SlideShare a Scribd company logo
THE STATE OF TRAJECTORY VISUALIZATION
IN NOTEBOOK ENVIRONMENTS
GI_Salzburg, 2022-07-07
Anita Graser
@underdarkGIS
Trajectory Visualization in Notebook Environments @ GI_Salzburg 2022
 Accept messiness in data
 Need to understand
 Causes of bias & messiness
 Consequences of using such data
in analyses
 Data visualization & exploratory
approaches
CHALLENGES
Brunsdon & Comber (2020) Big issues for big data Graser & Dragaschnig (2020) Open Geospatial Tools for Movement Data Exploration
REALITY CHECK
Graser et al. (2020) Exploratory Trajectory Analysis for Massive Historical AIS Datasets
REALITY CHECK
Andrienko et al. (2016) Understanding movement data quality. Journal of Location Based Services.
VISUAL ANALYTICS RESEARCH
Andrienko, G., & Andrienko, N. (2008). Exploration of massive movement data: a visual analytics approach. AGILE’08.
Python
 PyMove: Python library to simplify queries and visualization of
trajectories and other spatial-temporal data. (first GH commit: 2018-
09-09)
 MovingPandas: Trajectory classes and functions built on top of
GeoPandas. (first GH commit: 2018-12-16)
 Traja: Python tools for 2D spatial trajectory data. (first GH commit:
2019-01-13)
 trackintel: a framework for spatio-temporal analysis of
movement trajectory and mobility data. (first GH commit: 2019-01-20)
 scikit-mobility: Mobility analysis in Python. (first GH commit: 2019-
04-28)
 MovinPy: Process and analyze mobility data. (first GH commit:
2020-07-23)
 HuMobi: a library for human mobility analyses implemented in
Python. (first GH commit: 2021-06-02)
 PTRAIL: parallel computation library for Mobility Data
Preprocessing and feature generation. (first GH commit: 2021-05-31)
 TransBigData: transportation spatio-temporal big data
processing, analysis and visualization. (first GH commit: 2021-10-17)
MOVEMENT ANALYSIS TOOLS
C++
 Tracktable (with Python API): moving object trajectory
analysis in C++ and Python. (first GH commit: 2016-
04-10)
 MEOS (with Python API): Mobility Engine, Open
Source is a C++ library which makes it easy to work
with temporal and spatio-temporal data. (first GH
commit: 2020-04-19)
 MoveTK: a library for computational movement
analysis written in C++. (first GH commit: 2020-09-09)
R
 Review paper: Joo, R., Boone, M. E., Clay, T. A.,
Patrick, S. C., Clusella‐Trullas, S., & Basille, M. (2020).
Navigating through the R packages for movement.
Journal of Animal Ecology, 89(1), 248-267.
Databases
 MobilityDB: A geospatial trajectory data management
& analysis platform, built on PostgreSQL and PostGIS.
(first GH commit: 2019-02-17)
 mobilitydb-python: Python driver for MobilityDB.
 mobilitydb-sqlalchemy: MobilityDB extensions for
SQLAlchemy
https://github.com/anitagraser/movement-analysis-tools
Pandas
… developed in the context of financial modeling
 extensive set of tools for working with dates, times,
and time-indexed data
GeoPandas
… extends the datatypes used by Pandas to allow spatial
operations on geometric types
WHY PANDAS?
https://anitagraser.com/2018/11/18/movement-data-in-gis-16-towards-pure-python-trajectories-using-geopandas/
Visualization library
PyMove Folium
MovingPandas GeoViews & Matplotlib
Traja Matplotlib
Trackintel Matplotlib
Scikit-mobility Folium
PTRAIL Folium
TransBigData Kepler.GL
WHAT ABOUT VISUALIZATIONS?
Folium
Data: “Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance" (Ray et al. 2018).
✅ Interactive plot
✅ Background maps
✅ Object identity
⏹⏹
Direction
⏹⏹
Speed
🆘 Time
Data: “Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance" (Ray et al. 2018).
✅ Interactive plot
✅ Background maps
⏹⏹
Object identity
⏹⏹
Direction
✅ Speed
🆘 Time
Data: “Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance" (Ray et al. 2018).
✅ Interactive plot
✅ Background maps
✅ Object identity
⏹⏹
Direction
🆘 Speed
🆘 Time
Folium
Data: “Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance" (Ray et al. 2018).
🆘 Static plot
⏹⏹
Only OSM network plot
✅ Object identity
🆘 Direction
🆘 Speed
🆘 Time
Data: “Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance" (Ray et al. 2018).
🆘 Static plot
🆘 No background maps
🆘 Object identity
⏹⏹
Direction
🆘 Speed
✅ Time
Data: “Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance" (Ray et al. 2018).
🆘 Static plot
🆘 No background maps
✅ Object identity
🆘 Direction
🆘 Speed
🆘 Time
✅ Interactive plots
✅ Background maps
🆘 Object identity
✅ Direction
✅ Speed
✅ Time
Trajectory Visualization in Notebook Environments @ GI_Salzburg 2022
 Standardization efforts
 OGC MovingFeatures
 Scientific software development
 MovingPandas, Scikit-mobility et al.
 Spatial data apps
RECENT DEVELOPMENTS
18
anita.graser@ait.ac.at
@underdarkGIS
anitagraser.com
ANITA GRASER

