SlideShare a Scribd company logo
Truth-Table Analysis Phil 57 section 3 San Jose State University Fall 2010
What are truth-tables good for?  Working out the truth value of a formula from the truth values of the atomic formulae in it. Defining the behavior of logical connectives used to build complex formulae.
What are truth-tables good for?  Determining the logical status of a single proposition. Determining the logical status of a group of propositions. Determining the validity of an argument.
The logical status of a proposition. Some propositions are always true: It will rain or it won’t. Some propositions are never true: The universe is empty and not empty. Most propositions are true in some conditions and false in others: Today is hot.
The logical status of a proposition. Can use truth-tables to distinguish these different kinds of propositions. Logical status Description Truth-Table Tautology Always true Every row T Contradiction Always false Every row F Contingent Depends on circumstances Some row T, some row F
The logical status of a proposition. Consider P  ~P  P ~P P  ~P
The logical status of a proposition. Consider P  ~P  P ~P P  ~P  T F
The logical status of a proposition. Consider P  ~P  P ~P P  ~P  T F F T
The logical status of a proposition. Consider P  ~P  P ~P P  ~P  T F F F T F
The logical status of a proposition. Consider P  ~P  Truth-value for  P  ~P  is F in every row. (Contradiction) P ~P P  ~P  T F F F T F
The logical status of a proposition. Consider P  ~P  P ~P P  ~P
The logical status of a proposition. Consider P  ~P  P ~P P  ~P  T F
The logical status of a proposition. Consider P  ~P  P ~P P  ~P  T F F T
The logical status of a proposition. Consider P  ~P  P ~P P  ~P  T F T F T T
The logical status of a proposition. Consider P  ~P  Truth-value for  P  ~P  is T in every row. (Tautology) P ~P P  ~P  T F T F T T
The logical status of  a group of propositions. Do two different claims mean the same thing? Can two different claims both be true? Must one of a pair of claims be false if the other is true?
The logical status of  a group of propositions. Logical Status Description Truth-Table Equivalent Mean the same thing, logically The truth-tables are identical Satisfiable/consistent Possibly all true. There is some row where all propositions are true. Unsatisfiable/inconsistent Can’t all be true. No row where all propositions are true.
Rules for building truth-tables: As many columns as: Statement letters Non-atomic formulae The formula to be computed 2 N  rows, where N= number of atomic statement letters.
Truth-table to evaluate ((P  Q)  ~R)  1 2 3 4 5 6 (formula)  P Q R ~R (P  Q) ((P  Q)  ~R)   1 2 3 4 5 6 7 8
Truth-table to evaluate ((P  Q)  ~R)  1 2 3 4 5 6 (formula)  P Q R ~R (P  Q) ((P  Q)  ~R)   1 T 2 T 3 T 4 T 5 F 6 F 7 F 8 F
Truth-table to evaluate ((P  Q)  ~R)  1 2 3 4 5 6 (formula)  P Q R ~R (P  Q) ((P  Q)  ~R)   1 T T 2 T T 3 T F 4 T F 5 F T 6 F T 7 F F 8 F F
Truth-table to evaluate ((P  Q)  ~R)  1 2 3 4 5 6 (formula)  P Q R ~R (P  Q) ((P  Q)  ~R)   1 T T T 2 T T F 3 T F T 4 T F F 5 F T T 6 F T F 7 F F T 8 F F F
Truth-table to evaluate ((P  Q)  ~R)  1 2 3 4 5 6 (formula)  P Q R ~R (P  Q) ((P  Q)  ~R)   1 T T T F 2 T T F T 3 T F T F 4 T F F T 5 F T T F 6 F T F T 7 F F T F 8 F F F T
Truth-table to evaluate ((P  Q)  ~R)  1 2 3 4 5 6 (formula)  P Q R ~R (P  Q) ((P  Q)  ~R)   1 T T T F T 2 T T F T T 3 T F T F F 4 T F F T F 5 F T T F F 6 F T F T F 7 F F T F F 8 F F F T F
Truth-table to evaluate ((P  Q)  ~R)  1 2 3 4 5 6 (formula)  P Q R ~R (P  Q) ((P  Q)  ~R)   1 T T T F T F 2 T T F T T T 3 T F T F F T 4 T F F T F T 5 F T T F F T 6 F T F T F T 7 F F T F F T 8 F F F T F T
Determining the logical status of (~P  P) 1 2 3 (formula) P ~P (~P  P)   1 2
Determining the logical status of (~P  P) 1 2 3 (formula) P ~P (~P  P)   1 T 2 F
Determining the logical status of (~P  P) 1 2 3 (formula) P ~P (~P  P)   1 T F 2 F T
