
armenialaiseen tapaan.
Hän oli koko pulska ulkomuodoltaan, kävi muodinmukaisesti
puettuna, käyttäytyi luontevasti, kuten hyvinkasvatettu nuorukainen,
mutta Nadeshda Feodorovna ei pitänyt hänestä sentähden, että hän
oli velkaa tämän isälle kolmesataa ruplaa; myöskään ei hänestä ollut
mieleen, että kekkereihin oli osalliseksi päästetty puotilainen, ja
hänestä oli kiusallista, että Atshmianov lähestyi häntä juuri tänä
iltana, jolloin hänen sielussaan oli niin puhdasta.
— Kekkerit ovat onnistuneet ylimalkaan hyvin, — sanoi
Atshmianov hetkisen vaitiolon jälkeen.
— Niin, — myönsi Nadeshda Feodorovna, ja ikäänkuin juuri tällä
hetkellä olisi muistunut hänelle mieleen, virkkoi hän yliolkaisesti: —
Niin tuota, sanokaapa siellä kaupassanne, että Ivan Andreitsh käy
näinä päivinä suorittamassa ne kolmesataa ruplaa … tai minkäverran
sitä lienee.
63. — Olen valmis antamaan vielä kolmesataa, kunhan ette joka päivä
muistuta tuosta velasta. Jättäkäämme tuo proosa!
Nadeshda Feodorovna naurahti; hänelle tuli mieleen naurettava
ajatus, että jos hän olisi ollut riittämättömän siveellinen ja tahtonut,
olisi hän hetkessä voinut vapautua velastaan. Jospa esimerkiksi tältä
kauniilta, nuorelta houkalta panisi pään pyörälle! Kuinka se itse
asiassa olikin naurettavaa, tyhmää ja hurjaa! Ja hän tunsi äkkiä
halua hurmata, riistää puhtaaksi, hyljätä ja sitten katsoa, mitä tuosta
tulisi.
— Sallikaa minun antaa teille yksi neuvo, — virkkoi Atshmianov
arasti. — Varokaa Kiriliniä. Hän kertoo kaikkialla teistä mitä
kamalimpia juttuja.
— Minua ei huvita tietää, mitä mikin aasinpää minusta kertoo, —
vastasi Nadeshda Feodorovna kylmästi, ja hänet valtasi äkkiä
levottomuus, ja naurettava ajatus pitää tuota nuorta, kaunista
Atshmianovia lelunaan oli kadottanut viehätyksensä.
— Täytyy jo mennä alas, — sanoi hän. — Minua kutsutaan.
Alhaalla oli kalakeitto jo valmiina. Sitä kaadettiin lautasille ja
syötiin niin hartaasti kuin vain ulkoilmakekkereissä on tavallista; ja
kaikista maistui kalakeitto erittäin hyvältä, ja kaikki olivat sitä mieltä,
etteivät he olleet kotona milloinkaan syöneet mitään niin herkullista.
Kuten tällaisissa kekkereissä on tavallista, sai ruokaliinojen, myttyjen,
tarpeettomien, tuulessa liehuvien rasvaisten paperien paljous
sellaista sekasotkua aikaan, etteivät osanottajat tienneet missä
kenenkin lasi ja leipäpala olivat; he kaatoivat viiniä matolle tai
polvilleen, pudottivat maahan suolaa, ja ympärillä oli pimeä eikä
nuotiokaan enää loimunnut niin kirkkaasti eikä kukaan viitsinyt
64. nousta heittämään risuja tuleen. Kaikki joivat viiniä ja Kostjalle ja
Katjallekin annettiin puoli juomalasillista. Nadeshda Feodorovna joi
koko lasillisen, sitten toisen, päihtyi ja unohti koko Kirilinin.
— Erinomaiset kekkerit, hurmaava ilta, — sanoi Lajevski
riemastuen viinin vaikutuksesta, — mutta sittenkin pitäisin hyvää
talvea kaikkea tätä parempana. Majavainen kaulus hopeaisna
pakkasessa loistaa.
