SlideShare a Scribd company logo
The world is changing
Agenda
- New challenges and ways
- On-premises or cloud (or both?)
- The union of all
- Making sense of it
- How to get there...
Today, 80% of
organizations
adopt cloud-first
strategies
AI investment
increased by
300% in 2017
Data will grow to
44 ZB in 2020
Today, 80% of
organizations
adopt cloud-first
strategies
AI investment
increased by
300% in 2017
Data will grow to
44 ZB in 2020 C LO U D A IDATA
C LO U D
DATA A I
Organizations that harness data,
cloud, and AI outperform
Rely on a modern data estate
Patrik Borosch
TSP / DP
• 02.07.1971/married/Daughter(19)
• Music(Squared Circle/The Midcrise Liars)/climbing/skiing/cycling/Tango
• EDV-Kaufmann (german IHK 1995) = Data Processing with Cobol and Databases = the early BI
guys ;)
• Reporting and data processing in controlling departments
• BI Consultant/Senior Consultant: ASTECH Solutions/T-Systems/Trivadis/Avanade
•  Discipline Manager Microsoft BI and Power Pivot Trainer @ Trivadis
• Head of BI: Allianz Global Assistance
• TSP DP: Microsoft
• SQL Server/SSIS/SSAS/SSRS/MDM
• PowerBI/PowerPivot/PowerQuery
• Azure SQL DB/DW/Data Lake/Azure Stream Analytics/Data Factory/AAS
• SQL/DAX/MDX/(PowerShell)/(C#)
• Informatica/Microstrategy/Essbase/Enterprise Architect/UML/Perl/Unix/Linux  had that... been
there...
• First «Big Data»-Project in 2006: Teradata/Informatica/Microstrategy, 1.4TB = eight weeks for init
load = lots of fun :D
8
9
Dr. John Snow (1854)
One of the first visual
investigations of collected
data helped to solve a cholera
epidemic in Soho…
- You need the facts
- BUT you also need to
make sense of it...
Therefore you need to have
the right tools and methods...
The many
sources and
rapid growth
of data
requires a
new approach
• Sentiment
Analysis
• Social Media /
Sales
Connection
• Customer
Segmentation
Data lake
From Wikipedia, the free encyclopedia
A data lake is a method of storing data within a system or repository, in its natural format,[1] that
facilitates the collocation of data in various schemata and structural forms, usually object blobs or files.
The idea of data lake is to have a single store of all data in the enterprise ranging from raw data (which
implies exact copy of source system data) to transformed data which is used for various tasks including
reporting, visualization, analytics and machine learning. The data lake includes structured data from
relational databases (rows and columns), semi-structured data (CSV, logs, XML, JSON), unstructured
data (emails, documents, PDFs) and even binary data (images, audio, video) thus creating a centralized
data store accommodating all forms of data.
James Dixon / Pentaho (2010)
Data Lakes
BUSINESS APPS
CUSTOM APPS
ANALYTICAL DASHBOARDS
AZURE SQL DATA WAREHOUSE
AZURE CLI
AZURE DATA FACTORY
BCP COMMAND LINE UTILITY
SQL SERVER INTEGRATION SERVICES
AZURE ANALYSIS SERVICES
BUSINESS APPS
CUSTOM APPS
ANALYTICAL DASHBOARDS
DATA FACTORY
ANALYTICAL DASHBOARDS
Polybase
AZURE SQL DATA WAREHOUSE
DATA FACTORY
AZURE ANALYSIS SERVICES
AZURE MACHINE LEARNING
& MACHINE LEARNING SERVER
AZURE COSMOS DB
AZURE STORAGE
BUSINESS APPS
CUSTOM APPS
ANALYTICAL DASHBOARDS
DATA FACTORY
ANALYTICAL DASHBOARDS
Polybase
AZURE SQL DATA WAREHOUSE
DATA FACTORY
AZURE ANALYSIS SERVICES
AZURE MACHINE LEARNING
& MACHINE LEARNING SERVER