Determining the logical status of (~P  P) 1 2 3 (formula) P ~P (~P  P)   1 T F T 2 F T F
Determining the logical status of (~P  P) Formula is CONTINGENT. 1 2 3 (formula) P ~P (~P  P)   1 T F T 2 F T F
Determining the logical status of  (P  ~Q) 1 2 3 4 P Q ~Q (P  ~Q) 1 2 3 4
Determining the logical status of  (P  ~Q) 1 2 3 4 P Q ~Q (P  ~Q) 1 T 2 T 3 F 4 F
Determining the logical status of  (P  ~Q) 1 2 3 4 P Q ~Q (P  ~Q) 1 T T 2 T F 3 F T 4 F F
Determining the logical status of  (P  ~Q) 1 2 3 4 P Q ~Q (P  ~Q) 1 T T F 2 T F T 3 F T F 4 F F T
Determining the logical status of  (P  ~Q) 1 2 3 4 P Q ~Q (P  ~Q) 1 T T F F 2 T F T T 3 F T F F 4 F F T F
Steps for determining logical status of a proposition. Create truth-table with right number of rows and columns. Compute truth-value of every formula on every row using truth-values of atomic statements for the row. Check for the logical status by checking the relevant rows.
The logical status of a proposition. Can use truth-tables to distinguish these different kinds of propositions. Logical status Description Truth-Table Tautology Always true Every row T Contradiction Always false Every row F Contingent Depends on circumstances Some row T, some row F
Determining the logical status of a group of propositions. Build truth-table to give side-by-side comparison of the truth values of the propositions. Doing this in a single truth-table is the best way to ensure an apples-to-apples comparison.
Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 2 3 4
Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T 2 T 3 F 4 F
Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T T 2 T F 3 F T 4 F F
Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T T F 2 T F F 3 F T T 4 F F T
Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T T F F 2 T F F T 3 F T T F 4 F F T T
Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T T F F T 2 T F F T F 3 F T T F F 4 F F T T F
Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T T F F T F 2 T F F T F T 3 F T T F F T 4 F F T T F T
Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T T F F T F F 2 T F F T F T T 3 F T T F F T T 4 F F T T F T T
Logical status of ~(P  Q), (~P  ~Q) Both formulae have the same truth-values on every row ( equivalent ) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T T F F T F F 2 T F F T F T T 3 F T T F F T T 4 F F T T F T T
Logical status of (P  Q), (P  Q) 1 2 3 4 P Q (P  Q) (P  Q) 1 2 3 4
Logical status of (P  Q), (P  Q) 1 2 3 4 P Q (P  Q) (P  Q) 1 T 2 T 3 F 4 F
Logical status of (P  Q), (P  Q) 1 2 3 4 P Q (P  Q) (P  Q) 1 T T 2 T F 3 F T 4 F F
Logical status of (P  Q), (P  Q) 1 2 3 4 P Q (P  Q) (P  Q) 1 T T T 2 T F F 3 F T F 4 F F F
Logical status of (P  Q), (P  Q) 1 2 3 4 P Q (P  Q) (P  Q) 1 T T T T 2 T F F T 3 F T F T 4 F F F F
Logical status of (P  Q), (P  Q) A row (1) where both formulae are T  ( satisfiable, but not equivalent ) 1 2 3 4 P Q (P  Q) (P  Q) 1 T T T T 2 T F F T 3 F T F T 4 F F F F
Logical status of (P  ~Q), (P  Q) 1 2 3 4 P Q ~Q (P  ~Q) (P  Q) 1 2 3 4
Logical status of (P  ~Q), (P  Q) 1 2 3 4 P Q ~Q (P  ~Q) (P  Q) 1 T 2 T 3 F 4 F
Logical status of (P  ~Q), (P  Q) 1 2 3 4 P Q ~Q (P  ~Q) (P  Q) 1 T T 2 T F 3 F T 4 F F
Logical status of (P  ~Q), (P  Q) 1 2 3 4 P Q ~Q (P  ~Q) (P  Q) 1 T T F 2 T F T 3 F T F 4 F F T
Logical status of (P  ~Q), (P  Q) 1 2 3 4 P Q ~Q (P  ~Q) (P  Q) 1 T T F F 2 T F T T 3 F T F T 4 F F T T
Logical status of (P  ~Q), (P  Q) 1 2 3 4 P Q ~Q (P  ~Q) (P  Q) 1 T T F F T 2 T F T T F 3 F T F T F 4 F F T T F
Logical status of (P  ~Q), (P  Q) NO row where both formulae are T  ( unsatisfiable ) 1 2 3 4 P Q ~Q (P  ~Q) (P  Q) 1 T T F F T 2 T F T T F 3 F T F T F 4 F F T T F
Steps for determining logical status of group of propositions. Create truth-table with right number of rows and columns. Compute truth-value of every formula on every row using truth-values of atomic statements for the row. Check for the logical status by checking the relevant rows.