— Kullakin oma makunsa, — huomautti von Coren.
Lajevskin tuli paha olla: selkää paahtoi nuotiosta hohtava
kuumuus, rintaa ja kasvoja von Corenin viha; ja tämä viha, lähtien
viisaasta ja säällisestä miehestä, jolla luultavasti oli perusteellinen
syykin vihata, alensi ja lannisti häntä, ja kykenemättä sitä
vastustamaan hän lausui mielistelevällä äänellä:
— Minä rakastan intohimoisesti luontoa ja säälin, etten ole
luonnontutkija. Minä kadehdin teitä.
— Minäpä en sääli enkä kadehdi, — virkkoi Nadeshda Feodorovna.
— En ymmärrä, kuinka voi tosissaan työskennellä turilasten ja
koppakuoriaisten tutkimisesssa sillä aikaa kun kansa kärsii.
Lajevski kannatti hänen mielipidettään. Hän ei ollut yhtään perillä
luonnontieteistä eikä sentähden koskaan ollut voinut kärsiä
muurahaisten tuntosarvia ja torakoiden koipia tutkivien miesten
mahtipontista äänensävyä ja viisasta, syvämielistä ulkomuotoa, ja
häntä oli aina suututtanut se, että nämä ihmiset, tuntosarvien,
koipien ja jonkin alkuliman (hän oli ties miksi kuvitellut tätä
alkulimaa osterin muotoiseksi) nojalla ottavat ratkaistaksensa
ihmisen alkuperää ja elämää koskevia kysymyksiä. Mutta Nadeshda
65. Feodorovnan sanoissa oli kuulostavinaan valhetta, ja vain
inttääkseen vastaan hän lausui:
— Tähdellistä eivät ole koppakuoriaiset, vaan johtopäätökset!
66. VIII.
Myöhään, kellon jo käydessä kahtatoista, alettiin laittautua
ajoneuvoihin kotimatkaa varten. Kaikki istuivat jo paikoillaan, eikä
puuttunut muita kuin Nadeshda Feodorovna ja Atshmianov, jotka
joen tuolla puolen juoksivat tippasilla ja nauroivat.
— Arvoisa herrasväki, joutukaa! — huusi heille Samoilenko.
— Ei pitäisi naisille antaa viiniä, — lausui von Coren hiljakseen.
Kekkereiden, von Corenin vihan ja omien ajatusten väsyttämänä
Lajevski lähti Nadeshda Feodorovnaa vastaan, ja kun tämä iloisena,
tuntien itsensä keveäksi kuin höyhen, hengästyneenä ja nauraa
hohottaen otti häntä molemmista käsistä ja laski päänsä hänen
rintaansa vasten, peräytyi hän askelen ja virkkoi tylysti:
— Sinä käyttäydyt ihan kuin … yleinen nainen. Sattui tulemaan
kovin raa'asti sanotuksi, ja hänen tuli sääli Nadeshda Feodorovnaa.
Hänen vihaisista, väsyneistä kasvoistaan Nadeshda Feodorovna voi
lukea sekä vihaa että sääliä ja suuttumusta, ja äkkiä hänen mielensä
masentui. Hän käsitti, että oli mennyt liiallisuuteen, käyttäytynyt liian
vapaasti ja käyden surulliseksi, tuntien itsensä raskaaksi, paksuksi,
töykeäksi ja pöhnäiseksi istahti ensinnä eteen sattuneihin
67. ajoneuvoihin yhdessä Atshmianovin kanssa. Lajevski istuutui
samoihin ajoneuvoihin Kirilinin, eläintieteilijä Samoilenkon ja diakoni
naisten seuraan, ja matkue lähti liikkeelle.
