SlideShare a Scribd company logo
TRANSIENT STATE AND STEADY STATE HEAT
CONDUCTION WITH NO LATERAL CONVECTION
By Wasswa Derrick
Wasswaderricktimothy7@gmail.com
ONE DIMENSIONAL HEAT CONDUCTION
RECTANGULAR CO-ORDINATES.
The governing equation is:
𝛼
𝜕2
𝑇
𝜕𝑥2
=
𝜕𝑇
𝜕𝑡
To get the steady state temperature, we simply substitute
𝜕𝑇
𝜕𝑡
= 0 𝑖𝑛 𝑠𝑡𝑒𝑎𝑦 𝑠𝑡𝑎𝑡𝑒
And get:
𝜕2
𝑇
𝜕𝑥2
= 0
We integrate the above equation to get the variation of temperature with
distance x i.e.,
𝜕𝑇
𝜕𝑥
= 𝑐1
𝑻 = 𝒄𝟏𝒙 + 𝒄𝟐
The condition above that the temperature is linear in distance x will help us to
solve for the transient state.
At 𝑥 = 𝑥1, 𝑇 = 𝑇1 ∴ 𝑇1 = 𝑐1𝑥1 + 𝑐2 … (𝐴)
At 𝑥 = 𝑥2, 𝑇 = 𝑇2 ∴ 𝑇2 = 𝑐1𝑥2 + 𝑐2 … . (𝐵)
(𝐴 − 𝐵) 𝑙𝑒𝑎𝑑𝑠 𝑡𝑜 𝑐1 =
𝑇1−𝑇2
𝑥1−𝑥2
From A 𝑐2 = 𝑇1 − 𝑐1𝑥1 = 𝑇1 −
𝑇1−𝑇2
𝑥1−𝑥2
𝑥1
Substituting in the general solution, we get
𝑇 = 𝑐1𝑥 + 𝑐2
𝑇 =
𝑇1 − 𝑇2
𝑥1 − 𝑥2
𝑥 + 𝑇1 −
𝑇1 − 𝑇2
𝑥1 − 𝑥2
𝑥1
𝑇 − 𝑇1 =
𝑇1 − 𝑇2
𝑥1 − 𝑥2
(𝑥 − 𝑥1)
Since 𝑥2 > 𝑥1 as shown in the diagram above, we can rearrange and get
𝑇 − 𝑇1 = −(
𝑇1 − 𝑇2
𝑥2 − 𝑥1
)(𝑥 − 𝑥1)
From
𝑄 = −𝑘𝐴
𝜕𝑇
𝜕𝑥
𝜕𝑇
𝜕𝑥
= −(
𝑇1 − 𝑇2
𝑥2 − 𝑥1
)
Upon substitution, we get:
𝑄 = 𝑘𝐴(
𝑇1 − 𝑇2
𝑥2 − 𝑥1
)
What we have found is that in flow in the x direction, in steady state the
temperature profile is negatively linear with distance x. But what about the
transient state? How do we predict it? That is what we are going to work on
below:
For the transient state there exists the separation of variables method which
yields an infinite series solution. But in this document, we are going to use the
integral equation method which will yield an exact solution not an infinite
series solution.
The governing equation is:
𝜶
𝝏𝟐
𝑻
𝝏𝒙𝟐
=
𝝏𝑻
𝝏𝒕
We are going to deal with a variety of boundary conditions and initial condition.
THE INTEGRAL EQUATION METHOD.
We are going to use the integral equation transform method of the heat
equation to solve for the transient and steady state.
The integral transform works as below:
The governing equation is
𝛼
𝜕2
𝑇
𝜕𝑥2
=
𝜕𝑇
𝜕𝑡
Let us change this equation into an integral equation as below:
𝛼 ∫ (
𝜕2
𝑇
𝜕𝑥2
) 𝑑𝑥
𝑙
0
=
𝜕
𝜕𝑡
∫ (𝑇)𝑑𝑥
𝑙
0
Postulate 1:
Any temperature profile of the form
𝑇 = 𝐵𝑒
𝑎𝑥
𝛿
Where B is a constant and a can be a complex number (𝑖), or -1 or +1 can solve
the heat equation.
This means that even hyperbolic and trigonometric functions can solve the
heat equation too.
For example, take a temperature profile where 𝑎 = 1 and 𝐵 = 𝑇0
𝑇 = 𝑇0𝑒
𝑥
𝛿
𝜕2
𝑇
𝜕𝑥2
=
𝑇0
𝛿2
𝑒
𝑥
𝛿
∫ (
𝜕2
𝑇
𝜕𝑥2
) 𝑑𝑥
𝑙
0
=
𝑇0
𝛿
[𝑒
𝐿
𝛿 − 1]
What we have learned from the above integral is that
∫ (
𝜕2
𝑇
𝜕𝑥2
) 𝑑𝑥
𝑙
0
= [
𝜕𝑇
𝜕𝑥
]
𝐿
0
Which we shall use in later text.
Anyway, to continue, let us evaluate
∫ (𝑇)𝑑𝑥
𝑙
0
= 𝛿[𝑒
𝐿
𝛿 − 1]
Upon substitution in the heat equation, we get:
𝛼
𝑇0
𝛿
[𝑒
𝐿
𝛿 − 1] =
𝜕
𝜕𝑡
[𝑇0𝛿[𝑒
𝐿
𝛿 − 1]]
There’s a common term 𝑇0[𝑒
𝐿
𝛿 − 1] which we drop out and get:
𝛼
𝛿
=
𝑑𝛿
𝑑𝑡
We finally get
𝛿 = √2𝛼𝑡 + 𝑐
We finally substitute in the temperature profile to get:
𝑇 = 𝑇0𝑒
𝑥
√2𝛼𝑡+𝑐
Where c and 𝑇0are evaluated using the boundary and initial conditions.
It can be shown that hyperbolic temperature functions like ( 𝑠𝑖𝑛ℎ𝑎𝑥 𝑜𝑟 𝑐𝑜𝑠ℎ𝑎𝑥)
too can solve the heat equation using the integral method above.
We conclude that the general temperature profile that solves the heat equation
is:
𝑇 = 𝐴𝑒
𝑥
𝛿 + 𝐵𝑒
−𝑥
𝛿
Where A and B are evaluated using the boundary conditions. From literature
for heat flow in extended surfaces (fins), we are going to use the derived
temperature profiles to solve for the transient state for no lateral convection in
metal rods.
Here the nature of m is substituted to be
𝑚 =
1
𝛿
Where 𝛿(𝑡) will be got by solving the heat equation.