AZURE COSMOS DB
AZURE HDINSIGHT
(Hadoop)AZURE STORAGE
BUSINESS APPS
CUSTOM APPS
ANALYTICAL DASHBOARDS
DATA FACTORY
ANALYTICAL DASHBOARDS
Polybase
AZURE SQL DATA WAREHOUSE
DATA FACTORY
AZURE ANALYSIS SERVICES
AZURE MACHINE LEARNING
& MACHINE LEARNING SERVER
AZURE COSMOS DB
AZURE STORAGE AZURE DATABRICKS
(SPARK)
BUSINESS APPS
CUSTOM APPS
ANALYTICAL DASHBOARDS
DATA FACTORY
AZURE DATA LAKE STORE AZURE DATA LAKE ANALYTICS
ANALYTICAL DASHBOARDS
Polybase
AZURE SQL DATA WAREHOUSE
DATA FACTORY
AZURE ANALYSIS SERVICES
AZURE MACHINE LEARNING
& MACHINE LEARNING SERVER
AZURE COSMOS DB
Trivadis Azure Data Lake
CONTROL EASE OF USE
Azure Data Lake
Analytics
Azure Data Lake Store
Azure Storage
Any Hadoop technology,
any distribution
Workload optimized,
managed clusters
Data Engineering in a
Job-as-a-service model
Azure Marketplace
HDP | CDH | MapR
Azure Data Lake
Analytics
IaaS Clusters Managed Clusters Big Data as-a-service
Azure HDInsight
Frictionless & Optimized
Spark clusters
Azure Databricks
BIGDATA
STORAGE
BIGDATA
ANALYTICS
ReducedAdministration
K N O W I N G T H E V A R I O U S B I G D A T A S O L U T I O N S
Drag & Drop
Azure ML
Big Data is driving transformative changes
Cost
Culture
Data
Characteristics
Traditional Big Data
Relational
(with highly modeled schema)
All Data
(with schema agility)
Expensive
(storage and compute capacity)
Cloud
(storage and compute capacity)
Rear-view reporting
(using relational algebra)
Intelligent action
(using relational algebra AND ML,
graph, streaming, image processing)
Cognitive Services
• Faces, images, emotion recognition and video intelligence
• Spoken language processing, speaker recognition, custom speech recognition
• Natural language processing, sentiment and topics analysis, spelling errors
• Complex tasks processing, knowledge exploration,
intelligent recommendations
• Bing engine capabilities for Web, Autosuggest, Image,
Video and News
Intelligence
Cortana
Bot
Framework
Cognitive
Services
Microsoft BI, the agile way…
Azure
Analysis Services
Trivadis Azure Data Lake
Data Sources Ingest Prepare Analyze Publish Consume
Sensors
and devices
Stream
Analytics
Diagnostic
Streaming
Power BI
Sources
- Oralce HFS
- SAP BW
- …
Azure Data Lake Store
Data Factory: Move data, orchestrate, schedule and monitor
Azure Data LakeIoT Hubs
Machine
Learning
HDInsight
Data Science
Workbench
Stream
Analytics
Power BI Report Server
Architecture Blueprint
SSIS
SQL Server 2017: Security, Performance, Polybase, ML Services, Analytics
SQL Server
2017
SSAS
BI Bot
Apps
Lab- and
other Apps
AzureDataPlatformSQLserver2017
AI built-in | Most secure | Lowest TCO
M I C R O S O F T F O R Y O U R M O D E R N D A T A E S T A T E
Data warehouses
Data lakes
Operational databases
Data warehouses
Data lakes
Operational databases
SQL Server Azure Data Services
Industry leader 4 years in a row
#1 TPC-H performance
T-SQL query over any data
70% faster
2x the global reach
99.9% SLA
HYBRID
Easiest lift and shift
with no code changes
SocialLOB Graph IoTImageCRM
Security and
performance
Flexibility
of choice
Reason over
any data, anywhere
Tools for your
migration journey
SQL Server Migration Assistant (SSMA)
Automates database migration to SQL Server from
Microsoft Access, DB2, MySQL, Oracle, and SAP ASE.
Data Migration Assistant (DMA)
Enables upgrade to SQL Server and Azure SQL
Database.