— Sellaisia ne ovat koira-apinat … alkoi von Coren, kääriytyen
levättiinsä ja peittäen silmänsä. — Kuulithan, hän ei tahtoisi tutkia
turilaita ja koppakuoriaisia sentähden, että kansa kärsii. Samaan
tapaan arvostelevat meikäläisiä kaikki koira-apinat. Viekas,
kymmenessä polvessa ruoskalla ja nyrkillä pelotettu orjanheimo! Se
vapisee, tuntee sääliä ja suitsuttaa vain väkivallan edessä, mutta
päästä koira-apina vapaalle alueelle, missä sen ei tarvitse pelätä
kenenkään niskaansa tarraavan, silloin se kyllä osaa rehennellä ja
näyttää mikä hän on miehiään. Katso, kuinka rohkea se on
taulunäyttelyissä, museoissa, teattereissa tahi arvostellessaan
tiedettä: suurentelee, nousee takajaloilleen, sättii, arvostelee… Orjan
piirre — täytyy välttämättömästi arvostella! Paneppa merkille:
vapaiden ammattien harjoittajia sätitään useammin kuin petkuttajia
— se johtuu siitä, että yleisö on kolmeksi neljännekseksi orjia,
samanlaisia koira-apinoita. Sitä ei tapahdu, että orja ojentaisi sinulle
kätensä ja lausuisi vilpittömän kiitoksensa, kun teet työtä.
— En ymmärrä, mitä oikein tahdot! — sanoi Samoilenko
haukotellen. — Naisparkaa halutti yksinkertaisuudessaan puhella
kanssasi viisaista asioista, ja heti sinä teet johtopäätöksen. Olet
suuttunut mieheen jostakin, ja summamutikassa saa naisparkakin
kyytiä. Hän on oikein hyvä nainen.
— Ole jo! Tavallinen leipäsusi, irstas ja paheellinen. Kuule,
Aleksander Daviditsh, kun sinä kohtaat yksinkertaisen
maalaisvaimon, joka ei asu miehensä luona, joka ei tee mitään ja
joka vain hihittää ja hahattaa, niin sanot hänelle: mene työhön. Miksi
68. sitten tässä kohden arastelet ja pelkäät lausua totuutta?
Senkötähden vain, että Nadeshda Feodorovna on virkamiehen eikä
matruusien pitohelluna?
— Mitä minun olisi hänelle tehtävä? — kivahti Samoilenko. —
Selkäänkö annettava, vai?
— Pahetta ei ole mairiteltava. Me tuomitsemme pahetta vain selän
takana, mikä on samaa kuin heristää nyrkkiä taskussa. Minä olen
eläintieteilijä tahi sosiologi, mikä on aivan samaa, sinä lääkäri;
yhteiskunta luottaa meihin; velvollisuutemme on huomauttaa sille
sitä hirmuista turmiota, joka uhkaa sitä ja tulevia sukupolvia
Nadeshda Ivanovnan kaltaisten naikkosten olemassaolon takia.
— Feodorovnan, — oikaisi Samoilenko. — Ja mitä yhteiskunnan
pitäisi puolestaan tehdä?
— Senkö? Se on sen oma asia. Minusta on suorin ja varmin keino
— käyttää väkivaltaa. Hänet on järjestysvallan toimesta lähetettävä
miehensä luo, ja jos tämä ei ota häntä vastaan, on hänet
toimitettava pakkotyöhön tahi johonkin ojennuslaitokseen.
— Oih! — huoahti Samoilenko; tovin vaiti oltuaan hän sitten kysyi
hiljaisella äänellä: — Sanoit tässä eräänä päivänä, että sellaiset
ihmiset, kuin Lajevski, ovat hävitettävät… Sanoppa, jos nyt
esimerkiksi valtio tahi yhteiskunta antaisi sinulle toimeksi toimittaa
hänet pois, tekisitkö sen?
— Käsi ei suinkaan vavahtaisi.
69. IX.
Kotiin tultua Lajevski ja Nadeshda Feodorovna astuivat pimeihin,
tukahuttaviin huoneisiinsa. Molemmat olivat vaiti. Lajevski sytytti
kynttilän, Nadeshda Feodorovna istuutui ja riisumatta viittaansa ja
hattuansa katsoi häneen suruisin, syyllisin silmin.