The table below will give the required temperature profiles for given boundary
conditions [1]
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED USING THE INTEGRAL EQUATION TRANSFORM.pdf
CASE 1: FIXED END TEMPERATURE
The initial and boundary conditions are:
𝑻 = 𝑻∞ 𝒂𝒕 𝒕 = 𝟎
𝑻 = 𝑻𝒃𝟏 − 𝑻∞ 𝒂𝒕 𝒙 = 𝟎
𝑻 = 𝑻𝒃𝟐 − 𝑻∞ 𝒂𝒕 𝒙 = 𝑳
We start with a temperature profile below:
𝑇 − 𝑇∞ = 𝐴𝑒
𝑥
𝛿 + 𝐵𝑒
−𝑥
𝛿
We evaluate the constants A and B using the boundary conditions and get the
temperature profile below:
𝑇 − 𝑇∞
𝑇𝑏1 − 𝑇∞
=
(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
) 𝑠𝑖𝑛ℎ
𝑥
𝛿
+ 𝑠𝑖𝑛ℎ
𝐿 − 𝑥
𝛿
𝑠𝑖𝑛ℎ
𝐿
𝛿
The temperature profile above can be referenced in textbooks for heat flow in
extended surfaces like in the book [1]
To show that the initial condition is satisfied we postulate that 𝑎𝑡 𝑡 = 0, 𝛿 = 0
and get:
𝑇 − 𝑇∞
𝑇𝑏1 − 𝑇∞
=
(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
) 𝑠𝑖𝑛ℎ
𝑥
𝛿
+ 𝑠𝑖𝑛ℎ
𝐿 − 𝑥
𝛿
𝑠𝑖𝑛ℎ
𝐿
𝛿
Let us show that the above postulate implies the initial condition
𝑇 − 𝑇∞
𝑇𝑏1 − 𝑇∞
=
(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
) 𝑠𝑖𝑛ℎ
𝑥
𝛿
+ 𝑠𝑖𝑛ℎ
𝐿 − 𝑥
𝛿
𝑠𝑖𝑛ℎ
𝐿
𝛿
=
(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
)(𝑒
𝑥
𝛿 + 𝑒
−𝑥
𝛿 ) + (𝑒
𝐿−𝑥
𝛿 + 𝑒
−(𝐿−𝑥)
𝛿 )
𝑒
𝐿
𝛿 − 𝑒
−𝐿
𝛿
𝑒
−(𝐿−𝑥)
𝛿 = 𝑒−
(𝐿−𝑥)
0 = 𝑒−∞(𝐿−𝑥)
= 0
Similarly
𝑒
−𝐿
𝛿 = 𝑒
−𝐿
0 = 𝑒−∞𝐿
= 0
So, we are left with
𝑇 − 𝑇∞
𝑇𝑏1 − 𝑇∞
=
(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
) (𝑒
𝑥
𝛿) + (𝑒
𝐿−𝑥
𝛿 )
𝑒
𝐿
𝛿
= (
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
)𝑒
−(𝐿−𝑥)
𝛿 + 𝑒
−𝑥
𝛿 = (
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
)𝑒
−(𝐿−𝑥)
0 + 𝑒
−𝑥
0 = 𝑒−∞𝑥
We finally get
𝑇 − 𝑇∞
𝑇𝑏1 − 𝑇∞
= (
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
)𝑒−∞(𝐿−𝑥)
+ 𝑒−∞𝑥
= 0
Since 𝐿 − 𝑥 > 0
Hence at 𝑡 = 0, 𝑇 = 𝑇∞ and hence the initial condition.
Let us solve the heat equation analytically using the temperature profile above:
𝛼 ∫ (
𝜕2
𝑇
𝜕𝑥2
) 𝑑𝑥
𝑙
0
=
𝜕
𝜕𝑡
∫ (𝑇)𝑑𝑥
𝑙
0
∫ (
𝜕2
𝑇
𝜕𝑥2
) 𝑑𝑥
𝑙
0
= [
𝜕𝑇
𝜕𝑥
]
𝐿
0
[
𝜕𝑇
𝜕𝑥
]
𝐿
0
=
(𝑇𝑏1 − 𝑇∞)
𝛿
[(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
+ 1) coth (
𝐿
𝛿
) − (
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
+ 1)𝑐𝑜𝑠𝑒𝑐ℎ (
𝐿
𝛿
)]
To evaluate ∫ (𝑇)𝑑𝑥
𝑙
0
we need to know T
𝑇 = (𝑇𝑏1 − 𝑇∞) [
(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
) 𝑠𝑖𝑛ℎ
𝑥
𝛿
+ 𝑠𝑖𝑛ℎ
𝐿 − 𝑥
𝛿
𝑠𝑖𝑛ℎ
𝐿
𝛿
] + 𝑇∞
∫ (𝑇)𝑑𝑥
𝑙
0
= 𝛿(𝑇𝑏1 − 𝑇∞) [(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
+ 1)coth (
𝐿
𝛿
) − (
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
+ 1) 𝑐𝑜𝑠𝑒𝑐ℎ (
𝐿
𝛿
)] + 𝑇∞𝐿
𝜕
𝜕𝑡
∫ (𝑇)𝑑𝑥
𝑙
0
=
𝑑
𝑑𝑡
(𝛿(𝑇𝑏1 − 𝑇∞) [(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
+ 1) coth (
𝐿
𝛿
) − (
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
+ 1) 𝑐𝑜𝑠𝑒𝑐ℎ (
𝐿
𝛿
)]) +
𝑑(𝑇∞𝐿)
𝑑𝑡
But
𝑑(𝑇∞𝐿)
𝑑𝑡
= 0 𝑠𝑖𝑛𝑐𝑒 𝐿 𝑎𝑛𝑑 𝑇∞ 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠
So, we have
𝜕
𝜕𝑡
∫ (𝑇)𝑑𝑥
𝑙
0
=
𝑑
𝑑𝑡
(𝛿(𝑇𝑏1 − 𝑇∞) [(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
+ 1) coth (
𝐿
𝛿
) − (
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
+ 1) 𝑐𝑜𝑠𝑒𝑐ℎ (
𝐿
𝛿
)])
Upon substitution in the heat equation, we get:
𝛼 ∫ (
𝜕2
𝑇
𝜕𝑥2
) 𝑑𝑥
𝑙
0
=
𝜕
𝜕𝑡
∫ (𝑇)𝑑𝑥
𝑙
0
𝛼
𝛿
(𝑇𝑏1 − 𝑇∞) [(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
+ 1) coth (
𝐿
𝛿
) − (
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
+ 1) 𝑐𝑜𝑠𝑒𝑐ℎ (
𝐿
𝛿
)] =
𝑑
𝑑𝑡
(𝛿(𝑇𝑏1 − 𝑇∞) [(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
+ 1) coth (
𝐿
𝛿
) − (
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
+ 1) 𝑐𝑜𝑠𝑒𝑐ℎ (
𝐿
𝛿
)])
The factor (𝑇𝑏1 − 𝑇∞) [(
𝑇𝑏2 −𝑇∞
𝑇𝑏1 −𝑇∞
+ 1) coth (
𝐿
𝛿
) − (
𝑇𝑏2 −𝑇∞
𝑇𝑏1 −𝑇∞
+ 1) 𝑐𝑜𝑠𝑒𝑐ℎ (
𝐿
𝛿
)] is common on
both sides of the equation so we cross it out and get
𝛼
𝛿
=
𝑑𝛿
𝑑𝑡
Where the boundary conditions are:
𝛿 = 0 𝑎𝑡 𝑡 = 0
On solving the above we get:
𝛿 = √2𝛼𝑡
Upon substitution in the temperature profile, we get
𝑇 − 𝑇∞
𝑇𝑏1 − 𝑇∞
=
(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
) 𝑠𝑖𝑛ℎ
𝑥
𝛿
+ 𝑠𝑖𝑛ℎ
𝐿 − 𝑥
𝛿
𝑠𝑖𝑛ℎ
𝐿
𝛿
OR
𝑇 − 𝑇∞
𝑇𝑏1 − 𝑇∞
=
(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
) 𝑠𝑖𝑛ℎ
𝑥
√2𝛼𝑡
+ 𝑠𝑖𝑛ℎ
𝐿 − 𝑥
√2𝛼𝑡
𝑠𝑖𝑛ℎ
𝐿
√2𝛼𝑡
In steady state, 𝑡 → ∞ 𝑠𝑜 𝛿 → ∞
Upon substitution we get
𝑇 − 𝑇∞
𝑇𝑏1 − 𝑇∞
=
(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
)𝑠𝑖𝑛ℎ
𝑥
∞
+ 𝑠𝑖𝑛ℎ
𝐿 − 𝑥
∞
𝑠𝑖𝑛ℎ
𝐿
∞
𝑇 − 𝑇∞
𝑇𝑏1 − 𝑇∞
=
(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
) 𝑠𝑖𝑛ℎ0 + 𝑠𝑖𝑛ℎ0
𝑠𝑖𝑛ℎ0
𝑇 − 𝑇∞
𝑇𝑏1 − 𝑇∞
=
0
0
L’hopital’s rule is then invoked i.e.,
𝑙𝑖𝑚
𝑥 → 𝑐
𝑓(𝑥)
𝑔(𝑥)
=
𝑙𝑖𝑚
𝑥 → 𝑐
𝑓′
(𝑥)
𝑔′(𝑥)
We differentiate the numerate and denominator with respect to
1
𝛿
since it is the
one varying and we get
𝑇 − 𝑇∞
𝑇𝑏1 − 𝑇∞
=
𝑥
𝛿
(
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
)𝑐𝑜𝑠ℎ
𝑥
𝛿
+ (
𝐿 − 𝑥
𝛿
)𝑐𝑜𝑠ℎ
𝐿 − 𝑥
𝛿
𝐿
𝛿
𝑐𝑜𝑠ℎℎ
𝐿
𝛿
Upon simplification, we get
𝑇 − 𝑇∞
𝑇𝑏1 − 𝑇∞
=
𝑥 (
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
) 𝑐𝑜𝑠ℎ
𝑥
𝛿
+ (𝐿 − 𝑥)𝑐𝑜𝑠ℎ
𝐿 − 𝑥
𝛿
𝐿𝑐𝑜𝑠ℎℎ
𝐿
𝛿
We then substitute
𝛿 = √2𝛼𝑡 = ∞
And get
𝑇 − 𝑇∞
𝑇𝑏1 − 𝑇∞
=
𝑥 (
𝑇𝑏2 − 𝑇∞
𝑇𝑏1 − 𝑇∞
) + (𝐿 − 𝑥)
𝐿
Upon substitution, we get:
𝑻 − 𝑻∞
𝑻𝒃𝟏 − 𝑻∞
=
𝒙
𝑳
(
𝑻𝒃𝟐 − 𝑻∞
𝑻𝒃𝟏 − 𝑻∞
) + (𝟏 −
𝒙
𝑳
)
Hence, we get a temperature profile linear in x in steady state.