The logical status of  a group of propositions. Logical Status Description Truth-Table Equivalent Mean the same thing, logically The truth-tables are identical Satisfiable/consistent Possibly all true. There is some row where all propositions are true. Unsatisfiable/inconsistent Can’t all be true. No row where all propositions are true.
Determining the validity of an argument via truth-tables. Remember that a valid argument is one where, if all the premises are true, the conclusion  must  be true.
Determining the validity of an argument via truth-tables. Remember that a valid argument is one where, if all the premises are true, the conclusion  must  be true. Build truth table that includes formulae for premises and conclusion.
Determining the validity of an argument via truth-tables. Remember that a valid argument is one where, if all the premises are true, the conclusion  must  be true. Build truth table that includes formulae for premises and conclusion. If there’s a row where the premises are true and the conclusion is false, argument is  invalid .
Determining the validity of an argument via truth-tables. Remember that a valid argument is one where, if all the premises are true, the conclusion  must  be true. Build truth table that includes formulae for premises and conclusion. If there’s a row where the premises are true and the conclusion is false, argument is  invalid . Otherwise, argument is valid.
Determining the validity of an argument via truth-tables. If John wins the election, then Mary will run for Governor.  John did not win the election.  (Conclusion) So, Mary will not run for Governor.
Determining the validity of an argument via truth-tables. If John wins the election, then Mary will run for Governor.  John did not win the election.  (Conclusion) So, Mary will not run for Governor. P = John wins the election. Q = Mary will run for Governor.
Determining the validity of an argument via truth-tables. If John wins the election, then Mary will run for Governor.  (P  Q) John did not win the election.  ~P (Conclusion) So, Mary will not run for Governor. ~Q P = John wins the election. Q = Mary will run for Governor.
Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) ~P ~Q 1 2 3 4
Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) ~P ~Q 1 T 2 T 3 F 4 F
Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) ~P ~Q 1 T T 2 T F 3 F T 4 F F
Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) ~P ~Q 1 T T T 2 T F F 3 F T T 4 F F T
Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) ~P ~Q 1 T T T F 2 T F F F 3 F T T T 4 F F T T
Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) ~P ~Q 1 T T T F F 2 T F F F T 3 F T T T F 4 F F T T T
Determining the validity of an argument via truth-tables. ROW 3: Both premises true, conclusion false. Argument is invalid! Pr1 Pr2 C P Q (P  Q) ~P ~Q 1 T T T F F 2 T F F F T 3 F T T T F 4 F F T T T
Determining the validity of an argument via truth-tables. If John wins the election, then Mary will run for Governor.  John won the election.  (Conclusion) So, Mary will run for Governor. P = John wins the election. Q = Mary will run for Governor.
Determining the validity of an argument via truth-tables. If John wins the election, then Mary will run for Governor.  (P  Q) John won the election.  P (Conclusion) So, Mary will run for Governor. Q P = John wins the election. Q = Mary will run for Governor.
Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) P Q 1 2 3 4
Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) P Q 1 T 2 T 3 F 4 F
Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) P Q 1 T T 2 T F 3 F T 4 F F
Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) P Q 1 T T T 2 T F F 3 F T T 4 F F T
Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) P Q 1 T T T T 2 T F F T 3 F T T F 4 F F T F
Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) P Q 1 T T T T T 2 T F F T F 3 F T T F T 4 F F T F F
Determining the validity of an argument via truth-tables. ROW 1: Both premises true, conclusion true. Argument is valid! Pr1 Pr2 C P Q (P  Q) P Q 1 T T T T T 2 T F F T F 3 F T T F T 4 F F T F F
Important note for homework: Some of the expressions you’ll be evaluating in truth-tables use alternate notation.    means ~    means      means  

More Related Content

PDF
Probability game
PDF
9 3 angles of elevation and depression
PDF
Lesson 21: Antiderivatives (slides)
PPT
Relations and functions
PPTX
Introduction to statistics
PPTX
Presentation on kurtosis statistics
PPTX
Research Process
PPTX
Points, Lines, and Planes (Undefined terms in Geometry) PPT
Probability game
9 3 angles of elevation and depression
Lesson 21: Antiderivatives (slides)
Relations and functions
Introduction to statistics
Presentation on kurtosis statistics
Research Process
Points, Lines, and Planes (Undefined terms in Geometry) PPT

What's hot (9)

PPTX
Determining the Inverse, Converse, and Contrapositive of an If-then Statement...
PPTX
LESSON 7 ILLUSTRATING RANDOM SAMPLING G11
PPTX
7-Identifying-Regions-of-Ares-Under-Normal-Curve.pptx
PDF
Data presentation
PPTX
6.3 area under norm curve
PPTX
Measures of position. gouped data
PDF
BAS-CAL-LESSON-1-LIMITS-OF-A-FUNCTION.pdf
PPTX
Goodness of-fit
Determining the Inverse, Converse, and Contrapositive of an If-then Statement...
LESSON 7 ILLUSTRATING RANDOM SAMPLING G11
7-Identifying-Regions-of-Ares-Under-Normal-Curve.pptx
Data presentation
6.3 area under norm curve
Measures of position. gouped data
BAS-CAL-LESSON-1-LIMITS-OF-A-FUNCTION.pdf
Goodness of-fit
Ad

Viewers also liked (20)

PPT
Indirect-table Analysis
PPTX
IS 151 Lecture 3
PPT
IS 139 Lecture 7
PPTX
IS 151 - Lecture 3
PPTX
Chapter one
PPTX
IS 151 Lecture 2
PPT
Cd unit i
PPT
pointer, structure ,union and intro to file handling
PPTX
aaالمملكة العربية السعودية
PPTX
Logical and Conditional Operator In C language
PPTX
C Structures and Unions
PPT
Logic gates
PPTX
Hierarchical Memory System
PPT
C Structures & Unions
PPTX
Memory Hierarchy
PPT
Truth tables
PPTX
Discrete math Truth Table
PPTX
PDF
Introduction to compilers
Indirect-table Analysis
IS 151 Lecture 3
IS 139 Lecture 7
IS 151 - Lecture 3
Chapter one
IS 151 Lecture 2
Cd unit i
pointer, structure ,union and intro to file handling
aaالمملكة العربية السعودية
Logical and Conditional Operator In C language
C Structures and Unions
Logic gates
Hierarchical Memory System
C Structures & Unions
Memory Hierarchy
Truth tables
Discrete math Truth Table
Introduction to compilers
Ad

Similar to Truth table analysis (20)

PDF
null-12.pdf
PDF
null-12.pdf
PPTX
Discreate Truth tables and laws of logic
PPTX
Discrete Structure/Mathematics INTRODUCTION TO LOGICAL STATMENTS
PPT
Mathematical foundations of computer science
PPTX
Propositional logic
PPTX
Logic - Logical Propositions
PDF
2-exe-1.pdfxjdjsjwkakaksjxudjzjjsjsjsjdhdjdhd
PPTX
3. Derived Logical Connectives logical.pptx
DOCX
PDF
Logic and proof
PPTX
DIShshshhshwhwhhCRETE-MATHEMATICS-_2.pptx
PDF
Maths teachers guide For freshman course.pdf
PPTX
L4-IntroducClick to edit Master title styletion to logic.pptx
PPTX
Discrete Structure/Mathematics - iNTRODUCTION TO IMPLICATION
DOCX
Truth table a.r
PDF
Chapter 1 Logic of Compound Statements
PPTX
Nature of Logic.pptx
PDF
unit-3.pdf SRM MATHS DISCREATE MATHS 2024
PPTX
UNIT-III-PPT.pptx
null-12.pdf
null-12.pdf
Discreate Truth tables and laws of logic
Discrete Structure/Mathematics INTRODUCTION TO LOGICAL STATMENTS