Lajevski ymmärsi hänen odottavan selitystä; mutta selityksen
antaminen olisi ollut ikävää, hyödytöntä ja väsyttävää, ja sydäntä
ahdisti tieto siitä, ettei hän ollut hillinnyt itseään, vaan oli sanonut
hänelle raakuuden. Taskussa sattui hänelle käteen kirje, jonka hän
oli joka päivä aikonut lukea Nadeshda Feodorovnalle, ja hän ajatteli,
että jos hän nyt näyttää tämän kirjeen hänelle, johtaa se hänen
huomionsa muuanne.
On jo aika selvittää välimme, ajatteli hän. Annan hänelle;
tulkoon mikä on tullakseen.
Hän otti taskustaan kirjeen ja antoi sen Nadeshdalle.
— Lue, se koskee sinua.
Sen sanottuaan hän meni työhuoneeseensa ja kävi pimeässä
sohvalle pitkäkseen ilman päänalusta. Nadeshda Feodorovna luki
70. kirjeen, ja hänestä näytti ikäänkuin katto olisi painunut ja seinät
siirtyneet lähemmäksi. Kävi äkkiä ahtaaksi, pimeäksi, pelottavaksi.
Hän risti nopeasti silmiään ja virkkoi:
— Suo, Herra, rauha … suo, Herra, rauha… Ja ratkesi itkuun.
— Vanja! — huusi hän. — Ivan Andreitsh!
Vastausta ei tullut. Luullen Lajevskin tulleen huoneeseen ja
seisovan hänen tuolinsa takana, hän nyyhkytti kuin lapsi ja puheli:
— Mikset ennemmin sanonut minulle, että hän on kuollut? En olisi
lähtenyt kekkereihin, en olisi nauranut niin paljon… Herrat lausuivat
minulle typeryyksiä. Mikä synti! Pelasta minut, Vanja, pelasta minut…
Olen menettänyt järkeni… Minä olen hukassa…
Lajevski kuuli hänen nyyhkytyksensä. Hänen olonsa oli
sietämättömän tukahuttava, ja sydän jyskytti hirmuisesti.
Ahdistuksissaan hän nousi, seisoi kotvasen keskellä huonetta,
hapuroi pimeässä pöydän luona nojatuolia ja istahti siihen.
Tämä on vankila… ajatteli hän. Pitää lähteä pois… Minä en
kestä…
Oli jo myöhäistä mennä pelaamaan korttia, ravintoloita ei
kaupungissa ollut. Hän kävi jälleen pitkälleen ja tukki korvansa, ettei
olisi kuullut nyyhkytyksiä, mutta äkkiä hän muisti, että Samoilenkon
luo sopi kyllä mennä. Jotta ei tarvitsisi kulkea Nadeshda
Feodorovnan ohi, pujahti hän ikkunan kautta puutarhaan, kiipesi
aidan yli ja lähti pitkin katua. Oli pimeä. Vastikään oli saapunut joku
höyrylaiva, tulista päättäen iso matkustajalaiva ..
71. Ankkurikettinki ratisi. Rannasta lähti punainen tuli nopeasti
lipumaan laivaa kohden: se oli tullivene.
Siellä ne nukkuvat matkustajat hyteissään… ajatteli Lajevski, ja
hänen kävi kateeksi toisten lepo.
Ikkunat olivat Samoilenkon talossa auki. Lajevski katsoi yhdestä
ikkunasta sisään, sitten toisesta: huoneissa oli pimeää ja hiljaista.
— Aleksander Daviditsh, nukutko? — huhuili hän. — Aleksander
Daviditsh!
Kuului yskimistä ja huolestunut huudahdus:
— Ken siellä? Mitä lempoa?
— Minä se olen, Aleksander Daviditsh. Suo anteeksi.
Hetkisen kuluttua avautui väliovi; pyhimyslampusta tuikahti
pehmoinen valo, ja Samoilenkon valkopukuinen jättiläisvartalo,
valkoinen yömyssy päässä, tuli näkyviin.