CASE 2: CONVECTION AT THE END OF A FINITE METAL ROD
The boundary and initial conditions are:
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎
−𝒌
𝒅𝑻
𝒅𝒙
= 𝒉𝑳(𝑻 − 𝑻∞) 𝒂𝒕 𝒙 = 𝒍
𝑻 = 𝑻∞ 𝒂𝒕 𝒕 = 𝟎
This same analysis can be extended to a metal rod with convection at the other
end of the metal rod where the temperature profile is given by [1]:
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞
=
cosh[𝑚(𝐿 − 𝑥)] + (
ℎ𝐿
𝑚𝑘
) sinh[𝑚(𝐿 − 𝑥)]
cosh 𝑚𝐿 + (
ℎ𝐿
𝑚𝑘
) 𝑠𝑖𝑛ℎ𝑚𝐿
Or
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞
=
cosh [
(𝐿 − 𝑥)
𝛿
] + (
ℎ𝐿𝛿
𝑘
) sinh[(
𝐿 − 𝑥
𝛿
)]
cosh
𝐿
𝛿
+ (
ℎ𝐿𝛿
𝑘
) 𝑠𝑖𝑛ℎ
𝐿
𝛿
To show that the initial condition is satisfied we assume from the above that
𝑎𝑡 𝑡 = 0, 𝛿 = 0.
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞
=
cosh [
(𝐿 − 𝑥)
𝛿
] + (
ℎ𝐿𝛿
𝑘
) sinh[(
𝐿 − 𝑥
𝛿
)]
cosh
𝐿
𝛿
+ (
ℎ𝛿
𝑘
)𝑠𝑖𝑛ℎ
𝐿
𝛿
Becomes:
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞
=
cosh [
(𝐿 − 𝑥)
𝛿
]
cosh
𝐿
𝛿
=
𝑒
(𝐿−𝑥)
𝛿 + 𝑒
−(𝐿−𝑥)
𝛿
𝑒
𝐿
𝛿 + 𝑒
−𝐿
𝛿
𝑒
−(𝐿−𝑥)
𝛿 = 𝑒−
(𝐿−𝑥)
0 = 𝑒−∞(𝐿−𝑥)
= 0
Similarly
𝑒
−𝐿
𝛿 = 𝑒
−𝐿
0 = 𝑒−∞𝐿
= 0
So, we are left with
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞
=
𝑒
(𝐿−𝑥)
𝛿
𝑒
𝐿
𝛿
= 𝑒
−𝑥
𝛿 = 𝑒
−𝑥
0 = 𝑒−∞𝑥
= 0
Hence at 𝑡 = 0, 𝑇 = 𝑇∞ and hence the initial condition.
We use this temperature profile which satisfies the initial condition to solve the
heat equation and get 𝛿 as shown below:
Boundary and initial conditions are:
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎
−𝒌
𝒅𝑻
𝒅𝒙
= 𝒉𝑳(𝑻 − 𝑻∞) 𝒂𝒕 𝒙 = 𝒍
𝑻 = 𝑻∞ 𝒂𝒕 𝒕 = 𝟎
The governing temperature profile is:
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞
=
cosh [
(𝐿 − 𝑥)
𝛿
] + (
ℎ𝐿𝛿
𝑘
) sinh[(
𝐿 − 𝑥
𝛿
)]
cosh
𝐿
𝛿
+ (
ℎ𝐿𝛿
𝑘
) 𝑠𝑖𝑛ℎ
𝐿
𝛿
The governing equation is
𝛼
𝜕2
𝑇
𝜕𝑥2
=
𝜕𝑇
𝜕𝑡
Let us change this equation into an integral equation as below:
𝛼 ∫ (
𝜕2
𝑇
𝜕𝑥2
) 𝑑𝑥
𝑙
0
=
𝜕
𝜕𝑡
∫ (𝑇)𝑑𝑥
𝑙
0
… … . . 𝑏)
𝛼 ∫ (
𝜕2
𝑇
𝜕𝑥2
) 𝑑𝑥
𝑙
0
=
𝜕
𝜕𝑡
∫ (𝑇)𝑑𝑥
𝑙
0
∫ (
𝜕2
𝑇
𝜕𝑥2
)𝑑𝑥
𝑙
0
= [
𝜕𝑇
𝜕𝑥
]
𝑙
0
=
(𝑇𝑠 − 𝑇∞)
𝛿
(
−
ℎ𝐿𝛿
𝑘
+ (𝑠𝑖𝑛ℎ
𝐿
𝛿
+
ℎ𝐿𝛿
𝑘
𝑐𝑜𝑠ℎ
𝐿
𝛿
)
𝑐𝑜𝑠ℎ
𝐿
𝛿
+
ℎ𝐿𝛿
𝑘
𝑠𝑖𝑛ℎ
𝐿
𝛿
)
𝑇 =
cosh [
(𝐿 − 𝑥)
𝛿
] + (
ℎ𝐿𝛿
𝑘
)sinh[(
𝐿 − 𝑥
𝛿
)]
cosh
𝐿
𝛿
+ (
ℎ𝐿𝛿
𝑘
)𝑠𝑖𝑛ℎ
𝐿
𝛿
(𝑇𝑠 − 𝑇∞) + 𝑇∞
𝜕
𝜕𝑡
∫ (𝑇)𝑑𝑥
𝑙
0
=
𝜕
𝜕𝑡
[𝛿(𝑇𝑠 − 𝑇∞) (
−
ℎ𝐿𝛿
𝑘
+ (𝑠𝑖𝑛ℎ
𝐿
𝛿
+
ℎ𝐿𝛿
𝑘
𝑐𝑜𝑠ℎ
𝐿
𝛿
)
𝑐𝑜𝑠ℎ
𝐿
𝛿
+
ℎ𝐿𝛿
𝑘
𝑠𝑖𝑛ℎ
𝐿
𝛿
)] +
𝜕(𝑙𝑇∞)
𝜕𝑡
𝜕(𝑙𝑇∞)
𝜕𝑡
= 0
Upon substitution of all the above in the heat equation, we get:
𝛼
(𝑇𝑠 − 𝑇∞)
𝛿
(
−
ℎ𝐿𝛿
𝑘
+ (𝑠𝑖𝑛ℎ
𝐿
𝛿
+
ℎ𝐿𝛿
𝑘
𝑐𝑜𝑠ℎ
𝐿
𝛿
)
𝑐𝑜𝑠ℎ
𝐿
𝛿
+
ℎ𝐿𝛿
𝑘
𝑠𝑖𝑛ℎ
𝐿
𝛿
) =
𝜕
𝜕𝑡
[𝛿(𝑇𝑠 − 𝑇∞) (
−
ℎ𝐿𝛿
𝑘
+ (𝑠𝑖𝑛ℎ
𝐿
𝛿
+
ℎ𝐿𝛿
𝑘
𝑐𝑜𝑠ℎ
𝐿
𝛿
)
𝑐𝑜𝑠ℎ
𝐿
𝛿
+
ℎ𝐿𝛿
𝑘
𝑠𝑖𝑛ℎ
𝐿
𝛿
)]
We notice that the term(𝑇𝑠 − 𝑇∞) (
−
ℎ𝐿𝛿
𝑘
+(𝑠𝑖𝑛ℎ
𝐿
𝛿
+
ℎ𝐿𝛿
𝑘
𝑐𝑜𝑠ℎ
𝐿
𝛿
)
𝑐𝑜𝑠ℎ
𝐿
𝛿
+
ℎ𝐿𝛿
𝑘
𝑠𝑖𝑛ℎ
𝐿
𝛿
) is common and can be
eliminated:
𝛼
𝛿
=
𝑑𝛿
𝑑𝑡
We go ahead and solve for 𝛿 provided 𝛿 = 0𝑎𝑡 𝑡 = 0 and get the expression
𝛿 = √2𝛼𝑡
So, the final solution for the finite metal rod with convective flux at the end of
the metal rod is:
𝑻 − 𝑻∞
𝑻𝒔 − 𝑻∞
= (
𝐜𝐨𝐬𝐡 [
(𝑳 − 𝒙)
𝜹
] + (
𝒉𝑳𝜹
𝒌
) 𝐬𝐢𝐧𝐡 [(
𝑳 − 𝒙
𝜹
)]
𝐜𝐨𝐬𝐡
𝑳
𝜹
+ (
𝒉𝑳𝜹
𝒌
) 𝒔𝒊𝒏𝒉
𝑳
𝜹
)
OR
𝑻 − 𝑻∞
𝑻𝒔 − 𝑻∞
=
(
𝐜𝐨𝐬𝐡 [
(𝑳 − 𝒙)
√𝟐𝜶𝒕
] + (
𝒉𝑳√𝟐𝜶𝒕
𝒌
)𝐬𝐢𝐧𝐡 [(
𝑳 − 𝒙
√𝟐𝜶𝒕
)]
𝐜𝐨𝐬𝐡
𝑳
√𝟐𝜶𝒕
+ (
𝒉𝑳√𝟐𝜶𝒕
𝒌
)𝒔𝒊𝒏𝒉
𝑳
√𝟐𝜶𝒕 )
For the steady state solution, we set 𝑡 → ∞, but first let us first divide through
by 𝛿 and get:
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞
= (
1
𝛿
cosh [
(𝐿 − 𝑥)
𝛿
] + (
ℎ𝐿
𝑘
) sinh [(
𝐿 − 𝑥
𝛿
)]
1
𝛿
cosh
𝐿
𝛿