More Related Content

PPTX
Anita Graser: Analyzing Movment Data with MovingPandas
PPTX
MovingPandas at PyDays Vienna 2019
PDF
A Survey on Trajectory Data Mining
PDF
Cities in Motion: Mapping Singapore’s Night-time Economy through Taxi Data
PDF
From Simple Features to Moving Features and Beyond? at OGC Member Meeting, Se...
PDF
Exploratory Analysis of Massive Movement Data (RGS-IBG GIScience Research Gro...
PDF
Gis capabilities on Big Data Systems
PDF
Mobile information collectors trajectory data warehouse design
Anita Graser: Analyzing Movment Data with MovingPandas
MovingPandas at PyDays Vienna 2019
A Survey on Trajectory Data Mining
Cities in Motion: Mapping Singapore’s Night-time Economy through Taxi Data
From Simple Features to Moving Features and Beyond? at OGC Member Meeting, Se...
Exploratory Analysis of Massive Movement Data (RGS-IBG GIScience Research Gro...
Gis capabilities on Big Data Systems
Mobile information collectors trajectory data warehouse design

Similar to Trajectory Visualization in Notebook Environments @ GI_Salzburg 2022 (20)

PDF
DAVLectuer3 Exploratory data analysis .pdf
PPTX
Letgo Data Platform: A global overview
PDF
Data Tools cosystem_for_non_programmers
PDF
Data tools ecosystem for non-programmers
PDF
Dirty Data? Clean it up! - Rocky Mountain DataCon 2016
PDF
MobiGIS 2016 workshop report: The Fifth ACM SIGSPATIAL International Workshop...
PPTX
DATA ANALYSIS AND VISUALISATION using python 2
PPT
NTEN Webinar - Data Cleaning and Visualization Tools for Nonprofits
PPT
Agile2010 Update
PDF
La telefonía móvil como fuente de información para el estudio de la movilidad...
PDF
On the Management, Analysis and Simulation of our LifeSteps
PDF
Smartnets2018
PDF
Data Science & AI Road Map by Python & Computer science tutor in Malaysia
PDF
A spatial data model for moving object databases
PDF
Spatio-Temporal Data Mining and Classification of Ships' Trajectories
PPTX
Modeling Crowds in Urban Spaces
PDF
Dirty data? Clean it up! - Datapalooza Denver 2016
PDF
IRJET- Data Analytics and Visualization through R Programming
PPTX
Deep Learning for Trajectory Data Management and Mining_ A Survey and Beyond....
POT
From Data to Visualization: Emerging Tools for Research / Jan Johansson
DAVLectuer3 Exploratory data analysis .pdf
Letgo Data Platform: A global overview
Data Tools cosystem_for_non_programmers
Data tools ecosystem for non-programmers
Dirty Data? Clean it up! - Rocky Mountain DataCon 2016
MobiGIS 2016 workshop report: The Fifth ACM SIGSPATIAL International Workshop...
DATA ANALYSIS AND VISUALISATION using python 2
NTEN Webinar - Data Cleaning and Visualization Tools for Nonprofits
Agile2010 Update
La telefonía móvil como fuente de información para el estudio de la movilidad...
On the Management, Analysis and Simulation of our LifeSteps
Smartnets2018
Data Science & AI Road Map by Python & Computer science tutor in Malaysia
A spatial data model for moving object databases
Spatio-Temporal Data Mining and Classification of Ships' Trajectories
Modeling Crowds in Urban Spaces
Dirty data? Clean it up! - Datapalooza Denver 2016
IRJET- Data Analytics and Visualization through R Programming
Deep Learning for Trajectory Data Management and Mining_ A Survey and Beyond....
From Data to Visualization: Emerging Tools for Research / Jan Johansson
Ad