— Mitä sinä haet? — kysyi hän unisena raskaasti hengittäen ja
kyhnien itseään. — Maltas nyt, heti minä avaan.
— Älä vaivaa itseäsi, minä kömmin ikkunasta… Lajevski kiipesi
ikkunasta sisään ja lähestyttyään Samoilenkoa tarttui hänen
käteensä.
— Aleksander Daviditsh, — sanoi hän vapisevalla äänellä, —
pelasta minut! Pyydän sinua, rukoilen, ymmärrä minua! Asemani on
sietämätön. Jos se jatkuu vielä pari päivää, kuristan itseni kuin …
kuin koiran!
72. — Maltahan… Mikäs sinua oikeastaan vaivaa?
— Sytytä kynttilä.
— Oh-oh… huokasi Samoileko, pannen kynttilään tulta. — Siunaa
ja varjele… Kello käy jo kahta, veikkonen.
— Suo anteeksi, mutta minä en voi istua kotona, — virkkoi
Lajevski, tuntien valosta ja Samoilenkon läsnäolosta suurta
huojennusta. — Sinä, Aleksander Daviditsh, olet ainoa, paras
ystäväni… Kaikki toivoni on sinussa. Jos tahdot tahi et, pelasta
Jumalan nimessä. Minun täytyy kaikin mokomin matkustaa täältä
pois. Lainaa minulle rahaa!
— Herra siunatkoon! — huokasi Samoilenko, kyhnien itseään. —
Heräsin ja kuulen, laiva huutaa tuloaan, sitten sinä… Paljonkos
tarvitset?
— Vähintäänkin kolmesataa ruplaa. Hänelle on jätettävä sata ja
itse tarvitsen matkalle kaksisataa… Olen sinulle velkaa jo lähes
neljäsataa, mutta minä lähetän kaikki … kaikki.
Samoilenko kourasi yhteen käteen molemmat poskipartansa, levitti
jalat haralleen ja vaipui mietteisiin.
— Ja-ah … urahti hän miettiväisenä. — Kolmesataa… Mutta
minulla ei ole niin paljoa. Pitää ottaa joltakin lainaksi.
— Lainaa Herran tähden! — virkkoi Lajevski, nähden Samoilenkon
muodosta, että hän tahtoo antaa rahaa ja ehdottomasti antaakin. —
Lainaa, minä varmasti maksan takaisin. Lähetän Pietarista, heti kun
tulen sinne. Siitä saat olla huoleti. Kuulehan, Sasha, — virkkoi hän
elpyneenä — juodaanpas viiniä!
73. — Miksei, juodaan vaan. Mentiin ruokasaliin.
— Entä, kuinka käy Nadeshda Feodorovnan? — kysyi Samoilenko,
tuoden pöytään kolme pulloa viiniä ja lautasellisen persikoita. —
Jääkö hän tänne?
— Kaikki järjestän, kaikki järjestän… — vastasi Lajevski, tuntien
odottamattoman riemunpuuskan täyttävän rintansa. — Minä sitten
lähetän hänelle rahaa, hän matkustaa luokseni… Siellä sitten
selvitämme suhteemme. Terveydeksesi, jalo ystävä.
— Älähän kiirehdi! — sanoi Samoilenko. — Ryyppäähän ensinnä
tätä. Se on omasta viinitarhastani. Tämä pullo taas on Navaridzen
viinitarhan tuotetta, tämä Ahatulovin… Maista kaikkia kolmea lajia ja
sano peittelemättä… Minun on vähän niinkuin hapahkoa? Miltä
sinusta tuntuu? Eikö ole?
— Niin on. Hyvinpä minua lohdutit, Aleksander Daviditsh. Kiitos …
oikein elvyin.
— Onko hapahkoa?
— Lempo hänet tietää, minä en. Mutta sinä olet mitä mainioin,
erinomainen mies!
Katsoen häntä kalpeihin, kiihtyneihin, hyvänsävyisiin kasvoihin
Samoilenko muisti von Corenin mielipiteen, että tuollaiset on
poistettava, ja Lajevski näytti hänestä heikolta, turvattomalta
lapselta, jota jokainen voi loukata ja sortaa.