Mathematical foundations of computer science
Propositional logic
Logic - Logical Propositions
2-exe-1.pdfxjdjsjwkakaksjxudjzjjsjsjsjdhdjdhd
3. Derived Logical Connectives logical.pptx
Logic and proof
DIShshshhshwhwhhCRETE-MATHEMATICS-_2.pptx
Maths teachers guide For freshman course.pdf
L4-IntroducClick to edit Master title styletion to logic.pptx
Discrete Structure/Mathematics - iNTRODUCTION TO IMPLICATION
Truth table a.r
Chapter 1 Logic of Compound Statements
Nature of Logic.pptx
unit-3.pdf SRM MATHS DISCREATE MATHS 2024
UNIT-III-PPT.pptx

More from Janet Stemwedel (20)

PPT
Climategate and scientific methodology
PPT
P160 Kuhn and his Critics
PPT
P160 Duhem and Quine
PPT
P160 Hempel, Hume, Deduction, and Induction
PPT
Lect10 Human Subjects: History
PPT
Lect11 Human Subjects: Regulations
PPT
Lec12 Human Subjects:Global Issues
PPT
Lec13 Scientific Papers and Communications
PPT
Lec 14 Authorship Issues
PPT
Lec15 Patents and Intellectual Property
PPT
Lec16 International Strategies for Scientific Dialogue
PPT
Explanation classroomversion
PPT
P160 antirealismclassroomversion
PPT
P160 naturalismclassroomlect
PPT
Feminist Critiques of Science
PPT
Translating English to Propositional Logic
PPT
P160 Kuhn classroom Lecture 2
PPT
Propositional logic
PPT
Kuhn: Paradigms and Normal Science
PPT
Syntax and semantics of propositional logic
Climategate and scientific methodology
P160 Kuhn and his Critics
P160 Duhem and Quine
P160 Hempel, Hume, Deduction, and Induction
Lect10 Human Subjects: History
Lect11 Human Subjects: Regulations
Lec12 Human Subjects:Global Issues
Lec13 Scientific Papers and Communications
Lec 14 Authorship Issues
Lec15 Patents and Intellectual Property
Lec16 International Strategies for Scientific Dialogue
Explanation classroomversion
P160 antirealismclassroomversion
P160 naturalismclassroomlect
Feminist Critiques of Science
Translating English to Propositional Logic
P160 Kuhn classroom Lecture 2
Propositional logic
Kuhn: Paradigms and Normal Science
Syntax and semantics of propositional logic

Recently uploaded (20)

PPTX
History, Philosophy and sociology of education (1).pptx
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Classroom Observation Tools for Teachers
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
IGGE1 Understanding the Self1234567891011
PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
Indian roads congress 037 - 2012 Flexible pavement
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
History, Philosophy and sociology of education (1).pptx
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Final Presentation General Medicine 03-08-2024.pptx
Classroom Observation Tools for Teachers
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Supply Chain Operations Speaking Notes -ICLT Program
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Weekly quiz Compilation Jan -July 25.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
Practical Manual AGRO-233 Principles and Practices of Natural Farming
IGGE1 Understanding the Self1234567891011
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
Indian roads congress 037 - 2012 Flexible pavement
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين

Truth table analysis

  • 1. Truth-Table Analysis Phil 57 section 3 San Jose State University Fall 2010
  • 2. What are truth-tables good for? Working out the truth value of a formula from the truth values of the atomic formulae in it. Defining the behavior of logical connectives used to build complex formulae.
  • 3. What are truth-tables good for? Determining the logical status of a single proposition. Determining the logical status of a group of propositions. Determining the validity of an argument.
  • 4. The logical status of a proposition. Some propositions are always true: It will rain or it won’t. Some propositions are never true: The universe is empty and not empty. Most propositions are true in some conditions and false in others: Today is hot.