Database Experimentation Assistant (DEA)
Assists in evaluating a targeted version of SQL for
a given workload.
Azure Hybrid Benefit for SQL Server
Maximizes current on-premises license investments
to facilitate migration.
Azure SQL Database Managed Instance
Facilitates lift and shift migration from
on-premises SQL Server to PaaS.
Azure Database Migration Service (Azure DMS)
SQL Server Migration Assistant (SSMA)
Data Migration Assistant (DMA)
Database Experimentation Assistant (DEA)
SQL Database
Managed Instance
Azure Hybrid
Benefit for
SQL Server
Empower today’s innovators to unleash the power of data
and reimagine possibilities that will improve our world

More Related Content

PDF
USQ Landdemos Azure Data Lake
PDF
Spark as a Service with Azure Databricks
PPTX
The Developer Data Scientist – Creating New Analytics Driven Applications usi...
PPTX
A developer's introduction to big data processing with Azure Databricks
PDF
Cortana Analytics Workshop: Azure Data Lake
PDF
DataOps for the Modern Data Warehouse on Microsoft Azure @ NDCOslo 2020 - Lac...
PPTX
Global AI Bootcamp Madrid - Azure Databricks
PDF
Azure databricks c sharp corner toronto feb 2019 heather grandy
USQ Landdemos Azure Data Lake
Spark as a Service with Azure Databricks
The Developer Data Scientist – Creating New Analytics Driven Applications usi...
A developer's introduction to big data processing with Azure Databricks
Cortana Analytics Workshop: Azure Data Lake
DataOps for the Modern Data Warehouse on Microsoft Azure @ NDCOslo 2020 - Lac...
Global AI Bootcamp Madrid - Azure Databricks
Azure databricks c sharp corner toronto feb 2019 heather grandy

What's hot (20)

PDF
Azure Databricks—Apache Spark as a Service with Sascha Dittmann
PDF
Azure Data Lake Store and Analytics
PDF
J1 T1 3 - Azure Data Lake store & analytics 101 - Kenneth M. Nielsen
PDF
201905 Azure Databricks for Machine Learning
PPTX
Big Data on azure
PPTX
Azure Data Lake Intro (SQLBits 2016)
PPTX
Azure data bricks by Eugene Polonichko
PPTX
Building Advanced Analytics Pipelines with Azure Databricks
PDF
Einstieg in Machine Learning für Datenbankentwickler
PDF
Using Redash for SQL Analytics on Databricks
PPTX
Why Power BI is the right tool for you
PPTX
Introduction to Azure Databricks
PPTX
Modern data warehouse
PDF
Big Data Adavnced Analytics on Microsoft Azure
PDF
Microsoft Build 2020: Data Science Recap
PPTX
Azure Data Lake and Azure Data Lake Analytics
PPTX
A lap around Azure Data Factory
PPTX
An intro to Azure Data Lake
PPTX
Running cost effective big data workloads with Azure Synapse and ADLS (MS Ign...
PPTX
Microsoft Azure Databricks
Azure Databricks—Apache Spark as a Service with Sascha Dittmann
Azure Data Lake Store and Analytics
J1 T1 3 - Azure Data Lake store & analytics 101 - Kenneth M. Nielsen
201905 Azure Databricks for Machine Learning
Big Data on azure
Azure Data Lake Intro (SQLBits 2016)
Azure data bricks by Eugene Polonichko
Building Advanced Analytics Pipelines with Azure Databricks
Einstieg in Machine Learning für Datenbankentwickler
Using Redash for SQL Analytics on Databricks
Why Power BI is the right tool for you
Introduction to Azure Databricks
Modern data warehouse
Big Data Adavnced Analytics on Microsoft Azure
Microsoft Build 2020: Data Science Recap
Azure Data Lake and Azure Data Lake Analytics
A lap around Azure Data Factory
An intro to Azure Data Lake
Running cost effective big data workloads with Azure Synapse and ADLS (MS Ign...
Microsoft Azure Databricks
Ad

Similar to Trivadis Azure Data Lake (20)

PPTX
How does Microsoft solve Big Data?