+ (
ℎ𝐿
𝑘
) 𝑠𝑖𝑛ℎ
𝐿
𝛿
)
Now set 𝑡 → ∞ and get:
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞
= (
0
0
)
L’hopital’s rule is then invoked i.e.,
𝑙𝑖𝑚
𝑥 → 𝑐
𝑓(𝑥)
𝑔(𝑥)
=
𝑙𝑖𝑚
𝑥 → 𝑐
𝑓′
(𝑥)
𝑔′(𝑥)
(i.e., differentiate the denominator and numerator with respect to
1
𝛿
) but we
differentiate with respect to the varying parameter and this is
1
𝛿
and get:
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞
= (
(𝐿 − 𝑥)
𝛿
sinh [
(𝐿 − 𝑥)
𝛿
] + cosh [
(𝐿 − 𝑥)
𝛿
] + (
ℎ𝐿
𝑘
) (𝐿 − 𝑥)cosh [(
𝐿 − 𝑥
𝛿
)]
𝐿
𝛿
sinh
𝐿
𝛿
+ 𝑐𝑜𝑠ℎ
𝐿
𝛿
+ (
ℎ𝐿
𝑘
)𝐿𝑐𝑜𝑠ℎ
𝐿
𝛿
)
We now substitute 𝑡 = ∞ in the formula above and get:
𝑻 − 𝑻∞
𝑻𝒔 − 𝑻∞
= (
𝟏 + (
𝒉𝑳
𝒌
)(𝑳 − 𝒙)
𝟏 + (
𝒉𝑳
𝒌
) 𝑳
)
The above is the steady state solution and it shows temperature is linearly
negative in x.
CASE 3: NO CONVECTION AT THE FREE END
The boundary and initial conditions are:
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎
𝒅𝑻
𝒅𝒙
= 𝟎 𝒂𝒕 𝒙 = 𝒍
𝑻 = 𝑻∞ 𝒂𝒕 𝒕 = 𝟎
Recall the compact temperature profile that satisfies the boundary and initial
conditions is [2]:
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞
=
cosh[
(𝐿 − 𝑥)
𝛿
]
cosh
𝐿
𝛿
Again, solving the heat equation using the temperature profile above yields
𝛿 = √2𝛼𝑡
For steady state conditions we set 𝑡 → ∞
And get:
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞
= 1
Hence temperature will be uniformly 𝑇𝑠 throughout the metal rod.
CASE 4: SEMI-INFINITE ROD CASE
The boundary and initial conditions are:
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎
𝑻 = 𝑻∞ 𝒂𝒕 𝒙 = ∞
𝑻 = 𝑻∞ 𝒂𝒕 𝒕 = 𝟎
The temperature profile that satisfies the boundary and initial conditions is:
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞
= 𝑒
−𝑥
𝛿
Again, solving the heat equation using the temperature profile above yields
𝛿 = √2𝛼𝑡
For steady state conditions we set 𝑡 → ∞
And get:
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞
= 1
Hence temperature will be uniformly 𝑇𝑠 throughout the metal rod. This analysis
can be extended to cases where there is lateral convection along the metal rod
and yield 𝑚 = √
ℎ𝑃
𝑘𝐴
in steady state.
REFERENCES
[1] C.P.Kothandaraman, "HEAT TRANSFER WITH EXTENDED SURFACES (FINS)," in Fundamentals of Heat
and Mass Transfer, New Delhi, New Age International Publishers, 2006, p. 132.
[2] C. E. W. R. E. W. G. L. R. James R. Welty, "HEAT TRANSFER FROM EXTENDED SURFACES," in
Fundamentals of Momentum, Heat, and Mass Transfer 5th Edition, Corvallis, Oregon, John Wiley &
Sons, Inc., 2000, pp. 236-237.
.

More Related Content

PDF
TRANSIENT RADIAL HEAT CONDUCTION WITH BESSEL FUNCTIONS AND INTEGRAL TRANSFOR...
PDF
TRANSIENT STATE HEAT CONDUCTION IN NATURAL CONVECTION EXPLAINED.pdf
PDF
TRANSIENT STATE HEAT CONDUCTION FOR A SEMI-INFINITE ROD IN NATURAL CONVECTION...
PDF
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION.pdf
PDF
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED.pdf
PDF
DERIVATION OF THE LAW OF COOLING IN NATURAL CONVECTION.pdf
PDF
FUNDAMENTALS OF FLUID FLOW 5th Edition.pdf
PDF
FLUID MECHANICS DEMYSTIFIED 5th Edition.pdf
TRANSIENT RADIAL HEAT CONDUCTION WITH BESSEL FUNCTIONS AND INTEGRAL TRANSFOR...
TRANSIENT STATE HEAT CONDUCTION IN NATURAL CONVECTION EXPLAINED.pdf
TRANSIENT STATE HEAT CONDUCTION FOR A SEMI-INFINITE ROD IN NATURAL CONVECTION...