  • 5. The logical status of a proposition. Can use truth-tables to distinguish these different kinds of propositions. Logical status Description Truth-Table Tautology Always true Every row T Contradiction Always false Every row F Contingent Depends on circumstances Some row T, some row F
  • 6. The logical status of a proposition. Consider P  ~P P ~P P  ~P
  • 7. The logical status of a proposition. Consider P  ~P P ~P P  ~P T F
  • 8. The logical status of a proposition. Consider P  ~P P ~P P  ~P T F F T
  • 9. The logical status of a proposition. Consider P  ~P P ~P P  ~P T F F F T F
  • 10. The logical status of a proposition. Consider P  ~P Truth-value for P  ~P is F in every row. (Contradiction) P ~P P  ~P T F F F T F
  • 11. The logical status of a proposition. Consider P  ~P P ~P P  ~P
  • 12. The logical status of a proposition. Consider P  ~P P ~P P  ~P T F
  • 13. The logical status of a proposition. Consider P  ~P P ~P P  ~P T F F T
  • 14. The logical status of a proposition. Consider P  ~P P ~P P  ~P T F T F T T
  • 15. The logical status of a proposition. Consider P  ~P Truth-value for P  ~P is T in every row. (Tautology) P ~P P  ~P T F T F T T
  • 16. The logical status of a group of propositions. Do two different claims mean the same thing? Can two different claims both be true? Must one of a pair of claims be false if the other is true?
  • 17. The logical status of a group of propositions. Logical Status Description Truth-Table Equivalent Mean the same thing, logically The truth-tables are identical Satisfiable/consistent Possibly all true. There is some row where all propositions are true. Unsatisfiable/inconsistent Can’t all be true. No row where all propositions are true.
  • 18. Rules for building truth-tables: As many columns as: Statement letters Non-atomic formulae The formula to be computed 2 N rows, where N= number of atomic statement letters.
  • 19. Truth-table to evaluate ((P  Q)  ~R) 1 2 3 4 5 6 (formula) P Q R ~R (P  Q) ((P  Q)  ~R) 1 2 3 4 5 6 7 8
  • 20. Truth-table to evaluate ((P  Q)  ~R) 1 2 3 4 5 6 (formula) P Q R ~R (P  Q) ((P  Q)  ~R) 1 T 2 T 3 T 4 T 5 F 6 F 7 F 8 F
  • 21. Truth-table to evaluate ((P  Q)  ~R) 1 2 3 4 5 6 (formula) P Q R ~R (P  Q) ((P  Q)  ~R) 1 T T 2 T T 3 T F 4 T F 5 F T 6 F T 7 F F 8 F F
  • 22. Truth-table to evaluate ((P  Q)  ~R) 1 2 3 4 5 6 (formula) P Q R ~R (P  Q) ((P  Q)  ~R) 1 T T T 2 T T F 3 T F T 4 T F F 5 F T T 6 F T F 7 F F T 8 F F F
  • 23. Truth-table to evaluate ((P  Q)  ~R) 1 2 3 4 5 6 (formula) P Q R ~R (P  Q) ((P  Q)  ~R) 1 T T T F 2 T T F T 3 T F T F 4 T F F T 5 F T T F 6 F T F T 7 F F T F 8 F F F T
  • 24. Truth-table to evaluate ((P  Q)  ~R) 1 2 3 4 5 6 (formula) P Q R ~R (P  Q) ((P  Q)  ~R) 1 T T T F T 2 T T F T T 3 T F T F F 4 T F F T F 5 F T T F F 6 F T F T F 7 F F T F F 8 F F F T F
  • 25. Truth-table to evaluate ((P  Q)  ~R) 1 2 3 4 5 6 (formula) P Q R ~R (P  Q) ((P  Q)  ~R) 1 T T T F T F 2 T T F T T T 3 T F T F F T 4 T F F T F T 5 F T T F F T 6 F T F T F T 7 F F T F F T 8 F F F T F T
  • 26. Determining the logical status of (~P  P) 1 2 3 (formula) P ~P (~P  P) 1 2
  • 27. Determining the logical status of (~P  P) 1 2 3 (formula) P ~P (~P  P) 1 T 2 F
  • 28. Determining the logical status of (~P  P) 1 2 3 (formula) P ~P (~P  P) 1 T F 2 F T
  • 29. Determining the logical status of (~P  P) 1 2 3 (formula) P ~P (~P  P) 1 T F T 2 F T F
  • 30. Determining the logical status of (~P  P) Formula is CONTINGENT. 1 2 3 (formula) P ~P (~P  P) 1 T F T 2 F T F
  • 31. Determining the logical status of (P  ~Q) 1 2 3 4 P Q ~Q (P  ~Q) 1 2 3 4
  • 32. Determining the logical status of (P  ~Q) 1 2 3 4 P Q ~Q (P  ~Q) 1 T 2 T 3 F 4 F
  • 33. Determining the logical status of (P  ~Q) 1 2 3 4 P Q ~Q (P  ~Q) 1 T T 2 T F 3 F T 4 F F
  • 34. Determining the logical status of (P  ~Q) 1 2 3 4 P Q ~Q (P  ~Q) 1 T T F 2 T F T 3 F T F 4 F F T
  • 35. Determining the logical status of (P  ~Q) 1 2 3 4 P Q ~Q (P  ~Q) 1 T T F F 2 T F T T 3 F T F F 4 F F T F
  • 36. Steps for determining logical status of a proposition. Create truth-table with right number of rows and columns. Compute truth-value of every formula on every row using truth-values of atomic statements for the row. Check for the logical status by checking the relevant rows.