More from Anita Graser (18)

PDF
Movement Data in GIS - Geobeer Lightning Talk, 2021-03-08
PPTX
Data-driven Trajectory Prediction in Maritime LBS
PPTX
Big Spatial(!) Data Processing mit GeoMesa. AGIT 2019, Salzburg, Austria.
PPTX
QGIS das Opensource GIS at Linuxwochen Wien 2019
PDF
GIScience for Dynamic Transportation Systems, GIScience Colloquium, Universit...
PPTX
QGIS Neuigkeiten @ AGIT2017
PPTX
Landmark-based instructions for pedestrian navigation systems using OSM
PDF
QGIS Processing at Linuxwochen Wien / PyDays 2017
PDF
Integrating Open Spaces into OSM Routing Graphs for Realistic Crossing Behavi...
PDF
Neuigkeiten vom QGIS-Projekt - AGIT 2016
PDF
Spatial Data Analysis & Visualization with QGIS - Vienna Data Science Meetup
PPTX
Better Urban Travel Time Estimates Using Street Network Centrality #Eurocarto15
PDF
Time Manager Vortrag vom QGIS-DE Anwendertreffen 2015
PDF
Time Manager Workshop vom QGIS-DE Anwendertreffen 2015
PDF
Improving Navigation: Automated Name Extraction for Separately Mapped Pedestr...
PDF
Routing mit OSM - #AGIT2015
ODP
QGIS jenseits von zwei Dimensionen - KAGIS-Fachtagung 2015
ODP
Time Manager Workshop at #QGIS2015 Conference in Nodebo
Movement Data in GIS - Geobeer Lightning Talk, 2021-03-08
Data-driven Trajectory Prediction in Maritime LBS
Big Spatial(!) Data Processing mit GeoMesa. AGIT 2019, Salzburg, Austria.
QGIS das Opensource GIS at Linuxwochen Wien 2019
GIScience for Dynamic Transportation Systems, GIScience Colloquium, Universit...
QGIS Neuigkeiten @ AGIT2017
Landmark-based instructions for pedestrian navigation systems using OSM
QGIS Processing at Linuxwochen Wien / PyDays 2017
Integrating Open Spaces into OSM Routing Graphs for Realistic Crossing Behavi...
Neuigkeiten vom QGIS-Projekt - AGIT 2016
Spatial Data Analysis & Visualization with QGIS - Vienna Data Science Meetup
Better Urban Travel Time Estimates Using Street Network Centrality #Eurocarto15
Time Manager Vortrag vom QGIS-DE Anwendertreffen 2015
Time Manager Workshop vom QGIS-DE Anwendertreffen 2015
Improving Navigation: Automated Name Extraction for Separately Mapped Pedestr...
Routing mit OSM - #AGIT2015
QGIS jenseits von zwei Dimensionen - KAGIS-Fachtagung 2015
Time Manager Workshop at #QGIS2015 Conference in Nodebo
Ad

Recently uploaded (20)

PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PPTX
1. Introduction to Computer Programming.pptx
PDF
Encapsulation theory and applications.pdf
PDF
Heart disease approach using modified random forest and particle swarm optimi...
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PPTX
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
PPTX
Tartificialntelligence_presentation.pptx
PPTX
TLE Review Electricity (Electricity).pptx
PPTX
A Presentation on Artificial Intelligence
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
August Patch Tuesday
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
Programs and apps: productivity, graphics, security and other tools
Accuracy of neural networks in brain wave diagnosis of schizophrenia
1. Introduction to Computer Programming.pptx
Encapsulation theory and applications.pdf
Heart disease approach using modified random forest and particle swarm optimi...
Assigned Numbers - 2025 - Bluetooth® Document
MIND Revenue Release Quarter 2 2025 Press Release
Univ-Connecticut-ChatGPT-Presentaion.pdf
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Unlocking AI with Model Context Protocol (MCP)
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Digital-Transformation-Roadmap-for-Companies.pptx
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
Tartificialntelligence_presentation.pptx
TLE Review Electricity (Electricity).pptx
A Presentation on Artificial Intelligence
Mobile App Security Testing_ A Comprehensive Guide.pdf
August Patch Tuesday
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Programs and apps: productivity, graphics, security and other tools

Trajectory Visualization in Notebook Environments @ GI_Salzburg 2022

  • 1. THE STATE OF TRAJECTORY VISUALIZATION IN NOTEBOOK ENVIRONMENTS GI_Salzburg, 2022-07-07 Anita Graser @underdarkGIS
  • 3.  Accept messiness in data  Need to understand  Causes of bias & messiness  Consequences of using such data in analyses  Data visualization & exploratory approaches CHALLENGES Brunsdon & Comber (2020) Big issues for big data Graser & Dragaschnig (2020) Open Geospatial Tools for Movement Data Exploration
  • 4. REALITY CHECK Graser et al. (2020) Exploratory Trajectory Analysis for Massive Historical AIS Datasets
  • 5. REALITY CHECK Andrienko et al. (2016) Understanding movement data quality. Journal of Location Based Services.
  • 6. VISUAL ANALYTICS RESEARCH Andrienko, G., & Andrienko, N. (2008). Exploration of massive movement data: a visual analytics approach. AGILE’08.
  • 7. Python  PyMove: Python library to simplify queries and visualization of trajectories and other spatial-temporal data. (first GH commit: 2018- 09-09)  MovingPandas: Trajectory classes and functions built on top of GeoPandas. (first GH commit: 2018-12-16)  Traja: Python tools for 2D spatial trajectory data. (first GH commit: 2019-01-13)  trackintel: a framework for spatio-temporal analysis of movement trajectory and mobility data. (first GH commit: 2019-01-20)  scikit-mobility: Mobility analysis in Python. (first GH commit: 2019- 04-28)  MovinPy: Process and analyze mobility data. (first GH commit: 2020-07-23)  HuMobi: a library for human mobility analyses implemented in Python. (first GH commit: 2021-06-02)  PTRAIL: parallel computation library for Mobility Data Preprocessing and feature generation. (first GH commit: 2021-05-31)  TransBigData: transportation spatio-temporal big data processing, analysis and visualization. (first GH commit: 2021-10-17) MOVEMENT ANALYSIS TOOLS C++  Tracktable (with Python API): moving object trajectory analysis in C++ and Python. (first GH commit: 2016- 04-10)  MEOS (with Python API): Mobility Engine, Open Source is a C++ library which makes it easy to work with temporal and spatio-temporal data. (first GH commit: 2020-04-19)  MoveTK: a library for computational movement analysis written in C++. (first GH commit: 2020-09-09) R  Review paper: Joo, R., Boone, M. E., Clay, T. A., Patrick, S. C., Clusella‐Trullas, S., & Basille, M. (2020). Navigating through the R packages for movement. Journal of Animal Ecology, 89(1), 248-267. Databases  MobilityDB: A geospatial trajectory data management & analysis platform, built on PostgreSQL and PostGIS. (first GH commit: 2019-02-17)  mobilitydb-python: Python driver for MobilityDB.  mobilitydb-sqlalchemy: MobilityDB extensions for SQLAlchemy https://github.com/anitagraser/movement-analysis-tools
  • 8. Pandas … developed in the context of financial modeling  extensive set of tools for working with dates, times, and time-indexed data GeoPandas … extends the datatypes used by Pandas to allow spatial operations on geometric types WHY PANDAS? https://anitagraser.com/2018/11/18/movement-data-in-gis-16-towards-pure-python-trajectories-using-geopandas/
  • 9. Visualization library PyMove Folium MovingPandas GeoViews & Matplotlib Traja Matplotlib Trackintel Matplotlib Scikit-mobility Folium PTRAIL Folium TransBigData Kepler.GL WHAT ABOUT VISUALIZATIONS? Folium
  • 10. Data: “Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance" (Ray et al. 2018). ✅ Interactive plot ✅ Background maps ✅ Object identity ⏹⏹ Direction ⏹⏹ Speed 🆘 Time
  • 11. Data: “Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance" (Ray et al. 2018). ✅ Interactive plot ✅ Background maps ⏹⏹ Object identity ⏹⏹ Direction ✅ Speed 🆘 Time
  • 12. Data: “Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance" (Ray et al. 2018). ✅ Interactive plot ✅ Background maps ✅ Object identity ⏹⏹ Direction 🆘 Speed 🆘 Time Folium
  • 13. Data: “Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance" (Ray et al. 2018). 🆘 Static plot ⏹⏹ Only OSM network plot ✅ Object identity 🆘 Direction 🆘 Speed 🆘 Time
  • 14. Data: “Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance" (Ray et al. 2018). 🆘 Static plot 🆘 No background maps 🆘 Object identity ⏹⏹ Direction 🆘 Speed ✅ Time
  • 15. Data: “Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance" (Ray et al. 2018). 🆘 Static plot 🆘 No background maps ✅ Object identity 🆘 Direction 🆘 Speed 🆘 Time
  • 16. ✅ Interactive plots ✅ Background maps 🆘 Object identity ✅ Direction ✅ Speed ✅ Time
  • 18.  Standardization efforts  OGC MovingFeatures  Scientific software development  MovingPandas, Scikit-mobility et al.  Spatial data apps RECENT DEVELOPMENTS 18