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED.pdf
DERIVATION OF THE LAW OF COOLING IN NATURAL CONVECTION.pdf
FUNDAMENTALS OF FLUID FLOW 5th Edition.pdf
FLUID MECHANICS DEMYSTIFIED 5th Edition.pdf

Recently uploaded (20)

PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PPTX
2. Earth - The Living Planet Module 2ELS
PPTX
Cell Membrane: Structure, Composition & Functions
DOCX
Viruses (History, structure and composition, classification, Bacteriophage Re...
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PDF
An interstellar mission to test astrophysical black holes
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PPTX
BIOMOLECULES PPT........................
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PDF
. Radiology Case Scenariosssssssssssssss
AlphaEarth Foundations and the Satellite Embedding dataset
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
2. Earth - The Living Planet Module 2ELS
Cell Membrane: Structure, Composition & Functions
Viruses (History, structure and composition, classification, Bacteriophage Re...
The KM-GBF monitoring framework – status & key messages.pptx
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
ECG_Course_Presentation د.محمد صقران ppt
Taita Taveta Laboratory Technician Workshop Presentation.pptx
An interstellar mission to test astrophysical black holes
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
neck nodes and dissection types and lymph nodes levels
Introduction to Fisheries Biotechnology_Lesson 1.pptx
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
BIOMOLECULES PPT........................
Biophysics 2.pdffffffffffffffffffffffffff
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
. Radiology Case Scenariosssssssssssssss
Ad
Ad

TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED USING THE INTEGRAL EQUATION TRANSFORM.pdf

  • 1. TRANSIENT STATE AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION By Wasswa Derrick Wasswaderricktimothy7@gmail.com ONE DIMENSIONAL HEAT CONDUCTION RECTANGULAR CO-ORDINATES. The governing equation is: 𝛼 𝜕2 𝑇 𝜕𝑥2 = 𝜕𝑇 𝜕𝑡 To get the steady state temperature, we simply substitute 𝜕𝑇 𝜕𝑡 = 0 𝑖𝑛 𝑠𝑡𝑒𝑎𝑦 𝑠𝑡𝑎𝑡𝑒 And get: 𝜕2 𝑇 𝜕𝑥2 = 0 We integrate the above equation to get the variation of temperature with distance x i.e., 𝜕𝑇 𝜕𝑥 = 𝑐1 𝑻 = 𝒄𝟏𝒙 + 𝒄𝟐 The condition above that the temperature is linear in distance x will help us to solve for the transient state. At 𝑥 = 𝑥1, 𝑇 = 𝑇1 ∴ 𝑇1 = 𝑐1𝑥1 + 𝑐2 … (𝐴) At 𝑥 = 𝑥2, 𝑇 = 𝑇2 ∴ 𝑇2 = 𝑐1𝑥2 + 𝑐2 … . (𝐵) (𝐴 − 𝐵) 𝑙𝑒𝑎𝑑𝑠 𝑡𝑜 𝑐1 = 𝑇1−𝑇2 𝑥1−𝑥2 From A 𝑐2 = 𝑇1 − 𝑐1𝑥1 = 𝑇1 − 𝑇1−𝑇2 𝑥1−𝑥2 𝑥1 Substituting in the general solution, we get
  • 2. 𝑇 = 𝑐1𝑥 + 𝑐2 𝑇 = 𝑇1 − 𝑇2 𝑥1 − 𝑥2 𝑥 + 𝑇1 − 𝑇1 − 𝑇2 𝑥1 − 𝑥2 𝑥1 𝑇 − 𝑇1 = 𝑇1 − 𝑇2 𝑥1 − 𝑥2 (𝑥 − 𝑥1) Since 𝑥2 > 𝑥1 as shown in the diagram above, we can rearrange and get 𝑇 − 𝑇1 = −( 𝑇1 − 𝑇2 𝑥2 − 𝑥1 )(𝑥 − 𝑥1) From 𝑄 = −𝑘𝐴 𝜕𝑇 𝜕𝑥 𝜕𝑇 𝜕𝑥 = −( 𝑇1 − 𝑇2 𝑥2 − 𝑥1 ) Upon substitution, we get: 𝑄 = 𝑘𝐴( 𝑇1 − 𝑇2 𝑥2 − 𝑥1 ) What we have found is that in flow in the x direction, in steady state the temperature profile is negatively linear with distance x. But what about the transient state? How do we predict it? That is what we are going to work on below: For the transient state there exists the separation of variables method which yields an infinite series solution. But in this document, we are going to use the integral equation method which will yield an exact solution not an infinite series solution. The governing equation is: 𝜶 𝝏𝟐 𝑻 𝝏𝒙𝟐 = 𝝏𝑻 𝝏𝒕 We are going to deal with a variety of boundary conditions and initial condition.
  • 3. THE INTEGRAL EQUATION METHOD. We are going to use the integral equation transform method of the heat equation to solve for the transient and steady state. The integral transform works as below: The governing equation is 𝛼 𝜕2 𝑇 𝜕𝑥2 = 𝜕𝑇 𝜕𝑡 Let us change this equation into an integral equation as below: 𝛼 ∫ ( 𝜕2 𝑇 𝜕𝑥2 ) 𝑑𝑥 𝑙 0 = 𝜕 𝜕𝑡 ∫ (𝑇)𝑑𝑥 𝑙 0 Postulate 1: Any temperature profile of the form 𝑇 = 𝐵𝑒 𝑎𝑥 𝛿 Where B is a constant and a can be a complex number (𝑖), or -1 or +1 can solve the heat equation. This means that even hyperbolic and trigonometric functions can solve the heat equation too. For example, take a temperature profile where 𝑎 = 1 and 𝐵 = 𝑇0 𝑇 = 𝑇0𝑒 𝑥 𝛿 𝜕2 𝑇 𝜕𝑥2 = 𝑇0 𝛿2 𝑒 𝑥 𝛿 ∫ ( 𝜕2 𝑇 𝜕𝑥2 ) 𝑑𝑥 𝑙 0 = 𝑇0 𝛿 [𝑒 𝐿 𝛿 − 1] What we have learned from the above integral is that ∫ ( 𝜕2 𝑇 𝜕𝑥2 ) 𝑑𝑥 𝑙 0 = [ 𝜕𝑇 𝜕𝑥 ] 𝐿 0 Which we shall use in later text. Anyway, to continue, let us evaluate ∫ (𝑇)𝑑𝑥 𝑙 0 = 𝛿[𝑒 𝐿 𝛿 − 1]
  • 4. Upon substitution in the heat equation, we get: 𝛼 𝑇0 𝛿 [𝑒 𝐿 𝛿 − 1] = 𝜕 𝜕𝑡 [𝑇0𝛿[𝑒 𝐿 𝛿 − 1]] There’s a common term 𝑇0[𝑒 𝐿 𝛿 − 1] which we drop out and get: 𝛼 𝛿 = 𝑑𝛿 𝑑𝑡 We finally get 𝛿 = √2𝛼𝑡 + 𝑐 We finally substitute in the temperature profile to get: 𝑇 = 𝑇0𝑒 𝑥 √2𝛼𝑡+𝑐 Where c and 𝑇0are evaluated using the boundary and initial conditions. It can be shown that hyperbolic temperature functions like ( 𝑠𝑖𝑛ℎ𝑎𝑥 𝑜𝑟 𝑐𝑜𝑠ℎ𝑎𝑥) too can solve the heat equation using the integral method above. We conclude that the general temperature profile that solves the heat equation is: 𝑇 = 𝐴𝑒 𝑥 𝛿 + 𝐵𝑒 −𝑥 𝛿 Where A and B are evaluated using the boundary conditions. From literature for heat flow in extended surfaces (fins), we are going to use the derived temperature profiles to solve for the transient state for no lateral convection in metal rods. Here the nature of m is substituted to be 𝑚 = 1 𝛿 Where 𝛿(𝑡) will be got by solving the heat equation. The table below will give the required temperature profiles for given boundary conditions [1]