— Kun sinä tulet sinne, niin sovi äitisi kanssa, — sanoi hän. —
Näin ei ole hyvä.
74. — Kyllä, kyllä, välttämättä.
Oltiin kotvasen vaiti. Kun ensimmäinen pullo oli juotu, virkkoi
Samoilenko:
— Voisit sopia von Coreninkin kanssa. Mitä mainioimpia, viisaimpia
miehiä kumpainenkin, ja kyräilette toisiinne kuin sudet.
— Kyllä hän on kaikkein viisain, mainioin mies, — myönsi Lajevski,
tällä haavaa valmiina kaikkia kiittämään ja kaikille anteeksi
antamaan. — Hän on merkillinen mies, mutta minun on mahdotonta
hyväksyä hänen mielipiteitään. Ei, siksi erilaiset ovat luonteemme.
Minä olen veltto, heikko, alistuvainen luonne; ehkä hyvänä hetkenä
ojentaisinkin hänelle käteni, mutta hän kääntyisi kuitenkin minusta
pois … halveksivasti.
Lajevski hörppi viiniä, astahti nurkasta nurkkaan ja jatkoi, seisoen
keskellä lattiaa:
— Minä ymmärrän mainiosti von Corenia. Hän on kova, voimakas,
despoottinen luonne. Olethan kuullut, hän hokee yhtenään
tutkimusretkestä, eikä se ole tyhjää puhetta. Hänellä pitää olla
erämaa, kuutamoyö: ympärillä teltoissa ja avotaivaan alla nukkuvat
hänen nälkäiset ja sairaat, vaivaloisten päivämatkojen rasittamat
kasakkansa, oppaansa, kantajansa, lääkärinsä, pappinsa, hän yksin
vain ei nuku, vaan istuu kuten Stanley kokoonpantavalla tuolilla ja
tuntee itsensä erämaan valtiaaksi ja näiden ihmisten herraksi. Hän
kulkee kulkemistaan jonnekin, miehet vaikeroivat ja kuolevat toinen
toisensa jälkeen, hän vain kulkee eteenpäin, viimein hän sortuu
itsekin, mutta jää kuitenkin erämaan despootiksi ja valtiaaksi, koska
hänen hautaristinsä on karavaanien nähtävänä kolmen-,
neljänkymmenen peninkulman päässä ja vallitsee erämaata. Säälin,
75. ettei tämä mies ole sotapalveluksessa. Hänestä tulisi erinomainen,
nerokas sotapäällikkö. Hänessä olisi miestä hukuttamaan
ratsuväkensä virtaan ja laatimaan ruumiista sillan, ja sellainen
rohkeus on sodassa enemmän tarpeen kuin linnoitustaidot ja
taktiikat. Oi, minä ymmärrän hänet niin hyvin! Sano, minkätähden
hän tuhlaa varojansa oleskelemalla täällä? Mitä hän täältä kaipaa?
— Hän tutkii meren eläimistöä.
— Ei, ei, veikko, ei! — huokasi Lajevski. — Laivalla kertoi minulle
eräs matkustavainen tiedemies, että Musta meri on köyhä eläimistä
ja että sen syvyydessä veden rikkivetyisyyden takia elimellinen elämä
on mahdoton. Kaikki vakavat eläintieteilijät työskentelevät biologisilla
asemilla Neapelissa tai Villefranchessa. Mutta von Coren on
itsenäinen ja itsepäinen: hän työskentelee Mustalla merellä
sentähden, että täällä ei kukaan työskentele; hän katkaisi välinsä
yliopiston kanssa, ei tahdo tietää oppineista ja tovereista sentähden,
että hän ennen kaikkea on hirmuvaltias ja vasta toisessa sijassa
eläintieteilijä. Ja hän saa jotakin suurta aikaan, sen tulet näkemään.