PDF
How to Swiftly Operationalize the Data Lake for Advanced Analytics Using a Lo...
PPTX
Microsoft Fabric Introduction
PPTX
Differentiate Big Data vs Data Warehouse use cases for a cloud solution
PDF
Best Practices For Building and Operating A Managed Data Lake - StampedeCon 2016
PPTX
Microsoft cloud big data strategy
PDF
Prague data management meetup 2018-03-27
PPTX
Building IoT and Big Data Solutions on Azure
PPTX
Derfor skal du bruge en DataLake
PPTX
Choosing technologies for a big data solution in the cloud
PPTX
Opportunity: Data, Analytic & Azure
PDF
Prague data management meetup 2017-01-23
PPTX
Building a modern data warehouse
PPTX
Big Data Analytics in the Cloud with Microsoft Azure
PDF
Modern Business Intelligence and Advanced Analytics
PPTX
Data Modernization_Harinath Susairaj.pptx
PDF
Sudhir Rawat, Sr Techonology Evangelist at Microsoft SQL Business Intelligenc...
PDF
Big Data Meetup: Analytical Systems Evolution
PPTX
Streaming Real-time Data to Azure Data Lake Storage Gen 2
PDF
OpenSistemas Corporate Presentation
How does Microsoft solve Big Data?
How to Swiftly Operationalize the Data Lake for Advanced Analytics Using a Lo...
Microsoft Fabric Introduction
Differentiate Big Data vs Data Warehouse use cases for a cloud solution
Best Practices For Building and Operating A Managed Data Lake - StampedeCon 2016
Microsoft cloud big data strategy
Prague data management meetup 2018-03-27
Building IoT and Big Data Solutions on Azure
Derfor skal du bruge en DataLake
Choosing technologies for a big data solution in the cloud
Opportunity: Data, Analytic & Azure
Prague data management meetup 2017-01-23
Building a modern data warehouse
Big Data Analytics in the Cloud with Microsoft Azure
Modern Business Intelligence and Advanced Analytics
Data Modernization_Harinath Susairaj.pptx
Sudhir Rawat, Sr Techonology Evangelist at Microsoft SQL Business Intelligenc...
Big Data Meetup: Analytical Systems Evolution
Streaming Real-time Data to Azure Data Lake Storage Gen 2
OpenSistemas Corporate Presentation
Ad

More from Trivadis (20)

PDF
Azure Days 2019: Azure Chatbot Development for Airline Irregularities (Remco ...
PDF
Azure Days 2019: Trivadis Azure Foundation – Das Fundament für den ... (Nisan...
PDF
Azure Days 2019: Business Intelligence auf Azure (Marco Amhof & Yves Mauron)
PDF
Azure Days 2019: Master the Move to Azure (Konrad Brunner)
PDF
Azure Days 2019: Keynote Azure Switzerland – Status Quo und Ausblick (Primo A...
PDF
Azure Days 2019: Grösser und Komplexer ist nicht immer besser (Meinrad Weiss)
PDF
Azure Days 2019: Get Connected with Azure API Management (Gerry Keune & Stefa...
PDF
Azure Days 2019: Infrastructure as Code auf Azure (Jonas Wanninger & Daniel H...
PDF
Azure Days 2019: Wie bringt man eine Data Analytics Plattform in die Cloud? (...
PDF
Azure Days 2019: Azure@Helsana: Die Erweiterung von Dynamics CRM mit Azure Po...
PDF
TechEvent 2019: Kundenstory - Kein Angebot, kein Auftrag – Wie Du ein individ...
PDF
TechEvent 2019: Oracle Database Appliance M/L - Erfahrungen und Erfolgsmethod...
PDF
TechEvent 2019: Security 101 für Web Entwickler; Roland Krüger - Trivadis
PDF
TechEvent 2019: Trivadis & Swisscom Partner Angebote; Konrad Häfeli, Markus O...
PDF
TechEvent 2019: DBaaS from Swisscom Cloud powered by Trivadis; Konrad Häfeli ...