Editor's Notes

  • #4: Brunsdon, C., & Comber, A. (2020). Big issues for big data: challenges for critical spatial data analytics. Journal of Spatial Information Science, 2020(21), 89-98. doi:10.5311/JOSIS.2020.21.625
  • #7: Andrienko, G., & Andrienko, N. (2008). Exploration of massive movement data: a visual analytics approach. AGILE’08.
  • #11: MovingPandas provides static plots using Matplotlib and interactive maps using HoloViews GeoViews (based on Bokeh). The default plot for a set of trajectories (TrajectoryCollection) draws each trajectory in a different color. As shown in Figure 2, background map tiles, as well as markers for trajectory start and end locations, can be readily added and customized. Alternatively, other DataFrame column names (or the keyword ‘speed’) can be specified to color the trajectory segments accordingly, as shown in Figure 3.
  • #13: Scikit-mobility provides interactive plots using Folium. The default plot for a TrajDataFrame draws each trajectory in a different color and automatically puts green and red markers at the start and end locations, respectively, as shown in Figure 4. To enhance rendering performance, the plot function by default does not plot all trajectories and generalizes the rendered trajectories. These preprocessing steps are communicated to the user in the form of UserWarnings “Only the trajectories of the first 10 users will be plotted. Use the argument `max_users` to specify the desired number of users, or filter the TrajDataFrame.” and “If necessary, trajectories will be down-sampled to have at most `max_points` points. To avoid this, specify `max_points=None`.”
  • #14: Trackintel provides static plots using Matplotlib. The default plot for trip legs created from position fixes draws each trip leg in a color indicating the moving object id (user). As Figure 5 show, in contrast to the previous libraries, the default plot function does not provide background maps. Instead, the function provides a plot_osm keyword that “will download an OSM street network and plot below the triplegs” (Trackintel documentation, 2022). This is certainly useful in the context of human movement in local urban environments but not suitable for the ship movement dataset used in this example.
  • #20: Given the fast advances of data science tools and workflows, what is GIScience doing to ensure that its knowhow contributes to spatial data science practices? And what should we do (more)?