  • 6. CASE 1: FIXED END TEMPERATURE The initial and boundary conditions are: 𝑻 = 𝑻∞ 𝒂𝒕 𝒕 = 𝟎 𝑻 = 𝑻𝒃𝟏 − 𝑻∞ 𝒂𝒕 𝒙 = 𝟎 𝑻 = 𝑻𝒃𝟐 − 𝑻∞ 𝒂𝒕 𝒙 = 𝑳 We start with a temperature profile below: 𝑇 − 𝑇∞ = 𝐴𝑒 𝑥 𝛿 + 𝐵𝑒 −𝑥 𝛿 We evaluate the constants A and B using the boundary conditions and get the temperature profile below: 𝑇 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ = ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ ) 𝑠𝑖𝑛ℎ 𝑥 𝛿 + 𝑠𝑖𝑛ℎ 𝐿 − 𝑥 𝛿 𝑠𝑖𝑛ℎ 𝐿 𝛿 The temperature profile above can be referenced in textbooks for heat flow in extended surfaces like in the book [1] To show that the initial condition is satisfied we postulate that 𝑎𝑡 𝑡 = 0, 𝛿 = 0 and get: 𝑇 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ = ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ ) 𝑠𝑖𝑛ℎ 𝑥 𝛿 + 𝑠𝑖𝑛ℎ 𝐿 − 𝑥 𝛿 𝑠𝑖𝑛ℎ 𝐿 𝛿 Let us show that the above postulate implies the initial condition 𝑇 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ = ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ ) 𝑠𝑖𝑛ℎ 𝑥 𝛿 + 𝑠𝑖𝑛ℎ 𝐿 − 𝑥 𝛿 𝑠𝑖𝑛ℎ 𝐿 𝛿 = ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ )(𝑒 𝑥 𝛿 + 𝑒 −𝑥 𝛿 ) + (𝑒 𝐿−𝑥 𝛿 + 𝑒 −(𝐿−𝑥) 𝛿 ) 𝑒 𝐿 𝛿 − 𝑒 −𝐿 𝛿 𝑒 −(𝐿−𝑥) 𝛿 = 𝑒− (𝐿−𝑥) 0 = 𝑒−∞(𝐿−𝑥) = 0 Similarly 𝑒 −𝐿 𝛿 = 𝑒 −𝐿 0 = 𝑒−∞𝐿 = 0 So, we are left with
  • 7. 𝑇 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ = ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ ) (𝑒 𝑥 𝛿) + (𝑒 𝐿−𝑥 𝛿 ) 𝑒 𝐿 𝛿 = ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ )𝑒 −(𝐿−𝑥) 𝛿 + 𝑒 −𝑥 𝛿 = ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ )𝑒 −(𝐿−𝑥) 0 + 𝑒 −𝑥 0 = 𝑒−∞𝑥 We finally get 𝑇 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ = ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ )𝑒−∞(𝐿−𝑥) + 𝑒−∞𝑥 = 0 Since 𝐿 − 𝑥 > 0 Hence at 𝑡 = 0, 𝑇 = 𝑇∞ and hence the initial condition. Let us solve the heat equation analytically using the temperature profile above: 𝛼 ∫ ( 𝜕2 𝑇 𝜕𝑥2 ) 𝑑𝑥 𝑙 0 = 𝜕 𝜕𝑡 ∫ (𝑇)𝑑𝑥 𝑙 0 ∫ ( 𝜕2 𝑇 𝜕𝑥2 ) 𝑑𝑥 𝑙 0 = [ 𝜕𝑇 𝜕𝑥 ] 𝐿 0 [ 𝜕𝑇 𝜕𝑥 ] 𝐿 0 = (𝑇𝑏1 − 𝑇∞) 𝛿 [( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ + 1) coth ( 𝐿 𝛿 ) − ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ + 1)𝑐𝑜𝑠𝑒𝑐ℎ ( 𝐿 𝛿 )] To evaluate ∫ (𝑇)𝑑𝑥 𝑙 0 we need to know T 𝑇 = (𝑇𝑏1 − 𝑇∞) [ ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ ) 𝑠𝑖𝑛ℎ 𝑥 𝛿 + 𝑠𝑖𝑛ℎ 𝐿 − 𝑥 𝛿 𝑠𝑖𝑛ℎ 𝐿 𝛿 ] + 𝑇∞ ∫ (𝑇)𝑑𝑥 𝑙 0 = 𝛿(𝑇𝑏1 − 𝑇∞) [( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ + 1)coth ( 𝐿 𝛿 ) − ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ + 1) 𝑐𝑜𝑠𝑒𝑐ℎ ( 𝐿 𝛿 )] + 𝑇∞𝐿 𝜕 𝜕𝑡 ∫ (𝑇)𝑑𝑥 𝑙 0 = 𝑑 𝑑𝑡 (𝛿(𝑇𝑏1 − 𝑇∞) [( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ + 1) coth ( 𝐿 𝛿 ) − ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ + 1) 𝑐𝑜𝑠𝑒𝑐ℎ ( 𝐿 𝛿 )]) + 𝑑(𝑇∞𝐿) 𝑑𝑡 But 𝑑(𝑇∞𝐿) 𝑑𝑡 = 0 𝑠𝑖𝑛𝑐𝑒 𝐿 𝑎𝑛𝑑 𝑇∞ 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 So, we have
  • 8. 𝜕 𝜕𝑡 ∫ (𝑇)𝑑𝑥 𝑙 0 = 𝑑 𝑑𝑡 (𝛿(𝑇𝑏1 − 𝑇∞) [( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ + 1) coth ( 𝐿 𝛿 ) − ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ + 1) 𝑐𝑜𝑠𝑒𝑐ℎ ( 𝐿 𝛿 )]) Upon substitution in the heat equation, we get: 𝛼 ∫ ( 𝜕2 𝑇 𝜕𝑥2 ) 𝑑𝑥 𝑙 0 = 𝜕 𝜕𝑡 ∫ (𝑇)𝑑𝑥 𝑙 0 𝛼 𝛿 (𝑇𝑏1 − 𝑇∞) [( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ + 1) coth ( 𝐿 𝛿 ) − ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ + 1) 𝑐𝑜𝑠𝑒𝑐ℎ ( 𝐿 𝛿 )] = 𝑑 𝑑𝑡 (𝛿(𝑇𝑏1 − 𝑇∞) [( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ + 1) coth ( 𝐿 𝛿 ) − ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ + 1) 𝑐𝑜𝑠𝑒𝑐ℎ ( 𝐿 𝛿 )]) The factor (𝑇𝑏1 − 𝑇∞) [( 𝑇𝑏2 −𝑇∞ 𝑇𝑏1 −𝑇∞ + 1) coth ( 𝐿 𝛿 ) − ( 𝑇𝑏2 −𝑇∞ 𝑇𝑏1 −𝑇∞ + 1) 𝑐𝑜𝑠𝑒𝑐ℎ ( 𝐿 𝛿 )] is common on both sides of the equation so we cross it out and get 𝛼 𝛿 = 𝑑𝛿 𝑑𝑡 Where the boundary conditions are: 𝛿 = 0 𝑎𝑡 𝑡 = 0 On solving the above we get: 𝛿 = √2𝛼𝑡 Upon substitution in the temperature profile, we get 𝑇 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ = ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ ) 𝑠𝑖𝑛ℎ 𝑥 𝛿 + 𝑠𝑖𝑛ℎ 𝐿 − 𝑥 𝛿 𝑠𝑖𝑛ℎ 𝐿 𝛿 OR 𝑇 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ = ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ ) 𝑠𝑖𝑛ℎ 𝑥 √2𝛼𝑡 + 𝑠𝑖𝑛ℎ 𝐿 − 𝑥 √2𝛼𝑡 𝑠𝑖𝑛ℎ 𝐿 √2𝛼𝑡 In steady state, 𝑡 → ∞ 𝑠𝑜 𝛿 → ∞ Upon substitution we get
  • 9. 𝑇 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ = ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ )𝑠𝑖𝑛ℎ 𝑥 ∞ + 𝑠𝑖𝑛ℎ 𝐿 − 𝑥 ∞ 𝑠𝑖𝑛ℎ 𝐿 ∞ 𝑇 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ = ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ ) 𝑠𝑖𝑛ℎ0 + 𝑠𝑖𝑛ℎ0 𝑠𝑖𝑛ℎ0 𝑇 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ = 0 0 L’hopital’s rule is then invoked i.e., 𝑙𝑖𝑚 𝑥 → 𝑐 𝑓(𝑥) 𝑔(𝑥) = 𝑙𝑖𝑚 𝑥 → 𝑐 𝑓′ (𝑥) 𝑔′(𝑥) We differentiate the numerate and denominator with respect to 1 𝛿 since it is the one varying and we get 𝑇 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ = 𝑥 𝛿 ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ )𝑐𝑜𝑠ℎ 𝑥 𝛿 + ( 𝐿 − 𝑥 𝛿 )𝑐𝑜𝑠ℎ 𝐿 − 𝑥 𝛿 𝐿 𝛿 𝑐𝑜𝑠ℎℎ 𝐿 𝛿 Upon simplification, we get 𝑇 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ = 𝑥 ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ ) 𝑐𝑜𝑠ℎ 𝑥 𝛿 + (𝐿 − 𝑥)𝑐𝑜𝑠ℎ 𝐿 − 𝑥 𝛿 𝐿𝑐𝑜𝑠ℎℎ 𝐿 𝛿 We then substitute 𝛿 = √2𝛼𝑡 = ∞ And get 𝑇 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ = 𝑥 ( 𝑇𝑏2 − 𝑇∞ 𝑇𝑏1 − 𝑇∞ ) + (𝐿 − 𝑥) 𝐿 Upon substitution, we get: 𝑻 − 𝑻∞ 𝑻𝒃𝟏 − 𝑻∞ = 𝒙 𝑳 ( 𝑻𝒃𝟐 − 𝑻∞ 𝑻𝒃𝟏 − 𝑻∞ ) + (𝟏 − 𝒙 𝑳 ) Hence, we get a temperature profile linear in x in steady state.