PDF
TechEvent 2019: Status of the partnership Trivadis and EDB - Comparing Postgr...
PDF
TechEvent 2019: More Agile, More AI, More Cloud! Less Work?!; Oliver Dörr - T...
PDF
TechEvent 2019: Kundenstory - Vom Hauptmann zu Köpenick zum Polizisten 2020 -...
PDF
TechEvent 2019: Vom Rechenzentrum in die Oracle Cloud - Übertragungsmethoden;...
PDF
TechEvent 2019: The sleeping Power of Data; Eberhard Lösch - Trivadis
Azure Days 2019: Azure Chatbot Development for Airline Irregularities (Remco ...
Azure Days 2019: Trivadis Azure Foundation – Das Fundament für den ... (Nisan...
Azure Days 2019: Business Intelligence auf Azure (Marco Amhof & Yves Mauron)
Azure Days 2019: Master the Move to Azure (Konrad Brunner)
Azure Days 2019: Keynote Azure Switzerland – Status Quo und Ausblick (Primo A...
Azure Days 2019: Grösser und Komplexer ist nicht immer besser (Meinrad Weiss)
Azure Days 2019: Get Connected with Azure API Management (Gerry Keune & Stefa...
Azure Days 2019: Infrastructure as Code auf Azure (Jonas Wanninger & Daniel H...
Azure Days 2019: Wie bringt man eine Data Analytics Plattform in die Cloud? (...
Azure Days 2019: Azure@Helsana: Die Erweiterung von Dynamics CRM mit Azure Po...
TechEvent 2019: Kundenstory - Kein Angebot, kein Auftrag – Wie Du ein individ...
TechEvent 2019: Oracle Database Appliance M/L - Erfahrungen und Erfolgsmethod...
TechEvent 2019: Security 101 für Web Entwickler; Roland Krüger - Trivadis
TechEvent 2019: Trivadis & Swisscom Partner Angebote; Konrad Häfeli, Markus O...
TechEvent 2019: DBaaS from Swisscom Cloud powered by Trivadis; Konrad Häfeli ...
TechEvent 2019: Status of the partnership Trivadis and EDB - Comparing Postgr...
TechEvent 2019: More Agile, More AI, More Cloud! Less Work?!; Oliver Dörr - T...
TechEvent 2019: Kundenstory - Vom Hauptmann zu Köpenick zum Polizisten 2020 -...
TechEvent 2019: Vom Rechenzentrum in die Oracle Cloud - Übertragungsmethoden;...
TechEvent 2019: The sleeping Power of Data; Eberhard Lösch - Trivadis

Recently uploaded (20)

PDF
Machine learning based COVID-19 study performance prediction
PPTX
Big Data Technologies - Introduction.pptx
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Electronic commerce courselecture one. Pdf
PPTX
Cloud computing and distributed systems.
PDF
Modernizing your data center with Dell and AMD
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
KodekX | Application Modernization Development
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Encapsulation theory and applications.pdf
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Machine learning based COVID-19 study performance prediction
Big Data Technologies - Introduction.pptx
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Electronic commerce courselecture one. Pdf
Cloud computing and distributed systems.
Modernizing your data center with Dell and AMD
Encapsulation_ Review paper, used for researhc scholars
Unlocking AI with Model Context Protocol (MCP)
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Advanced methodologies resolving dimensionality complications for autism neur...
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
“AI and Expert System Decision Support & Business Intelligence Systems”
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
KodekX | Application Modernization Development
Spectral efficient network and resource selection model in 5G networks
Chapter 3 Spatial Domain Image Processing.pdf
Dropbox Q2 2025 Financial Results & Investor Presentation
Encapsulation theory and applications.pdf
Diabetes mellitus diagnosis method based random forest with bat algorithm
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...

Trivadis Azure Data Lake

  • 1. The world is changing
  • 2. Agenda - New challenges and ways - On-premises or cloud (or both?) - The union of all - Making sense of it - How to get there...