  • 37. The logical status of a proposition. Can use truth-tables to distinguish these different kinds of propositions. Logical status Description Truth-Table Tautology Always true Every row T Contradiction Always false Every row F Contingent Depends on circumstances Some row T, some row F
  • 38. Determining the logical status of a group of propositions. Build truth-table to give side-by-side comparison of the truth values of the propositions. Doing this in a single truth-table is the best way to ensure an apples-to-apples comparison.
  • 39. Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 2 3 4
  • 40. Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T 2 T 3 F 4 F
  • 41. Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T T 2 T F 3 F T 4 F F
  • 42. Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T T F 2 T F F 3 F T T 4 F F T
  • 43. Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T T F F 2 T F F T 3 F T T F 4 F F T T
  • 44. Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T T F F T 2 T F F T F 3 F T T F F 4 F F T T F
  • 45. Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T T F F T F 2 T F F T F T 3 F T T F F T 4 F F T T F T
  • 46. Logical status of ~(P  Q), (~P  ~Q) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T T F F T F F 2 T F F T F T T 3 F T T F F T T 4 F F T T F T T
  • 47. Logical status of ~(P  Q), (~P  ~Q) Both formulae have the same truth-values on every row ( equivalent ) 1 2 3 4 5 6 7 P Q ~P ~Q (P  Q) ~(P  Q) (~P  ~Q) 1 T T F F T F F 2 T F F T F T T 3 F T T F F T T 4 F F T T F T T
  • 48. Logical status of (P  Q), (P  Q) 1 2 3 4 P Q (P  Q) (P  Q) 1 2 3 4
  • 49. Logical status of (P  Q), (P  Q) 1 2 3 4 P Q (P  Q) (P  Q) 1 T 2 T 3 F 4 F
  • 50. Logical status of (P  Q), (P  Q) 1 2 3 4 P Q (P  Q) (P  Q) 1 T T 2 T F 3 F T 4 F F
  • 51. Logical status of (P  Q), (P  Q) 1 2 3 4 P Q (P  Q) (P  Q) 1 T T T 2 T F F 3 F T F 4 F F F
  • 52. Logical status of (P  Q), (P  Q) 1 2 3 4 P Q (P  Q) (P  Q) 1 T T T T 2 T F F T 3 F T F T 4 F F F F
  • 53. Logical status of (P  Q), (P  Q) A row (1) where both formulae are T ( satisfiable, but not equivalent ) 1 2 3 4 P Q (P  Q) (P  Q) 1 T T T T 2 T F F T 3 F T F T 4 F F F F
  • 54. Logical status of (P  ~Q), (P  Q) 1 2 3 4 P Q ~Q (P  ~Q) (P  Q) 1 2 3 4
  • 55. Logical status of (P  ~Q), (P  Q) 1 2 3 4 P Q ~Q (P  ~Q) (P  Q) 1 T 2 T 3 F 4 F
  • 56. Logical status of (P  ~Q), (P  Q) 1 2 3 4 P Q ~Q (P  ~Q) (P  Q) 1 T T 2 T F 3 F T 4 F F
  • 57. Logical status of (P  ~Q), (P  Q) 1 2 3 4 P Q ~Q (P  ~Q) (P  Q) 1 T T F 2 T F T 3 F T F 4 F F T
  • 58. Logical status of (P  ~Q), (P  Q) 1 2 3 4 P Q ~Q (P  ~Q) (P  Q) 1 T T F F 2 T F T T 3 F T F T 4 F F T T
  • 59. Logical status of (P  ~Q), (P  Q) 1 2 3 4 P Q ~Q (P  ~Q) (P  Q) 1 T T F F T 2 T F T T F 3 F T F T F 4 F F T T F
  • 60. Logical status of (P  ~Q), (P  Q) NO row where both formulae are T ( unsatisfiable ) 1 2 3 4 P Q ~Q (P  ~Q) (P  Q) 1 T T F F T 2 T F T T F 3 F T F T F 4 F F T T F
  • 61. Steps for determining logical status of group of propositions. Create truth-table with right number of rows and columns. Compute truth-value of every formula on every row using truth-values of atomic statements for the row. Check for the logical status by checking the relevant rows.