  • 10. CASE 2: CONVECTION AT THE END OF A FINITE METAL ROD The boundary and initial conditions are: 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 −𝒌 𝒅𝑻 𝒅𝒙 = 𝒉𝑳(𝑻 − 𝑻∞) 𝒂𝒕 𝒙 = 𝒍 𝑻 = 𝑻∞ 𝒂𝒕 𝒕 = 𝟎 This same analysis can be extended to a metal rod with convection at the other end of the metal rod where the temperature profile is given by [1]: 𝑇 − 𝑇∞ 𝑇𝑠 − 𝑇∞ = cosh[𝑚(𝐿 − 𝑥)] + ( ℎ𝐿 𝑚𝑘 ) sinh[𝑚(𝐿 − 𝑥)] cosh 𝑚𝐿 + ( ℎ𝐿 𝑚𝑘 ) 𝑠𝑖𝑛ℎ𝑚𝐿 Or 𝑇 − 𝑇∞ 𝑇𝑠 − 𝑇∞ = cosh [ (𝐿 − 𝑥) 𝛿 ] + ( ℎ𝐿𝛿 𝑘 ) sinh[( 𝐿 − 𝑥 𝛿 )] cosh 𝐿 𝛿 + ( ℎ𝐿𝛿 𝑘 ) 𝑠𝑖𝑛ℎ 𝐿 𝛿 To show that the initial condition is satisfied we assume from the above that 𝑎𝑡 𝑡 = 0, 𝛿 = 0. 𝑇 − 𝑇∞ 𝑇𝑠 − 𝑇∞ = cosh [ (𝐿 − 𝑥) 𝛿 ] + ( ℎ𝐿𝛿 𝑘 ) sinh[( 𝐿 − 𝑥 𝛿 )] cosh 𝐿 𝛿 + ( ℎ𝛿 𝑘 )𝑠𝑖𝑛ℎ 𝐿 𝛿 Becomes: 𝑇 − 𝑇∞ 𝑇𝑠 − 𝑇∞ = cosh [ (𝐿 − 𝑥) 𝛿 ] cosh 𝐿 𝛿 = 𝑒 (𝐿−𝑥) 𝛿 + 𝑒 −(𝐿−𝑥) 𝛿 𝑒 𝐿 𝛿 + 𝑒 −𝐿 𝛿 𝑒 −(𝐿−𝑥) 𝛿 = 𝑒− (𝐿−𝑥) 0 = 𝑒−∞(𝐿−𝑥) = 0 Similarly 𝑒 −𝐿 𝛿 = 𝑒 −𝐿 0 = 𝑒−∞𝐿 = 0 So, we are left with
  • 11. 𝑇 − 𝑇∞ 𝑇𝑠 − 𝑇∞ = 𝑒 (𝐿−𝑥) 𝛿 𝑒 𝐿 𝛿 = 𝑒 −𝑥 𝛿 = 𝑒 −𝑥 0 = 𝑒−∞𝑥 = 0 Hence at 𝑡 = 0, 𝑇 = 𝑇∞ and hence the initial condition. We use this temperature profile which satisfies the initial condition to solve the heat equation and get 𝛿 as shown below: Boundary and initial conditions are: 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 −𝒌 𝒅𝑻 𝒅𝒙 = 𝒉𝑳(𝑻 − 𝑻∞) 𝒂𝒕 𝒙 = 𝒍 𝑻 = 𝑻∞ 𝒂𝒕 𝒕 = 𝟎 The governing temperature profile is: 𝑇 − 𝑇∞ 𝑇𝑠 − 𝑇∞ = cosh [ (𝐿 − 𝑥) 𝛿 ] + ( ℎ𝐿𝛿 𝑘 ) sinh[( 𝐿 − 𝑥 𝛿 )] cosh 𝐿 𝛿 + ( ℎ𝐿𝛿 𝑘 ) 𝑠𝑖𝑛ℎ 𝐿 𝛿 The governing equation is 𝛼 𝜕2 𝑇 𝜕𝑥2 = 𝜕𝑇 𝜕𝑡 Let us change this equation into an integral equation as below: 𝛼 ∫ ( 𝜕2 𝑇 𝜕𝑥2 ) 𝑑𝑥 𝑙 0 = 𝜕 𝜕𝑡 ∫ (𝑇)𝑑𝑥 𝑙 0 … … . . 𝑏) 𝛼 ∫ ( 𝜕2 𝑇 𝜕𝑥2 ) 𝑑𝑥 𝑙 0 = 𝜕 𝜕𝑡 ∫ (𝑇)𝑑𝑥 𝑙 0 ∫ ( 𝜕2 𝑇 𝜕𝑥2 )𝑑𝑥 𝑙 0 = [ 𝜕𝑇 𝜕𝑥 ] 𝑙 0 = (𝑇𝑠 − 𝑇∞) 𝛿 ( − ℎ𝐿𝛿 𝑘 + (𝑠𝑖𝑛ℎ 𝐿 𝛿 + ℎ𝐿𝛿 𝑘 𝑐𝑜𝑠ℎ 𝐿 𝛿 ) 𝑐𝑜𝑠ℎ 𝐿 𝛿 + ℎ𝐿𝛿 𝑘 𝑠𝑖𝑛ℎ 𝐿 𝛿 ) 𝑇 = cosh [ (𝐿 − 𝑥) 𝛿 ] + ( ℎ𝐿𝛿 𝑘 )sinh[( 𝐿 − 𝑥 𝛿 )] cosh 𝐿 𝛿 + ( ℎ𝐿𝛿 𝑘 )𝑠𝑖𝑛ℎ 𝐿 𝛿 (𝑇𝑠 − 𝑇∞) + 𝑇∞
  • 12. 𝜕 𝜕𝑡 ∫ (𝑇)𝑑𝑥 𝑙 0 = 𝜕 𝜕𝑡 [𝛿(𝑇𝑠 − 𝑇∞) ( − ℎ𝐿𝛿 𝑘 + (𝑠𝑖𝑛ℎ 𝐿 𝛿 + ℎ𝐿𝛿 𝑘 𝑐𝑜𝑠ℎ 𝐿 𝛿 ) 𝑐𝑜𝑠ℎ 𝐿 𝛿 + ℎ𝐿𝛿 𝑘 𝑠𝑖𝑛ℎ 𝐿 𝛿 )] + 𝜕(𝑙𝑇∞) 𝜕𝑡 𝜕(𝑙𝑇∞) 𝜕𝑡 = 0 Upon substitution of all the above in the heat equation, we get: 𝛼 (𝑇𝑠 − 𝑇∞) 𝛿 ( − ℎ𝐿𝛿 𝑘 + (𝑠𝑖𝑛ℎ 𝐿 𝛿 + ℎ𝐿𝛿 𝑘 𝑐𝑜𝑠ℎ 𝐿 𝛿 ) 𝑐𝑜𝑠ℎ 𝐿 𝛿 + ℎ𝐿𝛿 𝑘 𝑠𝑖𝑛ℎ 𝐿 𝛿 ) = 𝜕 𝜕𝑡 [𝛿(𝑇𝑠 − 𝑇∞) ( − ℎ𝐿𝛿 𝑘 + (𝑠𝑖𝑛ℎ 𝐿 𝛿 + ℎ𝐿𝛿 𝑘 𝑐𝑜𝑠ℎ 𝐿 𝛿 ) 𝑐𝑜𝑠ℎ 𝐿 𝛿 + ℎ𝐿𝛿 𝑘 𝑠𝑖𝑛ℎ 𝐿 𝛿 )] We notice that the term(𝑇𝑠 − 𝑇∞) ( − ℎ𝐿𝛿 𝑘 +(𝑠𝑖𝑛ℎ 𝐿 𝛿 + ℎ𝐿𝛿 𝑘 𝑐𝑜𝑠ℎ 𝐿 𝛿 ) 𝑐𝑜𝑠ℎ 𝐿 𝛿 + ℎ𝐿𝛿 𝑘 𝑠𝑖𝑛ℎ 𝐿 𝛿 ) is common and can be eliminated: 𝛼 𝛿 = 𝑑𝛿 𝑑𝑡 We go ahead and solve for 𝛿 provided 𝛿 = 0𝑎𝑡 𝑡 = 0 and get the expression 𝛿 = √2𝛼𝑡 So, the final solution for the finite metal rod with convective flux at the end of the metal rod is: 𝑻 − 𝑻∞ 𝑻𝒔 − 𝑻∞ = ( 𝐜𝐨𝐬𝐡 [ (𝑳 − 𝒙) 𝜹 ] + ( 𝒉𝑳𝜹 𝒌 ) 𝐬𝐢𝐧𝐡 [( 𝑳 − 𝒙 𝜹 )] 𝐜𝐨𝐬𝐡 𝑳 𝜹 + ( 𝒉𝑳𝜹 𝒌 ) 𝒔𝒊𝒏𝒉 𝑳 𝜹 ) OR 𝑻 − 𝑻∞ 𝑻𝒔 − 𝑻∞ = ( 𝐜𝐨𝐬𝐡 [ (𝑳 − 𝒙) √𝟐𝜶𝒕 ] + ( 𝒉𝑳√𝟐𝜶𝒕 𝒌 )𝐬𝐢𝐧𝐡 [( 𝑳 − 𝒙 √𝟐𝜶𝒕 )] 𝐜𝐨𝐬𝐡 𝑳 √𝟐𝜶𝒕 + ( 𝒉𝑳√𝟐𝜶𝒕 𝒌 )𝒔𝒊𝒏𝒉 𝑳 √𝟐𝜶𝒕 ) For the steady state solution, we set 𝑡 → ∞, but first let us first divide through by 𝛿 and get: 𝑇 − 𝑇∞ 𝑇𝑠 − 𝑇∞ = ( 1 𝛿 cosh [ (𝐿 − 𝑥) 𝛿 ] + ( ℎ𝐿 𝑘 ) sinh [( 𝐿 − 𝑥 𝛿 )] 1 𝛿 cosh 𝐿 𝛿 + ( ℎ𝐿 𝑘 ) 𝑠𝑖𝑛ℎ 𝐿 𝛿 )
