The document describes developing a parallel algorithm for solving the traveling salesman problem (TSP) based on Christofides' algorithm. It discusses implementing Christofides' algorithm in a distributed environment using multiple processors. The parallel algorithm divides the graph vertices and distance matrix across slave processors, which calculate the minimum spanning tree in parallel. The master processor then finds odd-degree vertices, performs matching, and finds the Hamiltonian cycle to solve TSP. The algorithm is tested on a computer cluster using graphs of 20,000 and 30,000 nodes, showing improved runtime over the sequential algorithm.