  • 62. The logical status of a group of propositions. Logical Status Description Truth-Table Equivalent Mean the same thing, logically The truth-tables are identical Satisfiable/consistent Possibly all true. There is some row where all propositions are true. Unsatisfiable/inconsistent Can’t all be true. No row where all propositions are true.
  • 63. Determining the validity of an argument via truth-tables. Remember that a valid argument is one where, if all the premises are true, the conclusion must be true.
  • 64. Determining the validity of an argument via truth-tables. Remember that a valid argument is one where, if all the premises are true, the conclusion must be true. Build truth table that includes formulae for premises and conclusion.
  • 65. Determining the validity of an argument via truth-tables. Remember that a valid argument is one where, if all the premises are true, the conclusion must be true. Build truth table that includes formulae for premises and conclusion. If there’s a row where the premises are true and the conclusion is false, argument is invalid .
  • 66. Determining the validity of an argument via truth-tables. Remember that a valid argument is one where, if all the premises are true, the conclusion must be true. Build truth table that includes formulae for premises and conclusion. If there’s a row where the premises are true and the conclusion is false, argument is invalid . Otherwise, argument is valid.
  • 67. Determining the validity of an argument via truth-tables. If John wins the election, then Mary will run for Governor. John did not win the election. (Conclusion) So, Mary will not run for Governor.
  • 68. Determining the validity of an argument via truth-tables. If John wins the election, then Mary will run for Governor. John did not win the election. (Conclusion) So, Mary will not run for Governor. P = John wins the election. Q = Mary will run for Governor.
  • 69. Determining the validity of an argument via truth-tables. If John wins the election, then Mary will run for Governor. (P  Q) John did not win the election. ~P (Conclusion) So, Mary will not run for Governor. ~Q P = John wins the election. Q = Mary will run for Governor.
  • 70. Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) ~P ~Q 1 2 3 4
  • 71. Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) ~P ~Q 1 T 2 T 3 F 4 F
  • 72. Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) ~P ~Q 1 T T 2 T F 3 F T 4 F F
  • 73. Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) ~P ~Q 1 T T T 2 T F F 3 F T T 4 F F T
  • 74. Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) ~P ~Q 1 T T T F 2 T F F F 3 F T T T 4 F F T T
  • 75. Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) ~P ~Q 1 T T T F F 2 T F F F T 3 F T T T F 4 F F T T T
  • 76. Determining the validity of an argument via truth-tables. ROW 3: Both premises true, conclusion false. Argument is invalid! Pr1 Pr2 C P Q (P  Q) ~P ~Q 1 T T T F F 2 T F F F T 3 F T T T F 4 F F T T T
  • 77. Determining the validity of an argument via truth-tables. If John wins the election, then Mary will run for Governor. John won the election. (Conclusion) So, Mary will run for Governor. P = John wins the election. Q = Mary will run for Governor.
  • 78. Determining the validity of an argument via truth-tables. If John wins the election, then Mary will run for Governor. (P  Q) John won the election. P (Conclusion) So, Mary will run for Governor. Q P = John wins the election. Q = Mary will run for Governor.
  • 79. Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) P Q 1 2 3 4
  • 80. Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) P Q 1 T 2 T 3 F 4 F
  • 81. Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) P Q 1 T T 2 T F 3 F T 4 F F
  • 82. Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) P Q 1 T T T 2 T F F 3 F T T 4 F F T
  • 83. Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) P Q 1 T T T T 2 T F F T 3 F T T F 4 F F T F
  • 84. Determining the validity of an argument via truth-tables. Pr1 Pr2 C P Q (P  Q) P Q 1 T T T T T 2 T F F T F 3 F T T F T 4 F F T F F
  • 85. Determining the validity of an argument via truth-tables. ROW 1: Both premises true, conclusion true. Argument is valid! Pr1 Pr2 C P Q (P  Q) P Q 1 T T T T T 2 T F F T F 3 F T T F T 4 F F T F F
  • 86. Important note for homework: Some of the expressions you’ll be evaluating in truth-tables use alternate notation.  means ~  means   means 