  • 3. Today, 80% of organizations adopt cloud-first strategies AI investment increased by 300% in 2017 Data will grow to 44 ZB in 2020
  • 4. Today, 80% of organizations adopt cloud-first strategies AI investment increased by 300% in 2017 Data will grow to 44 ZB in 2020 C LO U D A IDATA
  • 5. C LO U D DATA A I Organizations that harness data, cloud, and AI outperform
  • 6. Rely on a modern data estate
  • 7. Patrik Borosch TSP / DP • 02.07.1971/married/Daughter(19) • Music(Squared Circle/The Midcrise Liars)/climbing/skiing/cycling/Tango • EDV-Kaufmann (german IHK 1995) = Data Processing with Cobol and Databases = the early BI guys ;) • Reporting and data processing in controlling departments • BI Consultant/Senior Consultant: ASTECH Solutions/T-Systems/Trivadis/Avanade •  Discipline Manager Microsoft BI and Power Pivot Trainer @ Trivadis • Head of BI: Allianz Global Assistance • TSP DP: Microsoft • SQL Server/SSIS/SSAS/SSRS/MDM • PowerBI/PowerPivot/PowerQuery • Azure SQL DB/DW/Data Lake/Azure Stream Analytics/Data Factory/AAS • SQL/DAX/MDX/(PowerShell)/(C#) • Informatica/Microstrategy/Essbase/Enterprise Architect/UML/Perl/Unix/Linux  had that... been there... • First «Big Data»-Project in 2006: Teradata/Informatica/Microstrategy, 1.4TB = eight weeks for init load = lots of fun :D
  • 8. 8
  • 9. 9
  • 10. Dr. John Snow (1854) One of the first visual investigations of collected data helped to solve a cholera epidemic in Soho… - You need the facts - BUT you also need to make sense of it... Therefore you need to have the right tools and methods...
  • 11. The many sources and rapid growth of data requires a new approach • Sentiment Analysis • Social Media / Sales Connection • Customer Segmentation
  • 12. Data lake From Wikipedia, the free encyclopedia A data lake is a method of storing data within a system or repository, in its natural format,[1] that facilitates the collocation of data in various schemata and structural forms, usually object blobs or files. The idea of data lake is to have a single store of all data in the enterprise ranging from raw data (which implies exact copy of source system data) to transformed data which is used for various tasks including reporting, visualization, analytics and machine learning. The data lake includes structured data from relational databases (rows and columns), semi-structured data (CSV, logs, XML, JSON), unstructured data (emails, documents, PDFs) and even binary data (images, audio, video) thus creating a centralized data store accommodating all forms of data. James Dixon / Pentaho (2010) Data Lakes
  • 13. BUSINESS APPS CUSTOM APPS ANALYTICAL DASHBOARDS AZURE SQL DATA WAREHOUSE AZURE CLI AZURE DATA FACTORY BCP COMMAND LINE UTILITY SQL SERVER INTEGRATION SERVICES AZURE ANALYSIS SERVICES
  • 14. BUSINESS APPS CUSTOM APPS ANALYTICAL DASHBOARDS DATA FACTORY ANALYTICAL DASHBOARDS Polybase AZURE SQL DATA WAREHOUSE DATA FACTORY AZURE ANALYSIS SERVICES AZURE MACHINE LEARNING & MACHINE LEARNING SERVER AZURE COSMOS DB AZURE STORAGE
  • 15. BUSINESS APPS CUSTOM APPS ANALYTICAL DASHBOARDS DATA FACTORY ANALYTICAL DASHBOARDS Polybase AZURE SQL DATA WAREHOUSE DATA FACTORY AZURE ANALYSIS SERVICES AZURE MACHINE LEARNING & MACHINE LEARNING SERVER AZURE COSMOS DB AZURE HDINSIGHT (Hadoop)AZURE STORAGE
  • 16. BUSINESS APPS CUSTOM APPS ANALYTICAL DASHBOARDS DATA FACTORY ANALYTICAL DASHBOARDS Polybase AZURE SQL DATA WAREHOUSE DATA FACTORY AZURE ANALYSIS SERVICES AZURE MACHINE LEARNING & MACHINE LEARNING SERVER AZURE COSMOS DB AZURE STORAGE AZURE DATABRICKS (SPARK)