Jo nytkin hän haaveilee, että palattuaan tutkimusretkeltä hän
karkoittaa yliopistoistamme vehkeilyn ja puolinaisuuden ja
perinjuurin masentaa oppineet mahtimiehet. Hirmuvalta on
tieteessäkin yhtä väkevä kuin sodassa. Tässä haisevassa
kaupunkipahasessa hän asuu jo toista kesää sentähden, että on
parempi olla ensimmäisenä kylässä kuin toisena kaupungissa. Täällä
hän on kuningas ja kotka; hän pitää kaikkia kaupunkilaisia kurissa ja
painaa heitä arvovallallaan. Hän on siepannut kouriinsa kaikki,
sekaantuu vieraisiin asioihin, kaikki ovat hänelle tarpeen ja kaikki
pelkäävät häntä. Minä luisun hänen kouransa ulottuvilta, hän tuntee
sen eikä voi sietää minua. Eikö hän ole puhunut sinulle, että minut
olisi hävitettävä tahi toimitettava yleiseen työhön?
76. — Kyllä, — naurahti Samoilenko. Lajevski naurahti samaten ja
ryyppäsi viiniä.
— Hänen ihanteensakin ovat despoottiset, — sanoi hän nauraen ja
haukaten persikkaa. — Tavallisesti kuolevaiset, jos tekevät työtä
yhteiseksi hyväksi, tarkoittavat sillä lähimmäistään: minua, sinua,
sanalla sanoen ihmistä. Von Corenista ihmiset ovat koiranpentuja ja
joutavuuksia, liian vähäpätöisiä kelvatakseen hänen elämänsä
tarkoitusperäksi. Hän työskentelee, lähtee tutkimusretkelle ja taittaa
siellä niskansa, ei lähimmäisenrakkauden nimessä, vaan sellaisten
abstraktsionien takia kuin ihmiskunta, tulevat sukupolvet,
ihanteellinen ihmisrotu. Hän huolehtii ihmisrodun parantamisesta ja
siinä suhteessa me olemme hänen kannaltaan vain orjia,
tykinruokaa, kuormajuhtia; toiset hän hävittäisi tahi pistäisi
pakkotyöhän, toiset ruhjoisi rautaisella kurikalla, pakottaisi kuten
Araktshejev nousemaan ja käymään levolle rummun pärrytyksen
mukaan, panisi eunukit vartioimaan puhtauttamme ja
siveellisyyttämme, käskisi ampumaan jokaisen, joka astuu ahtaan,
vanhoillisen siveyskäsitepiirimme ulkopuolelle, ja kaikki tämä
ihmisrodun parantamisen nimessä. Mutta mitä on ihmisrotu?
Kuvitelma, kangastus… Hirmuvaltiaat ovat aina haaveilleet.
Veikkonen, ymmärrän hänet niin hyvin. Pidän arvossa enkä suinkaan
kiellä hänen merkitystään; sellaisten varassa, kuin hän on, tämä
maailma pysyy pystyssä, ja jos maailma jätettäisiin yksistään meidän
hoteisiimme, niin tekisimme siitä, kaikesta tahdostamme ja hyvistä
aikeistamme huolimatta, saman kuin mitä kärpäset ovat tehneet
tästä kuvataulusta. Juuri niin!
Lajevski kävi Samoilenkon viereen istumaan ja lausui vilpittömän
innostuksen vallassa:
77. Welcome to our website – the perfect destination for book lovers and
knowledge seekers. We believe that every book holds a new world,
offering opportunities for learning, discovery, and personal growth.
That’s why we are dedicated to bringing you a diverse collection of
books, ranging from classic literature and specialized publications to
self-development guides and children's books.
More than just a book-buying platform, we strive to be a bridge
connecting you with timeless cultural and intellectual values. With an
elegant, user-friendly interface and a smart search system, you can
quickly find the books that best suit your interests. Additionally,
our special promotions and home delivery services help you save time
and fully enjoy the joy of reading.
Join us on a journey of knowledge exploration, passion nurturing, and
personal growth every day!
ebookbell.com