  • 13. Now set 𝑡 → ∞ and get: 𝑇 − 𝑇∞ 𝑇𝑠 − 𝑇∞ = ( 0 0 ) L’hopital’s rule is then invoked i.e., 𝑙𝑖𝑚 𝑥 → 𝑐 𝑓(𝑥) 𝑔(𝑥) = 𝑙𝑖𝑚 𝑥 → 𝑐 𝑓′ (𝑥) 𝑔′(𝑥) (i.e., differentiate the denominator and numerator with respect to 1 𝛿 ) but we differentiate with respect to the varying parameter and this is 1 𝛿 and get: 𝑇 − 𝑇∞ 𝑇𝑠 − 𝑇∞ = ( (𝐿 − 𝑥) 𝛿 sinh [ (𝐿 − 𝑥) 𝛿 ] + cosh [ (𝐿 − 𝑥) 𝛿 ] + ( ℎ𝐿 𝑘 ) (𝐿 − 𝑥)cosh [( 𝐿 − 𝑥 𝛿 )] 𝐿 𝛿 sinh 𝐿 𝛿 + 𝑐𝑜𝑠ℎ 𝐿 𝛿 + ( ℎ𝐿 𝑘 )𝐿𝑐𝑜𝑠ℎ 𝐿 𝛿 ) We now substitute 𝑡 = ∞ in the formula above and get: 𝑻 − 𝑻∞ 𝑻𝒔 − 𝑻∞ = ( 𝟏 + ( 𝒉𝑳 𝒌 )(𝑳 − 𝒙) 𝟏 + ( 𝒉𝑳 𝒌 ) 𝑳 ) The above is the steady state solution and it shows temperature is linearly negative in x.
  • 14. CASE 3: NO CONVECTION AT THE FREE END The boundary and initial conditions are: 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝒅𝑻 𝒅𝒙 = 𝟎 𝒂𝒕 𝒙 = 𝒍 𝑻 = 𝑻∞ 𝒂𝒕 𝒕 = 𝟎 Recall the compact temperature profile that satisfies the boundary and initial conditions is [2]: 𝑇 − 𝑇∞ 𝑇𝑠 − 𝑇∞ = cosh[ (𝐿 − 𝑥) 𝛿 ] cosh 𝐿 𝛿 Again, solving the heat equation using the temperature profile above yields 𝛿 = √2𝛼𝑡 For steady state conditions we set 𝑡 → ∞ And get: 𝑇 − 𝑇∞ 𝑇𝑠 − 𝑇∞ = 1 Hence temperature will be uniformly 𝑇𝑠 throughout the metal rod.
  • 15. CASE 4: SEMI-INFINITE ROD CASE The boundary and initial conditions are: 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝑻 = 𝑻∞ 𝒂𝒕 𝒙 = ∞ 𝑻 = 𝑻∞ 𝒂𝒕 𝒕 = 𝟎 The temperature profile that satisfies the boundary and initial conditions is: 𝑇 − 𝑇∞ 𝑇𝑠 − 𝑇∞ = 𝑒 −𝑥 𝛿 Again, solving the heat equation using the temperature profile above yields 𝛿 = √2𝛼𝑡 For steady state conditions we set 𝑡 → ∞ And get: 𝑇 − 𝑇∞ 𝑇𝑠 − 𝑇∞ = 1 Hence temperature will be uniformly 𝑇𝑠 throughout the metal rod. This analysis can be extended to cases where there is lateral convection along the metal rod and yield 𝑚 = √ ℎ𝑃 𝑘𝐴 in steady state.
  • 16. REFERENCES [1] C.P.Kothandaraman, "HEAT TRANSFER WITH EXTENDED SURFACES (FINS)," in Fundamentals of Heat and Mass Transfer, New Delhi, New Age International Publishers, 2006, p. 132. [2] C. E. W. R. E. W. G. L. R. James R. Welty, "HEAT TRANSFER FROM EXTENDED SURFACES," in Fundamentals of Momentum, Heat, and Mass Transfer 5th Edition, Corvallis, Oregon, John Wiley & Sons, Inc., 2000, pp. 236-237. .