  • 17. BUSINESS APPS CUSTOM APPS ANALYTICAL DASHBOARDS DATA FACTORY AZURE DATA LAKE STORE AZURE DATA LAKE ANALYTICS ANALYTICAL DASHBOARDS Polybase AZURE SQL DATA WAREHOUSE DATA FACTORY AZURE ANALYSIS SERVICES AZURE MACHINE LEARNING & MACHINE LEARNING SERVER AZURE COSMOS DB
  • 19. CONTROL EASE OF USE Azure Data Lake Analytics Azure Data Lake Store Azure Storage Any Hadoop technology, any distribution Workload optimized, managed clusters Data Engineering in a Job-as-a-service model Azure Marketplace HDP | CDH | MapR Azure Data Lake Analytics IaaS Clusters Managed Clusters Big Data as-a-service Azure HDInsight Frictionless & Optimized Spark clusters Azure Databricks BIGDATA STORAGE BIGDATA ANALYTICS ReducedAdministration K N O W I N G T H E V A R I O U S B I G D A T A S O L U T I O N S Drag & Drop Azure ML
  • 20. Big Data is driving transformative changes Cost Culture Data Characteristics Traditional Big Data Relational (with highly modeled schema) All Data (with schema agility) Expensive (storage and compute capacity) Cloud (storage and compute capacity) Rear-view reporting (using relational algebra) Intelligent action (using relational algebra AND ML, graph, streaming, image processing)
  • 21. Cognitive Services • Faces, images, emotion recognition and video intelligence • Spoken language processing, speaker recognition, custom speech recognition • Natural language processing, sentiment and topics analysis, spelling errors • Complex tasks processing, knowledge exploration, intelligent recommendations • Bing engine capabilities for Web, Autosuggest, Image, Video and News Intelligence Cortana Bot Framework Cognitive Services
  • 22. Microsoft BI, the agile way… Azure Analysis Services
  • 24. Data Sources Ingest Prepare Analyze Publish Consume Sensors and devices Stream Analytics Diagnostic Streaming Power BI Sources - Oralce HFS - SAP BW - … Azure Data Lake Store Data Factory: Move data, orchestrate, schedule and monitor Azure Data LakeIoT Hubs Machine Learning HDInsight Data Science Workbench Stream Analytics Power BI Report Server Architecture Blueprint SSIS SQL Server 2017: Security, Performance, Polybase, ML Services, Analytics SQL Server 2017 SSAS BI Bot Apps Lab- and other Apps AzureDataPlatformSQLserver2017
  • 25. AI built-in | Most secure | Lowest TCO M I C R O S O F T F O R Y O U R M O D E R N D A T A E S T A T E Data warehouses Data lakes Operational databases Data warehouses Data lakes Operational databases SQL Server Azure Data Services Industry leader 4 years in a row #1 TPC-H performance T-SQL query over any data 70% faster 2x the global reach 99.9% SLA HYBRID Easiest lift and shift with no code changes SocialLOB Graph IoTImageCRM Security and performance Flexibility of choice Reason over any data, anywhere
  • 26. Tools for your migration journey SQL Server Migration Assistant (SSMA) Automates database migration to SQL Server from Microsoft Access, DB2, MySQL, Oracle, and SAP ASE. Data Migration Assistant (DMA) Enables upgrade to SQL Server and Azure SQL Database. Database Experimentation Assistant (DEA) Assists in evaluating a targeted version of SQL for a given workload. Azure Hybrid Benefit for SQL Server Maximizes current on-premises license investments to facilitate migration. Azure SQL Database Managed Instance Facilitates lift and shift migration from on-premises SQL Server to PaaS. Azure Database Migration Service (Azure DMS) SQL Server Migration Assistant (SSMA) Data Migration Assistant (DMA) Database Experimentation Assistant (DEA) SQL Database Managed Instance Azure Hybrid Benefit for SQL Server
  • 27. Empower today’s innovators to unleash the power of data and reimagine possibilities that will improve our world